Financial Data Science Python Notebooks

Terence Lim

Apr 01, 2025

CONTENTS

1	Stock Prices 1.1 FinDS package 1.2 Stock price data
	1.3 Properties of stock returns 1
2	Jegadeesh-Titman Rolling Portfolios 2.2 2.1 Price momentum 2.2 2.2 Hypothesis testing 2.2
3	Fama-French Portfolio Sorts33.1Stock fundementals data33.2Bivariate sorts33.3Linear regression43.4Structural break test4
4	Fama-Macbeth Cross-sectional Regressions444.1Mean variance optimization504.2Implied alphas504.3Cross-sectional regressions504.4Nonlinear regression60
5	Contrarian Trading665.1Mean reversion745.2Implementation shortfall745.3Structural break with unknown changepoint745.4Performance evaluation74
6	Quant Factors86.1Factor investing
7	Event Study 14. 7.1 Abnormal returns 14. 7.2 Fourier transforms 15 7.3 Multiple testing 15
8	Economic Indicators168.1FRED

9	Linear Regression Diagonostics189.1Model assumptions189.2Residual diagnostics19	37 88 91
10	Time Series Analysis1910.1Seasonality1910.2Stationarity2010.3Autocorrelation2010.4Time Series Models2010.5Forecasting20	97 98 00 01 01 05
11	Approximate Factor Models2111.1Integration order2111.2Factor selection21	15 16 19
12	State Space Models 22 12.1 Hidden Markov Model 22 12.2 Gaussian Mixture Model 22	27 28 33
13	Term Structure of Interest Rates2313.1Interest Rates2313.2Yield Curve2313.3Principal Component Analysis (PCA)2413.4Singular Value Decomposition (SVD)2413.5Low-Rank Approximations25	35 35 39 46 48 50
14	Interest Rate Risk 25 14.1 Interest rate sensitivity 25 14.2 Risk factors 25	53 53 58
15	Options Pricing2615.1Options2615.2Binomial option pricing2715.3Black-Scholes-Merton model2815.4Monte Carlo simulation28	59 59 75 81 88
16	Value at Risk2916.1Risk measures2916.2Conditional volatility models3016.3Backtesting VaR30	93 94 03 07
17	Covariance Matrix3017.1Portfolio risk3017.2Covariance matrix estimation31)9)9 14
18	Market Microstructure3218.1Tick data3218.2Liquidty measures3218.3By market capitalization3218.4High frequency sampling33	21 22 24 27 34
19	Event Risk 34 19.1 Earnings expectations 34 19.2 Poisson regression 34	45 45 48

20	Supply Chain Network Graphs 3 20.1 Principal customers 3 20.2 Graph properties 3	353 353 354
21	Industry Community Detection 3 21.1 Industry taxonomy 3 21.2 Community structure 3	361 361 365
22	Input-Output Graph Centrality 3 22.1 Centrality measures 3 22.2 BEA Input-Output Use Tables 3	373 373 374
23	Product Market Link Prediction 3 23.1 Product market linkages 3 23.2 Link prediction algorithms 3 23.3 Accuracy metrics 3	391 391 394 395
24	Earnings Spatial Regression 2 24.1 Earnings surprise 2 24.2 Spatial dependence models 2	407 408 409
25	FOMC Topic Modeling 2 25.1 FOMC meeting minutes 2 25.2 Text pre-processing 2 25.3 Topic Modeling 2	415 416 418 420
26	Management Sentiment Analysis 2 26.1 Sentiment analysis 2 26.2 10-K Management discussion and analysis 2	129 430 432
27	Business Textual Analysis 2 27.1 Syntactic analysis 2 27.2 Semantic similarity 2 27.3 Dimensionality reduction 2	143 144 147 150
28	Machine Learning: Classification228.1Text classification228.2Classification models228.3Evaluation2	459 460 462 465
29	Machine Learning: Regression 2 29.1 Macroeconomic forecasting 2 29.2 Regression models 2	175 175 178
30	Deep Learning 30.1 30.1 Industry text classification 30.2 Feedforward neural networks	503 504 507
31	Convolutional Neural Networks531.1Convolutions531.2Temporal convolutional networks (TCN)531.3Vector Autoregression5	517 517 519 530
32	Recurrent Neural Networks 5 32.1 Sequence modeling 5 32.2 Elman network 5	537 538 539

	32.3 Dynamic Factor Models	. 546
33	Reinforcement Learning 33.1 Retirement spending policy 33.2 Deep reinforcement learning	551 552 562
34	Language Modeling 34.1 Transformers 34.2 Language modeling	567 568 571
35	Large Language Models 35.1 OpenAI GPT models 35.2 DeepSeek-R1 model 35.3 Text summarization	579 580 581 583
36	LLM Fine-tuning 36.1 Meta Llama-3.1 model 36.2 Supervised fine-tuning (SFT) 36.3 Industry text classification	635 636 637 640
37	LLM Prompting37.1Sentiment analysis37.2Google Gemma 3 model37.3Structured dialogue37.4Vision language37.5Code writing37.6Mathematical reasoning37.7Multi-lingual	649 649 651 651 660 662 664 666
38	LLM Agents 38.1 Microsoft Phi-4 model 38.2 Chatbot 38.3 Retrieval-augmented generation 38.4 Multi-agents 38.5 Multimodal	673 674 677 681 687 699

As financial markets produce vast volumes of structured and unstructured data, the ability to extract insights and develop predictive models has become increasingly important. Financial Data Science Python Notebooks provide a practical guide for analysts, researchers, and data scientists looking to apply Python and its broad ecosystem of libraries, tools, frameworks, and community resources to financial analysis, econometrics, and machine learning.

Designed to support financial data science workflows, the companion FinDS Python package demonstrates how to use database engines such as SQL, Redis, and MongoDB to manage and access large datasets, including:

- Core financial databases such as CRSP, Compustat, IBES, and TAQ
- Public economic data APIs from sources like FRED and the Bureau of Economic Analysis (BEA)
- · Structured and unstructured data from academic and research websites

In addition to data access, it provides practical examples and templates for applying:

- · Financial econometrics and time series modeling
- · Graph analytics, event studies, and backtesting strategies
- Machine learning for predictive analytics
- Natural language processing (NLP) to extract insights from financial text
- Neural networks and large language models (LLMs) for advanced decision-making

March 2025: Updated with data through early 2025 and incorporated the latest LLMs –Microsoft Phi-4-multimodal (released Feb 2025), Google Gemma-3-12B (March 2025), DeepSeek-R1-14B (January 2025), Meta Llama-3.1-8B (July 2024), GPT-4o-mini (July 2024).

Financial Data Science Notebooks

Topics

1.1_stock_pricesStock price propertiesCRSP stocksStatistical moments1.2_jegadeesh_titmanPrice momentumCRSP stocksHypothesis testing, Newey-West estimator1.3_fama_frenchValue and sizeCRSP stocks, CompustatLinear regression1.4_fama_macbethCAPMFama-FrenchNon-linear regression, Quadratic optimization1.5_contrarian_tradingMean reversion, Implementation shortfallCRSP stocksStructural breaks	notebook	Financial	Data	Science
1.2_jegadeesh_titmanPrice momentumCRSP stocksHypothesis testing, Newey-West estimator1.3_fama_frenchValue and sizeCRSP stocks, CompustatLinear regression1.4_fama_macbethCAPMFama-FrenchNon-linear regression, Quadratic optimization1.5_contrarian_tradingMean reversion, Implementation shortfallCRSP stocksStructural breaks	1.1_stock_prices	Stock price properties	CRSP stocks	Statistical moments
1.3_fama_frenchValue and sizeCRSP stocks, CompustatLinear regression1.4_fama_macbethCAPMFama-FrenchNon-linear regression, Quadratic optimization1.5_contrarian_tradingMean reversion, Implementation shortfallCRSP stocksStructural breaks	1.2_jegadeesh_titman	Price momentum	CRSP stocks	Hypothesis testing, Newey-West estimator
1.4_fama_macbethCAPMFama-FrenchNon-linear regression, Quadratic optimization1.5_contrarian_tradingMean reversion, Implementation shortfallCRSP stocksStructural breaks	1.3_fama_french	Value and size	CRSP stocks, Compustat	Linear regression
1.5_contrarian_trading Mean reversion, Implementation shortfall CRSP stocks Structural breaks	1.4_fama_macbeth	САРМ	Fama-French	Non-linear regression, Quadratic optimization
1	1.5_contrarian_trading	Mean reversion, Implementation shortfall	CRSP stocks	Structural breaks
1.6_quant_factorsFactor investing, BacktestingCRSP stocks, Compustat, IBESCluster analysis	1.6_quant_factors	Factor investing, Backtesting	CRSP stocks, Compustat, IBES	Cluster analysis

notebook	Financial	Data	Science
1.7_event_study	Event studies	S&P key developments	Multiple testing, Fourier transforms
2.1_economic_indicators	Economic data revisions, Employment payrolls	ALFRED	Outlier detection
2.2_regression_diagnostics	Consumer and producer prices	FRED	Linear regression diagnostics
2.3_time_series	Industrial production and inflation	FRED	Time series analysis
2.4_approximate_factors	Approximate factor models	FRED-MD	Unit root test, EM Algorithm
2.5_economic_states	State space models	FRED-MD	Gaussian mixture, hidden Markov models
3.1_term_structure	Interest rates	FRED yield curve	Low-rank approximation
3.2_bond_returns	Bonds risk factors	FRED bond returns	Principal component analysis
3.3_options_pricing	Binomial tree, Black-Scholes-Merton	simulated	Monte Carlo simulations
3.4_value_at_risk	Value-at-risk	FRED crypto-currencies	Conditional volatility
3.5_covariance_matrix	Portfolio risk	Fama-French industries	Covariance matrix estimation
3.6_market_microstructure	Market liquidity	TAQ tick data	High frequency volatility
3.7_event_risk	Earnings expectations	IBES	Poisson regression, generalized linear model
4.1_network_graphs	Supply chain	Compustat principal customers	Network graphs
4.2_community_detection	Industry taxonomy	Hoberg-Phillips	Community detection
4.3_graph_centrality	Input-output uses	Bureau of Economic Analysis	Graph centrality
4.4_link_prediction	Product markets	Hoberg-Phillips	Link prediction
4.5_spatial_regression	Earnings surprises	IBES, Hoberg-Phillips	Spatial regression
5.1_fomc_topics	FOMC meetings	Federal Reserve	Topic modeling
5.2_management_sentiment	Management discussions	SEC Edgar, Loughran-Macdonald	Sentiment analysis
5.3_business_textual	Business descriptions	SEC Edgar	Part-of-speech, Density-based clustering
6.1_classification_models	Industry classification	SEC Edgar	Classification
6.2_regression_models	Macroeconomic forecasts	FRED-MD	Regression
6.3_deep_learning	Industry classification	SEC Edgar	embeddings
6.4_convolutional_net	Macroeconomic forecasts	FRED-MD	Convolutional neural nets, vector autoregression
6.5_recurrent_net	Macroeconomic forecasts	FRED-MD	Recurrent neural nets, dynamic factor models
6.6_reinforcement_learning	Retirement spending	SBBI	Reinforcement learning
6.7_language_modeling	Fedspeak	Federal Reserve	Language modeling, Transformers
7.1_large_language_models	Market risk disclosures	SEC Edgar	Text summarization
7.2_llm_finetuning	Industry classification	SEC Edgar	LLM fine-tuning
7.3_llm_prompting	Financial news sentiment	Kaggle	Prompt engineering

notebook	Financial	Data	Science
7.4_llm_agents	Corporate philanthropy	MVCP textbook	Multi-agents, chatbots, retrieval-augmented generation

Documentation

- Financial Data Science Notebooks
- Download PDF
- FinDS API reference

Github repos

- FinDS package
- Jupyter notebooks

Contact

https://terence-lim.github.io

CHAPTER

STOCK PRICES

In physics it takes three laws to explain 99% of the data; in finance it takes more than 99 laws to explain about 3% - Andrew Lo

Stock price data encompasses historical prices as well as corporate actions such as stock splits, dividends, and delistings. The CRSP database is a standard resource in academic research due to its comprehensive coverage of both active and delisted stocks, which supports unbiased and representative analysis. Efficient storage, retrieval, and processing of such structured financial data are enabled by tools such as SQL, SQLAlchemy, Redis, and Pandas. We examine statistical moments, assume log-normal distributions, and explore alternative correlation measures for modeling stock return behavior and dependencies.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import scipy
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import warnings
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, CRSPBuffer, Benchmarks
from finds.utils import Finder
from secret import credentials, CRSP_DATE, paths
VERBOSE = 0
# %matplotlib qt
```

1.1 FinDS package

Developed over a journey to support financial data science workflows, our FinDS Python package integrates:

- · Use of database engines like SQL, Redis, and MongoDB to manage large structured and unstructured datasets
- Tools for accessing key financial datasets, including CRSP, Compustat, IBES, and TAQ
- · Interfaces to public data sources such as FRED, SEC EDGAR, and the BEA
- · Utilities for extracting data from academic and research websites
- Recipes for applying a range of statistical and machine learning methods, including network graphs, natural language processing and large language models.

1.1.1 SQL

Structured Query Language (SQL) is a popular tool for storing and managing relational data organized into tables with columns (fields) and rows (records). Open-source systems like **MySQL** are widely used to implement relational databases, and Python libraries such as **SQLAlchemy** provide convenient interfaces for interacting with them. Additionally, the **Pandas** library allows users to run SQL queries and load the results directly into DataFrames for efficient analysis.

1.1.2 Redis

Redis is an open-source, in-memory data store commonly used as a caching layer. It helps improve performance by storing frequently accessed data in memory, thereby reducing the load on slower, primary databases.

```
# open database connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, endweek=3, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
bench = Benchmarks(sql, bd, verbose=VERBOSE)
find = Finder(sql)
outdir = paths['scratch']
```

1.2 Stock price data

Besides the historical prices of stocks, their adjustments such as identifier changes, stock splits, dividends, mergers, and delistings must also be recorded to accurately analyze performance over time.

1.2.1 CRSP stocks

The Center for Research in Security Prices (CRSP) provides the most widely used data for academic research into US stocks. It includes both successful and unsuccessful entities, rather than just those that have "survived" over time. This helps avoid the pitfalls of focusing only on surviving entities which can lead to an overestimation of average performance and underestimation of risk. It also captures corporate actions by standardizing data on events such as name changes, distributions and delistings. This information is recorded and validated from official sources, integrated into its historical databases along with details like announcement and effective dates, adjustment factors, and impact on stock performance calculations.

```
# describe the database schema of the CRP Stocks `names` table
DataFrame(**sql.run('describe names'))
```

	Field	Type	Null	Key	Default	Extra
0	date	int	NO	PRI	None	
1	comnam	varchar(32)	YES		None	
2	ncusip	varchar(8)	YES	MUL	None	
3	shrcls	varchar(1)	YES		None	
4	ticker	varchar(5)	YES		None	
5	permno	int	NO	PRI	None	
6	nameendt	int	YES		None	
7	shrcd	smallint	YES		None	
8	exchcd	smallint	YES		None	
9	siccd	smallint	YES		None	

10	tsymbol	varchar(7)	YES	None
11	naics	int	YES	None
12	primexch	varchar(1)	YES	None
13	trdstat	varchar(1)	YES	None
14	secstat	varchar(4)	YES	None
15	permco	int	YES	None

SQL select and join statements to retrieve Apple Computer's identifiers and corporate actions, such as stock splits and dividends. Commonly used SQL commands listed at the end of this notebook.

```
# double up the % when passing sql command stringo to pandas
names_df = pd.read_sql("select * from names where comnam like '%%APPLE COMPUTER%%'",_____
Goon=sql.engine)
names_df
```

	dat	ce		comnam	ncusi	p shrcls	ticker	permno	nameendt	\
0	1980123	12 APPL	E COMPU	JTER INC	0378331	0	AAPL	14593	19821031	
1	1982110	01 APPL	E COMPU	JTER INC	0378331	0	AAPL	14593	20040609	
2	2004063	10 APPL	E COMPU	JTER INC	0378331	0	AAPL	14593	20070110	
	shrcd	exchcd	siccd	tsymbol	naics	primexch	trdstat	secstat	permco	
0	11	3	3573		0	Q	A	R	7	
1	11	3	3573	AAPL	0	Q	A	R	7	
2	1 1	3	3573	A A D T	334111	0	Δ	R	7	
2	1 1	J	5575		221111	\sim	11	11	/	

inner join of identifiers (names) and distributions (dist) tables cmd = """ select distinct names.permno, divamt, facpr, exdt, comnam, ticker from names inner join dist on names.permno = dist.permno where names.comnam like '%%APPLE COMPUTER%%' """ dist_df = pd.read_sql(cmd, con=sql.engine) dist_df

	permno	divamt	facpr	exdt		CON	nnam	ticker
0	14593	0.12	0.0	19870511	APPLE	COMPUTER	INC	AAPL
1	14593	0.06	0.0	19870810	APPLE	COMPUTER	INC	AAPL
2	14593	0.08	0.0	19871117	APPLE	COMPUTER	INC	AAPL
3	14593	0.08	0.0	19880212	APPLE	COMPUTER	INC	AAPL
4	14593	0.08	0.0	19880516	APPLE	COMPUTER	INC	AAPL
••								
86	14593	0.00	1.0	19870616	APPLE	COMPUTER	INC	AAPL
87	14593	0.00	1.0	20000621	APPLE	COMPUTER	INC	AAPL
88	14593	0.00	1.0	20050228	APPLE	COMPUTER	INC	AAPL
89	14593	0.00	6.0	20140609	APPLE	COMPUTER	INC	AAPL
90	14593	0.00	3.0	20200831	APPLE	COMPUTER	INC	AAPL
[91	rows x	6 columns]					

1.2.2 Stock splits and dividends

An investor's total holding returns (ret in CRSP) include gains from appreciated stock prices (prc), adjusted for stock splits (facpr), plus ordinary cash dividends (divamt). Specifically, on ex-dates t:

$$ret_t = \frac{prc_t (1 + facpr_t) + div_t}{prc_{t-1}}$$

The Factor to Adjust Price (facpr) values over time can be used to adjust prices for distributions such as stock dividends and splits so that stock prices before and after one or more distributions are comparable. Historical cumulative adjust factors are computed by additing 1 to and then taking cumulative product from current to earlier time periods. This cumulative factor between two dates is divided into the earlier raw stock price to derive comparable split-adjusted prices. Hence to split-adjust CRSP raw prices

- apply cumulative factor to raw prices before corresponding ex-date
- · back-fill to dates prior to ex-date
- · default factor after latest ex-date is 1

yfinance

The yfinance Python library enables users to access current financial data from Yahoo Finance.

```
import yfinance as yf
ticker = yf.Ticker('AAPL')
df = ticker.history(period='max')
df[df['Dividends'].gt(0) | df['Stock Splits'].ne(0)]
```

		Open	High	Low	Close	\
Date						
1987-05-11	00:00:00-04:00	0.264817	0.273415	0.263957	0.264817	
1987-06-16	00:00:00-04:00	0.285452	0.287171	0.261378	0.285452	
1987-08-10	00:00:00-04:00	0.332310	0.332310	0.315091	0.332310	
1987-11-17	00:00:00-05:00	0.253658	0.255384	0.241579	0.241579	
1988-02-12	00:00:00-05:00	0.280957	0.287009	0.280093	0.283551	
2024-02-09	00:00:00-05:00	187.763406	189.097120	187.116467	187.962479	
2024-05-10	00:00:00-04:00	184.280653	184.470019	181.519943	182.436859	
2024-08-12	00:00:00-04:00	215.595507	219.027939	215.126538	217.052292	
2024-11-08	00:00:00-05:00	226.920500	228.408869	226.161340	226.710739	
2025-02-10	00:00:00-05:00	229.570007	230.589996	227.199997	227.649994	
		Volume	Dividends S	tock Splits		
Date						
1987-05-11	00:00:00-04:00	197276800	0.000536	0.0		
1987-06-16	00:00:00-04:00	342720000	0.000000	2.0		
1987-08-10	00:00:00-04:00	77996800	0.000536	0.0		
1987-11-17	00:00:00-05:00	268800000	0.000714	0.0		
1988-02-12	00:00:00-05:00	137760000	0.000714	0.0		
2024-02-09	00:00:00-05:00	45155200	0.240000	0.0		
2024-05-10	00:00:00-04:00	50759500	0.250000	0.0		
2024-08-12	00:00:00-04:00	38028100	0.250000	0.0		
2024-11-08	00:00:00-05:00	38328800	0.250000	0.0		
2025-02-10	00:00:00-05:00	33115600	0.250000	0.0		
[91 rows x	7 columns]					

The daily Close prices from yFinance have been adjusted for stock splits and dividend payments. As a result, the plotted values directly represent cumulative total holding returns.

```
df['Close'].div(df['Close'].iloc[0]).plot(title="APPL close prices from yfinance")
  <Axes: title={'center': 'APPL close prices from yfinance'}, xlabel='Date'>
```


APPL close prices from yfinance

To retrieve unadjusted historical prices accounting for stock splits and dividends, first apply the split factors to determine the original dividends per unadjusted share. The resulting values closely match the CRSP divamt figures, with minor differences likely due to cumulative numerical precision errors.

```
split = df['Stock Splits'].where(df['Stock Splits'] != 0.0, 1)\
    .shift(-1).fillna(1).iloc[::-1].cumprod().iloc[::-1]
                                                                # cumulate the split.
⇔factors back in time
df['unadj_div'] = df['Dividends'] * split.shift(1).fillna(split.iloc[0])
                                                                            # apply_
→the split factors to dividends
df.set_index(df.index.strftime('%Y-%m-%d'))[(df['unadj_div'] > 0).values]
```

	Open	High	Low	Close	Volume	\setminus
Date						
1987-05-11	0.264817	0.273415	0.263957	0.264817	197276800	
1987-08-10	0.332310	0.332310	0.315091	0.332310	77996800	
1987-11-17	0.253658	0.255384	0.241579	0.241579	268800000	
1988-02-12	0.280957	0.287009	0.280093	0.283551	137760000	
1988-05-16	0.280647	0.286711	0.277183	0.285845	74760000	
2024-02-09	187.763406	189.097120	187.116467	187.962479	45155200	

(continued from previous page) 2024-05-10 184.280653 184.470019 181.519943 182.436859 50759500 2024-08-12 215.595507 219.027939 215.126538 217.052292 38028100 2024-11-08 226.920500 228.408869 226.161340 226.710739 38328800 2025-02-10 229.570007 230.589996 227.199997 227.649994 33115600 Dividends Stock Splits unadj_div Date 1987-05-11 0.000536 0.0 0.120064 1987-08-10 0.000536 0.0 0.060032 1987-11-17 0.000714 0.0 0.079968 1988-02-12 0.000714 0.0 0.079968 1988-05-16 0.000714 0.0 0.079968 2024-02-09 0.240000 0.0 0.240000 2024-05-10 0.250000 0.0 0.250000 2024-08-12 0.250000 0.0 0.250000 2024-11-08 0.250000 0.0 0.250000 2025-02-10 0.250000 0.0 0.250000 [86 rows x 8 columns]

Next, we work backward through time to reconstruct the original stock prices using daily holding returns and closing prices. Stock splits and dividends are accounted for on ex-dates by applying the rearranged formula:

$$prc_{t-1} = \frac{(1 + facpr_t)(prc_t + div_t)}{ret_t}$$

```
rets = df['Close'] / df['Close'].shift(1)
prc = df['Close'].iloc[-1]
div = 0
fac = 0
ret = 1
for i, t in enumerate(df.index[::-1]): # iterate over days in reverse
   df.loc[t, 'unadj_prc'] = (((fac if fac else 1) * prc) + div) / ret
    prc = df.loc[t, 'unadj_prc']
    div = df.loc[t, 'unadj_div']
    fac = df.loc[t, 'Stock Splits']
   ret = rets.loc[t]
df.set_index(df.index.strftime('%Y-%m-%d'))
```

	Open	High	Low	Close	Volume	\setminus
Date						
1980-12-12	0.098726	0.099155	0.098726	0.098726	469033600	
1980-12-15	0.094005	0.094005	0.093575	0.093575	175884800	
1980-12-16	0.087136	0.087136	0.086707	0.086707	105728000	
1980-12-17	0.088853	0.089282	0.088853	0.088853	86441600	
1980-12-18	0.091429	0.091858	0.091429	0.091429	73449600	
2025-02-24	244.929993	248.860001	244.419998	247.100006	51326400	
2025-02-25	248.000000	250.000000	244.910004	247.039993	48013300	
2025-02-26	244.330002	244.979996	239.130005	240.360001	44433600	
2025-02-27	239.410004	242.460007	237.059998	237.300003	41153600	
2025-02-28	236.949997	242.089996	230.199997	241.839996	56796200	
	Dividends	Stock Splits	unadj_div	unadj_prc		
					(continues on next page)

Date				
1980-12-12	0.0	0.0	0.0	28.757305
1980-12-15	0.0	0.0	0.0	27.257003
1980-12-16	0.0	0.0	0.0	25.256412
1980-12-17	0.0	0.0	0.0	25.881523
1980-12-18	0.0	0.0	0.0	26.631895
2025-02-24	0.0	0.0	0.0	247.100006
2025-02-25	0.0	0.0	0.0	247.039993
2025-02-26	0.0	0.0	0.0	240.360001
2025-02-27	0.0	0.0	0.0	237.300003
2025-02-28	0.0	0.0	0.0	241.839996
[11144 rows x 9 c	olumns]			

The unadjusted price computer and the original closing prices from CRSP during the early days of AAPL stock are nearly identical, with only small differences due to cumulative numerical precision errors.

```
permno date abs(prc)
0
 14593 19801212 28.8125
1 14593 19801215 27.3125
2 14593 19801216 25.3125
3
  14593 19801217 25.9375
4
  14593 19801218 26.6875
5
  14593 19801219 28.3125
  14593 19801222 29.6875
6
  14593 19801223 30.9375
7
   14593 19801224
8
                   32.5625
   14593 19801226
                   35.5625
9
```

1.2.3 Market capitalization

Following Fama and French (1992), academic research typically focuses on U.S.-domiciled stocks, specifically those with a share code (shrcd) of 10 or 11, that are listed on major exchanges (exchange code (exchcd) of 1, 2, or 3).

Stocks are often sorted into ten deciles based on market capitalization, with the smallest stocks placed in the 10th decile. These decile breakpoints are determined using only NYSE-listed stocks. For companies with multiple classes of securities, total market value is calculated by summing the market capitalization of all classes. Since CRSP reports shares outstanding (shrout) in thousands, all market capitalization values must be multiplied by 1,000 to reflect their actual size.

Plot the number of stocks in and the market cap breakpoints of each size decile by year:

```
# retrieve universe of stocks annually from 1981
start = bd.endyr(19731231)
rebals = bd.date_range(start, CRSP_DATE, freq=12)
univs = {rebal: crsp.get_universe(date=rebal) for rebal in rebals}
num = dict()
for date, univ in univs.items():
    num[str(date//10000)] = {decile: sum(univ['decile']==decile)
```

```
for decile in range(10, 0, -1)}
num = DataFrame.from_dict(num, orient='index')
```

```
# plot number of stocks in each size decile
fig, ax = plt.subplots(figsize=(10, 6))
ax.set_title('Number of stocks in universe by size decile')
num.plot.bar(stacked=True, ax=ax, width=.8, alpha=0.4)
#set_xtickbins(ax=ax, nbins=len(cap)//10)
plt.legend(title='Size Decile', loc='upper left')
plt.tight_layout()
```


Number of stocks in universe by size decile

If a company has multiple share classes, sum up its total market capitalization # instead of separate capital values for each share class names = find('ALPHABET', 'comnam').groupby('permno').tail(1).set_index('permno') names

	dat	е	comnam	ncusi	ip shrcls	ticker	nameendt	shrcd	\backslash
permno									
14542	2023101	3 ALPH	HABET INC	02079K1	L0 C	GOOG	20241231	11	
90319	2023101	3 ALPH	HABET INC	02079K3	30 A	GOOGL	20241231	11	
	exchcd	siccd	tsymbol	naics p	primexch t	trdstat	secstat	permco	
permno									
14542	3	7375	GOOG	541511	Q	A	R	45483	
90319	3	7375	GOOGL	541511	Q	A	R	45483	
iv.loc[n	names.ind	ex] #	market c	aps of si	hare clas	s (cap)	and total	l company	(cap

	cap	capco	decile	nyse	siccd	prc	naics
permno							
14542	1.053895e+09	2.159975e+09	1	False	7375	190.44	541511
90319	1.106080e+09	2.159975e+09	1	False	7375	189.30	541511

1.2.4 Stock delistings

An important feature of the CRSP database is that it is free of survivorship-bias. It includes the historical records of stocks that have delisted from trading on the exchanges.

In CRSP Monthly, the Delisting Return is calculated from the last month ending price to the last daily trading price if no other delisting information is available. In this case the delisting payment date is the same as the delisting date. If the return is calculated from a daily price, it is a partial-month return. The partial-month returns are not truly Delisting Returns since they do not represent values after delisting, but allow the researcher to make a more accurate estimate of the Delisting Returns.

Following Bali, Engle, and Murray (2016) and Shumway (1997): we can construct returns adjusted for delistings, which result when a company is acquired, ceases operations, or fails to meet exchange listing requirements. The adjustment reflects the partial month of returns to investors who bought the stock in the month before the delisting. For certain delisting codes ([500, 520, 551..574, 580, 584]) where the delisting return is missing, a delisting return of -30% is assumed which reflects the average recovery amount after delisting.

```
# Show sample of original CRSP Monthly ret and dlret before and after adjustment
pd.read_sql('select * from monthly where dlstcd>100 and date=20041130', sql.engine)\
.set_index('permno')\
.rename(columns={'ret': 'original_ret'})\
.join(crsp.get_ret(beg=20041101, end=20041130), how='left')\
.round(4)
```

	date	prc	original_ret	retx	dlstcd	dlret	ret
permno							
10275	20041130	NaN	NaN	NaN	584	-0.2703	-0.2703
10418	20041130	NaN	NaN	NaN	520	0.0509	0.0509
11194	20041130	NaN	NaN	NaN	233	0.0066	0.0066
12010	20041130	NaN	NaN	NaN	587	0.0490	0.0490
20459	20041130	NaN	NaN	NaN	231	0.0724	0.0724
32897	20041130	NaN	NaN	NaN	584	-0.2357	-0.2357
55589	20041130	NaN	NaN	NaN	233	-0.0114	-0.0114
64290	20041130	13.70	0.0178	0.0178	233	0.0000	0.0178
67708	20041130	NaN	NaN	NaN	233	0.0164	0.0164
69593	20041130	NaN	NaN	NaN	331	0.0998	0.0998
69681	20041130	NaN	NaN	NaN	584	-0.4853	-0.4853
70447	20041130	5.80	-0.2246	-0.2246	570	NaN	-0.4572
75606	20041130	NaN	NaN	NaN	520	-0.2466	-0.2466
75684	20041130	NaN	NaN	NaN	233	0.0094	0.0094
76306	20041130	NaN	NaN	NaN	241	-0.0329	-0.0329
76691	20041130	NaN	NaN	NaN	582	0.0127	0.0127
77838	20041130	NaN	NaN	NaN	520	-0.0041	-0.0041
79149	20041130	NaN	NaN	NaN	574	-0.2088	-0.2088
79523	20041130	NaN	NaN	NaN	233	0.0043	0.0043
80211	20041130	NaN	NaN	NaN	470	0.0186	0.0186
80714	20041130	NaN	NaN	NaN	332	0.0337	0.0337
82491	20041130	4.21	-0.0644	-0.0644	551	0.0689	0.0000

							(continued	l from previous page)
83583	20041130	125.10	0.2810	0.2810	241	0.0624	0.3608	
83702	20041130	NaN	NaN	NaN	587	0.2667	0.2667	
83995	20041130	26.58	0.2374	0.2374	231	0.0394	0.2861	
84047	20041130	16.35	0.0467	0.0467	241	-0.2661	-0.2318	
86123	20041130	NaN	NaN	NaN	233	0.0059	0.0059	
86307	20041130	NaN	NaN	NaN	233	0.0223	0.0223	
86388	20041130	NaN	NaN	NaN	584	-0.0337	-0.0337	
86991	20041130	NaN	NaN	NaN	233	0.0106	0.0106	
87126	20041130	NaN	NaN	NaN	231	0.0784	0.0784	
87158	20041130	NaN	NaN	NaN	233	0.0086	0.0086	
87247	20041130	NaN	NaN	NaN	233	0.0046	0.0046	
88670	20041130	NaN	NaN	NaN	470	0.0013	0.0013	
89186	20041130	NaN	NaN	NaN	331	0.0696	0.0696	
89385	20041130	NaN	NaN	NaN	231	0.2959	0.2959	
89936	20041130	NaN	NaN	NaN	231	0.0719	0.0719	
89939	20041130	NaN	NaN	NaN	233	0.0059	0.0059	

1.3 Properties of stock returns

1.3.1 Long-run market averages

Calculate and plot the time series of annual cross-sectional averages of stock returns, where each year's average is cap-weighted, and the final time series is equal-weighted.

Over time, the contribution of dividend yield to total average stock returns has decreased, while share trading turnover has increased.

```
# Loop over the 20-year eras, and compute means of annual cap-weighted averages
years = range(1925, 2025, 20)
results = DataFrame(columns=['divyld', 'turnover', 'means'])
for era in tqdm(years):
   label = f'' \{era+1\} - \{era+20\}''
    divyld, means, turnover = \{\}, \{\}, \{\}\}
    for year in bd.date_range(era, min(CRSP_DATE//10000 -1 , era+19), freq=12):
        # universe stocks at end of year
        univ = crsp.get_universe(bd.endyr(year))
        # retrieve cap-weighted average of next year's returns
        cmd = f''''
select permno, SUM(LOG(1+ret)) AS ret FROM daily
WHERE date > {bd.endyr(year) } AND date <= {bd.endyr(year, 1) }
GROUP BY permno
""".strip()
        data = pd.read_sql(cmd, sql.engine)
        df = data.set_index('permno').join(univ['cap'], how='right').dropna()
        means[year] = (np.exp(df['ret'])-1).dot(df['cap']) / df['cap'].sum()
        # retrieve cap-weighted average of annualized turnover
        cmd = f"""
select permno, 252*AVG(vol/(shrout*1000)) AS turnover FROM daily
WHERE date > {bd.endyr(year) } AND date <= {bd.endyr(year, 1) }
GROUP BY permno
```

```
""".strip()
        data = pd.read_sql(cmd, sql.engine)
        df = data.set_index('permno').join(univ['cap'], how='right').dropna()
        turnover[year] = df['turnover'].dot(df['cap']) / df['cap'].sum()
        # retrieve cap-weighted average of annual dividend amounts
        cmd = f''''
SELECT dist.permno as permno, SUM(daily.shrout * dist.divamt) AS divamt
FROM dist INNER JOIN daily
ON daily.permno = dist.permno AND daily.date = dist.exdt
WHERE dist.divamt > 0 AND dist.exdt > {bd.endyr(year) }
 AND dist.exdt <= {bd.endyr(year, 1)}</pre>
GROUP BY permno
""".strip()
        data = pd.read_sql(cmd, sql.engine)
        df = data.set_index('permno').join(univ['cap'], how='right').dropna()
        divyld[year] = df['divamt'].sum() / df['cap'].sum()
    results.loc[label, 'turnover'] = np.mean(list(turnover.values()))
    results.loc[label, 'divyld'] = np.mean(list(divyld.values()))
    results.loc[label, 'means'] = np.mean(list(means.values()))
```

100%| 5/5 [1:03:37<00:00, 763.46s/it]

```
# Plot mean returns, dividend yield and turnover using both y-axes
fig, ax = plt.subplots()
ax.plot(results['means'], color="blue")
ax.plot(results['divyld'], color="green")
ax.legend(['average returns', 'dividend yield'], loc="center left")
ax.set_ylabel("Annual dividend yield and total stock returns")
bx = ax.twinx()
bx.plot(results['turnover'], color="red")
bx.set_ylabel("Annual Turnover")
bx.legend(['turnover'], loc="center right")
plt.title("Long-Run Market Averages")
plt.tight_layout()
```


1.3.2 Statistical moments

The volatility of an asset is usually measured using the standard deviation of the returns. The common practice is to report the annualized volatility using the square-root rule which assumes that variance scales linearly with time: e.g. daily by $\sqrt{252}$, weekly by $\sqrt{52}$, monthly by $\sqrt{12}$. Mean returns are annualized by multiplying by the respective number of periods in a year.

A normal distribution is symmetric and thin-tailed, and so has no skewness or excess kurtosis. However, many return series are both skewed and fat-tailed (kurtosis in excess of 3). A left-skewed distribution is longer on the left side of its peak than on its right. In other words, a left-skewed distribution has a long tail on its left side, where the mean typically lies to the left of its median. Left skew is also referred to as negative skew. Right or positive skew has the opposite properties.

Stock prices are often modeled with a log-normal distribution because prices cannot be negative. Large positive jumps are possible, but extreme negative moves are bounded at zero, hence the distribution of log-normal returns is positively-skewed with a long right tail. The skewness of a log-normal distribution is given by: $(e^{\sigma^2} + 2)\sqrt{e^{\sigma^2} - 1}$

By Jensen's inequality, the arithmetic mean is greater than the geometric mean. Under the assumption of log-normality, the amount by which the arithmetic mean exceeds the geometric means of returns is half the volatility.

- Suppose the continuously compounded (log) returns (r_t) are normally distributed with mean (\mu) and variance (\sigma^2): $r_t = \ln\left(\frac{P_t}{P_{t-1}}\right) \sim N(\mu, \sigma^2)$
- The geometric mean return is given by $\mu_G = \frac{1}{T} \sum_{t=1}^T r_t$, with expectation $\mathbb{E}[r_t] = \mu$
- The arithmetic mean of the simple returns is approximately given by $\mu_A \approx e^{\mu + \frac{1}{2}\sigma^2} 1 \approx \mu_G + \frac{1}{2}\sigma^2$, using the first-order approximation $e^x \approx 1 + x$ for small x.

Jarque-Bera test

The Jarque-Bera test statistic can be used to test whether the sample skewness and kurtosis are compatible with an assumption that the returns are normally distributed. When returns are normally distributed, the skewness is asymptotically normally distributed with a variance of 6, so (skewness)²/6 has a χ_1^2 distribution. Meanwhile, the kurtosis is asymptotically normally distributed with mean 3 and variance of 24, and so (kurtosis - 3)²/24 also has a χ_1^2 distribution. These two statistics are asymptotically independent (uncorrelated), and so their sum is χ_2^2

```
# Compute the stock returns sampled at various frequencies
intervals = { 'annual': (12, 1), 'monthly': ('e', 12), 'weekly': ('w', 52), 'daily': (
moments = []
begdate, enddate = bd.begyr(CRSP_DATE//10000 - 19), bd.endyr(CRSP_DATE//10000)
for dataset, (freq, annualize) in intervals.items():
    # If annual or monthly frequency, use StocksBuffer to pre-load all monthly returns
    if dataset not in ['daily', 'weekly']:
        stocks = CRSPBuffer(stocks=crsp, dataset='monthly', fields=['ret'],
                           beg=bd.begyr(begdate), end=enddate)
    if dataset in ['weekly']: # weekly returns already computed from CRSP Daily, and_
 ⇔cached
       stocks = crsp
    univ_year = bd.endyr(begdate - 1) # universe as of end of previous calendar year_
    dates = bd.date_range(bd.endyr(begdate), bd.endyr(enddate), freq=freq)
    allstocks = []
    for beg, end in tqdm(bd.date_tuples(dates)):
        # Update the investment universe every calendar year
        if bd.endyr(beg) != univ_year:
            univ = crsp.get_universe(univ_year)
            univ_year = bd.endyr(beg)
            # Use StocksBuffer to cache daily returns for the new calendar year
            if dataset in ['daily']:
                stocks = CRSPBuffer(stocks=crsp, dataset='daily', fields=['ret'],
                                    beg=bd.offset(beg, -1), end=bd.endyr(end))
        # retrieve returns for universe stocks
        ret = stocks.get_ret(beg=beg, end=end).reindex(univ.index)
        allstocks.append(ret.rename(end))
    # combine all years' stock returns, require stock in all years
    allstocks = pd.concat(allstocks, axis=1, join='inner')
    # compute annualized moments, ignoring small sample warnings
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        out = \{
            f"MeanAnnualized": np.nanmedian(
                np.nanmean(np.log(1 + allstocks), axis=1)) * annualize,
            f"VolAnnualized": np.nanmedian(
```

```
np.nanstd(allstocks, axis=1, ddof=0)) * np.sqrt(annualize),
f"Skewness": np.nanmedian(
        scipy.stats.skew(allstocks, nan_policy='omit', axis=1)),
        f"ExcessKurtosis": np.nanmedian(
            scipy.stats.kurtosis(allstocks, nan_policy='omit', axis=1)),
        f"Count": len(allstocks),
        }
        df = DataFrame({dataset: Series(out)}).T
        moments.append(df)
moments = pd.concat(moments, axis=0)  # accumulate df to results
        omments.reset_index().to_json(outdir / 'moments.json')
```

100%	19/19 [00:00<00:00, 37.61it/s]
100%	228/228 [00:04<00:00, 53.61it/s]
100%	991/991 [00:01<00:00, 517.26it/s]
100%	4781/4781 [07:05<00:00, 11.23it/s]

As we move from annual to daily sampling, stock returns exhibit greater kurtosis (i.e. fat tails) and annualized standard deviation. Skewness is positive –the right tail of the distribution is longer than the left tail –but are U-shaped with daily and annual returns featuring more positive-skewness than weekly or monthly.

moments

	MeanAnnualized	VolAnnualized	Skewness	ExcessKurtosis	Count
annual	0.063249	0.356397	0.434219	0.002332	1519.0
monthly	0.063249	0.376568	0.314758	2.242009	1519.0
weekly	0.062119	0.402871	0.293850	6.612277	1519.0
daily	0.063325	0.429472	0.404691	13.332600	1519.0

```
fig, axes = plt.subplots(2,2)
for ix, ax in enumerate(axes.flatten()):
    moments[moments.columns[ix]].plot.bar(ax=ax, color=f"C{ix}")
    ax.set_xticklabels(moments.index, rotation=0, fontsize='small')
    ax.set_xlabel(moments.columns[ix])
plt.suptitle(f"Statistical Moments of Stock Returns {begdate}-{enddate}")
plt.tight_layout()
plt.show()
```


Statistical Moments of Stock Returns 20050103-20241231

1.3.3 Correlations

Pearson's correlation, also known as the linear correlation estimator, measures the strength of a linear relationship between two variables. However, alternative methods can better capture nonlinear dependencies:

- **Spearman's rank correlation** applies Pearson's correlation to the ranked values of observations, measuring monotonic relationships while being less sensitive to outliers.
- Kendall's τ quantifies the relationship between two variables by comparing the number of concordant and discordant pairs –pairs that agree or disagree on ordering. It is robust to outliers and effective for skewed or non-normally distributed data.

Monthly SP500 and 30-year Treasury total market returns show positive correlation, which is fairly robust across the three methods.

```
# retrieve SP500 and 30-Year Treasury total market returns from CRSP Indexes
ret = bench.get_series(['sprtrn', 'b30ret(mo)'], field='ret').dropna()
ret
```

permno sprtrn b30ret(mo) date 19620731 0.006917 -0.008187 19620831 0.007498 0.031939 19620928 0.008965 0.015465

19621031	-0.000354	0.012171
19621130	-0.002403	0.003414
20240830	0.010093	0.020778
20240930	0.004237	0.015521
20241031	-0.018615	-0.053895
20241129	0.005608	0.021467
20241231	-0.004285	-0.063115

[749 rows x 2 columns]

 \hookrightarrow round(4)

								spearman	kendall	pearson
Correlation	of	SP500	VS	30-Year	Treasury	Total	• • •	0.1348	0.0933	0.1275

```
# Scatter plot of SP500 and and 30-year Treasury total market returns
fig, ax = plt.subplots()
ax.scatter(ret['sprtrn'], ret['b30ret(mo)'], alpha=0.5)
ax.set_xlabel('SP500')
ax.set_ylabel('30-year Treasury')
plt.title('SP500 vs 30-Year Treasury Monthly Total Returns')
plt.tight_layout()
```


APPENDIX

SQL commands

- · Manage tables
 - CREATE DATABASE Creates a new database.
 - CREATE TABLE Creates a new table.
 - DELETE –Delete data from a table.
 - DROP COLUMN -Deletes a column from a table.
 - DROP DATABASE Deletes the entire database.
 - DROP TABLE Deletes a table from a database.
 - TRUNCATE TABLE Deletes the data but does not delete the table.
- Querying a table
 - SELECT -Used to select data from a database, which is then returned in a results set.
 - SELECT DISTINCT –Sames as SELECT, except duplicate values are excluded.
 - SELECT INTO -Copies data from one table and inserts it into another.
 - UNIQUE This constraint ensures all values in a column are unique.
 - FROM –Specifies which table to select or delete data from.
 - AS –Renames a table or column with an alias value which only exists for the duration of the query.

- Query conditions
 - WHERE –Filters results to only include data which meets the given condition.
 - AND -Used to join separate conditions within a WHERE clause.
 - BETWEEN -Selects values within the given range.
 - IS NULL -Tests for empty (NULL) values.
 - IS NOT NULL The reverse of NULL. Tests for values that aren' t empty / NULL.
 - LIKE –Returns true if the operand value matches a pattern.
 - NOT –Returns true if a record DOESN' T meet the condition.
 - OR -Used alongside WHERE to include data when either condition is true.
- Organize results
 - ORDER BY –Used to sort the result data in ascending (default) or descending order through the use of ASC or DESC keywords.
 - GROUP BY –Used alongside aggregate functions (COUNT, MAX, MIN, SUM, AVG) to group the results.
- Join tables
 - INNER JOIN returns rows that have matching values in both tables.
 - LEFT JOIN returns all rows from the left table, and the matching rows from the right table.-
 - RIGHT JOIN returns all rows from the right table, and the matching records from the left table
 - FULL OUTER JOIN returns all rows when there is a match in either left table or right table.

References:

Fama, Eugene F., and Kenneth R. French. 1992. "The cross-section of expected stock returns." The Journal of Finance 47 (2): 427–65.

Shumway, Tyler. 1997. The Delisting Bias in CRSP Data. The Journal of Finance, 52, 327-340.

Bali, Turan G, Robert F Engle, and Scott Murray. 2016. Empirical asset pricing: The cross section of stock returns. John Wiley & Sons.

Stulz, René M., 2018, "The Shrinking Universe of Public Firms: Facts, Causes, and Consequences", National Bureau of Economics, 2 (June 2018)

FRM Exam Book Part I Quantative Analysis Chapter 12

Wharton Research Data Services.

JEGADEESH-TITMAN ROLLING PORTFOLIOS

The future is just more of the past waiting to happen - Fred D' Aguiar.

The Jegadeesh-Titman rolling portfolios approach explores the phenomenon of price momentum in financial markets, focusing on strategies that involve buying stocks with recent strong performance and selling stocks with weak performance. Univariate spread portfolios are constructed, which help isolate the return differences between high- and low-ranked stocks. The following analysis covers key aspects such as overlapping and non-overlapping portfolio returns, the impact of autocorrelation on variance estimation, and statistical hypothesis testing. Additionally, it discusses the Newey-West correction for standard errors and evaluates the power of hypothesis tests.

```
import math
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import scipy
from scipy.stats import kurtosis, skew, norm
import statsmodels.formula.api as smf
import statsmodels.api as sm
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, CRSPBuffer
from finds.recipes import fractile_split
from finds.utils import plot_date
from secret import credentials, CRSP_DATE
```

VERBOSE = 0
#%matplotlib qt

```
# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
```

2.1 Price momentum

2.1.1 Overlapping portfolio returns

First, we estimate the six-month returns of a momentum strategy by averaging monthly observations.

At the end of each month t, we calculate the sorting variable as the past six-month return of all stocks in the investment universe. The 20th and 80th percentiles of NYSE-listed stocks serve as thresholds: we go long on stocks in the top fractile and short those in the bottom fractile. Each fractile is weighted by market capitalization, while the spread portfolio return is the equal-weighted difference between the two sub-portfolios. The spread portfolio' s returns over the next six months are recorded on a monthly basis by dividing by six.

A stock is eligible for inclusion if it meets the usual investment universe criteria at the end of the rebalance month and has a non-missing month-end price from six months prior.

```
stocks = monthly
mom = []
for rebaldate in tqdm(rebaldates):
    # determine pricing dates relative to rebaldate
    beg = bd.endmo(rebaldate, -6)  # require price at beg date
    end = bd.endmo(rebaldate, 0)  # require price at end date
    start = bd.offset(beg, 1)
                                  # starting day of momentum signal
    # retrieve universe, prices, and momentum signal
    p = [crsp.get_universe(rebaldate),
         stocks.get_ret(beg=start, end=end).rename('mom'),
         stocks.get_section(fields=['prc'], date=beg)['prc'].rename('beg')]
    df = pd.concat(p, axis=1, join='inner').dropna()
    # quintile breakpoints are determined from NYSE subset
    tritile = fractile_split(values=df['mom'],
                             pct=percentiles,
                             keys=df.loc[df['nyse'], 'mom'])
    # construct cap-wtd tritile spread portfolios
    porthi, portlo = [df.loc[tritile==t, 'cap'] for t in [1, 3]]
    port = pd.concat((porthi/porthi.sum(), -portlo/portlo.sum()))
    # compute and store cap-weighted average returns over (up to) maxhold periods
    begret = bd.offset(rebaldate, 1)
    nhold = min(maxhold, len(rebaldates) - rebaldates.index(rebaldate))
    endret = bd.endmo(begret, nhold - 1)
                                         # if maxhold is beyond end date
    rets = monthly.get_ret(begret, endret)
    ret = rets.reindex(port.index).fillna(0.).mul(port, axis=0).sum()
    mom.append(float(ret) / nhold)
```

| 0/1182 [00:00<?, ?it/s]

081

100%| 1182/1182 [11:41:22<00:00, 35.60s/it]
DataFrame({'mean': np.mean(mom), 'std': np.std(mom)}, index=['Overlapping Returns'])
mean std
Overlapping Returns 0.004526 0.024599</pre>

2.1.2 Non-overlapping portfolio returns

A spread portfolio is constructed at the end of each month in the same manner. However, instead of overlapping returns, the return recorded is the equal-weighted average of the following month's returns from six distinct portfolios formed between t and t - 5. Each month, the weights of stocks in the spread portfolios adjust according to their price changes, following a "buy-and-hold" approach over six months.

```
ports = [] # to roll 6 past portfolios
jt = []
stocks = monthly
for rebaldate in tqdm(rebaldates):
    # determine returns dates relative to rebaldate
    beg = bd.endmo(rebaldate, -6) # require price at beg date
    end = bd.endmo(rebaldate, 0)  # require price at end date
    start = bd.offset(beg, 1)
                                   # starting day of momentum signal
    # retrieve universe, prices, and momentum signal
    p = [crsp.get_universe(rebaldate),
         stocks.get_ret(beg=start, end=end).rename('mom'),
         stocks.get_section(fields=['prc'], date=beg)['prc'].rename('beg')]
    df = pd.concat(p, axis=1, join='inner').dropna()
    # quintile breakpoints determined from NYSE subset
    tritile = fractile_split(values=df['mom'],
                             pct=percentiles,
                             keys=df.loc[df['nyse'], 'mom'])
    # construct cap-wtd tritile spread portfolios
    porthi, portlo = [df.loc[tritile==t, 'cap'] for t in [1, 3]]
    port = pd.concat((porthi/porthi.sum(), -portlo/portlo.sum()))
    # retain up to 6 prior months of monthly-rebalanced portfolios
    ports.insert(0, port)
    if len(ports) > maxhold:
        ports.pop(-1)
    # compute all 6 portfolios' monthly capwtd returns, and store eqlwtd average
    begret = bd.offset(rebaldate, 1)
    endret = bd.endmo(begret)
    rets = stocks.get_ret(begret, endret)
    ret = np.mean([rets.reindex(p.index).fillna(0.).mul(p, axis=0).sum()
                   for p in ports])
    jt.append(ret)
    # adjust stock weights by monthly capital appreciation
```

Correlation with lagged returns

For the overlapping portfolios, each month's recorded return is (one-sixth of) a six-month return. Let r_t be the return at time t. The 6-month return at time t, denoted as R_t , is the sum of the past 6 monthly returns: $R_t = r_t + r_{t-1} + r_{t-2} + r_{t-3} + r_{t-4} + r_{t-5}$

Since we sample monthly, consecutive returns R_t and R_{t+1} overlap significantly. Up to 5/6 of adjacent months' returns actually reflect the same month's stock returns. Even returns recorded five months apart share one month of stock returns in common. Ignoring this overlap when estimating variance leads to underestimation of the true variance.

The Jegadeesh-Titman non-overlapping portfolio approach eliminates this issue.

```
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(10, 9))
for lag, ax in zip(range(1, axes.shape[0]+1, 1), axes):
    pd.plotting.lag_plot(Series(mom), lag=lag, ax=ax[0], s=3, c="C1")
    ax[0].set_title(f"Overlapping portfolio returns at lag={lag}")
    r = scipy.stats.linregress(mom[lag:], mom[:-lag])
    ax[0].axline((0, r.intercept), slope=r.slope, ls=':', color="C2")
    pd.plotting.lag_plot(Series(jt), lag=lag, ax=ax[1], s=3, c="C0")
    ax[1].set_title(f"Non-overlapping portfolio returns at lag={lag}")
    r = scipy.stats.linregress(jt[lag:], jt[:-lag])
    ax[1].axline((0, r.intercept), slope=r.slope, ls=':', color="C2")
    plt.tight_layout()
```


Plot cumulative monthly average returns

Jegadeesh-Titman non-overlapping 6-month momentum portfolio cumulative returns

Plot histogram of monthly returns

Distribution of Jegadeesh-Titman non-overlapping 6-month momentum portfolio returns

```
fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 5))
ax.hist(jt, bins=30)
ax.set_title(f"Histogram of monthly returns")
ax.legend(['6-month momentum'])
kurt = kurtosis(jt, bias=True, fisher=True)  # excess kurtosis
skewness = skew(jt, bias=True)
ax.set_xlabel(f"skewness={skewness:.4f}, excess kurtosis={kurt:.4f}")
plt.tight_layout()
```


2.2 Hypothesis testing

A hypothesis test makes a precise statement about population parameters and evaluates the likelihood of observing the data under a given assumption.

- The *null hypothesis* specifies the true value of a parameter to be tested, often $H_0: \hat{\mu} = \mu_0$
- The test statistic is a summary of the observed data that has a known distribution when the null hypothesis is true,

e.g.
$$T - \frac{\mu - \mu_0}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

- The alternative hypothesis defines the range of values of the parameter where the null should be rejected, e.g. $H_a: \hat{\mu} \neq \mu_0$
 - In some testing problems, the alternative hypothesis is not the full complement of the null, for example, a *one-sided alternative* $H_a: \hat{\mu} > \mu_0$, which is used when the outcome of interest is only above or below the value assumed by the null.
- The critical value C_{α} marks the start of a range of values where the test statistic is unlikely to fall in, if the null hypthesis were true, e.g. $C_{\alpha} = \Phi^{-1}(1 \alpha/2) = 1.96$ when $\alpha = 5\%$ for a two-sided test. This range is known as the rejection region.
- The *size* of the test is the probability of making a *Type I error* of rejecting null hypothesis that is actually true. A test is said to have *significance level* α if its *size* is less than or equal to α . This reflects the aversion to rejecting a null hypothesis that is, in fact, true.
- The *p*-value is the probability of obtaining a test statistic at least as extreme as the one we observed from the sample, if the null hypothesis were true, e.g. $p = 2(1 \Phi(|T|))$ for a two-sided test.

2.2.1 Confidence Interval

A $1 - \alpha$ confidence interval contains the values surrounding the test statistic that cannot be rejected when using a test size of α , e.g. $[\hat{\mu} - C_{\alpha} \frac{\sigma^2}{\sqrt{n}}, \hat{\mu} + C_{\alpha} \frac{\sigma^2}{\sqrt{n}}]$ for a two-sided interval

2.2.2 Newey-West corrected t-stats

Standard errors are underestimated when assuming independent observations, as this assumption does not hold for overlapping returns. The **Newey-West (1987) estimator** corrects for heteroskedasticity and autocorrelation by specifying a "maximum lag" for autocorrelation control. A common choice is L = the fourth root of the number of observations (e.g., Greene, *Econometric Analysis*, 7th ed., p. 960).

Applying the Newey-West correction nearly doubles the estimated standard error for overlapping portfolios, but it has a minimal effect on non-overlapping returns.

pd.concat(results, axis=1).rename_axis('Standard Errors')

n = 1182 L = 6

	Overlapping uncorrected	NeweyWest	Non-overlapping uncorrected	NeweyWest
Standard Errors				
params	0.004526	0.004526	0.004502	0.004502
bse	0.000716	0.001285	0.001496	0.001463
tvalues	6.322644	3.522659	3.009069	3.078432
pvalues	0.000000	0.000427	0.002676	0.002081

2.2.3 Power of Test

A **Type II error** occurs when the alternative hypothesis is true but the null is not rejected. The probability of a Type II error is denoted by β , while **power** $(1 - \beta)$ represents the probability of correctly rejecting a false null hypothesis.

Unlike test size, the power of a test depends on:

- 1. Sample size
- 2. Test size (α)
- 3. The distance between the true parameter value and the null hypothesis value

For a one-sided test $H_a: \hat{\mu} > \mu_0$, power is given by:

$$1 - \beta(\alpha) = \Phi\left(C_{\alpha}\frac{\sigma^2}{\sqrt{n}}\middle|\mu_a, \frac{\sigma^2}{\sqrt{n}}\right)$$

	True Null	False Null			
Decision					
Accept Null	correct	Type II Error			
		(1 -	- alpha)		(beta)
--------	------	-------	----------	--------	----------
Reject	Null	Туре	I Error		correct
		Size:	(alpha)	Power:	(1-beta)

Effect of Test Size (alpha) and True Alternative (mu) on Power

```
# Assumtions
alternative = 0.06  # alternative hypothesis that annualized mean is as large as 6%
scale = np.std(jt) / np.sqrt(len(jt))  # assumed scale (std dev or volatility)
```

```
# Vary test size (alpha) and true mean (mu)
mu = np.linspace(0, alternative/12, 100)  # vary true mean
plt.figure(figsize=(10, 5))
for alpha in [0.1, 0.05, 0.01]:  # vary test size
    power = 1 - norm.cdf(norm.ppf(1 - alpha) * scale, loc=mu, scale=scale)
    plt.plot(mu, 100*power, label=f"$\\alpha=${alpha}")
plt.title("Effect of Test Size ($\\alpha]halpha=$ and True Alternative $\\mu$ on Power")
plt.ylabel('Power (%) = 1 - Prob[Type II Error]')
plt.xlabel('True average monthly return $\\mu$')
plt.legend()
```

```
<matplotlib.legend.Legend at 0x7f12c13d0950>
```


Effect of Sample Size on Power

```
# Assumptions
volatility = np.std(jt)
alternative = 0.06/12  # mean of the alternate hypotehsis
alpha = 0.05  # desired size of the test
```

```
# Compare large and small sample sizes
for N in [len(jt) // 20, len(jt)]:
    # define null and alternate distributions given sample size
    scale = volatility/np.sqrt(N) # scaled by square root of sample size
    null_dist = norm(0, scale)
    alt_dist = norm(alternative, scale)
    critical_val = null_dist.ppf(1-alpha) # critical value to reject null
    fig, ax = plt.subplots(figsize=(10, 6))
    x = np.linspace(-7 * scale, 7 * scale, 1000)
    ax.plot(x, null_dist.pdf(x), color='blue') # plot null distribution
    ax.plot(x, alt_dist.pdf(x), color='green') # plot alt distribution
    ylim = plt.ylim()[0]
    ax.axvline(x=critical_val, ymax=ylim, ls=':', color='r') # critical value
    px = x[x > critical_val]
    ax.fill_between(px, alt_dist.pdf(px), color='darkgrey') # rejection region
    px = x[x < critical_val]</pre>
    ax.fill_between(px, alt_dist.pdf(px), color='lightgrey') # acceptance region
    ax.set_title(f"Power varies with sample size (N = \{N\})")
    ax.set_xlabel("$\mu$")
    plt.legend(['Null', 'True (Population)', 'Critical Value',
                'Prob Reject Null', 'Prob Type II Error'])
    plt.tight_layout()
```


References:

Jegadeesh, Narasimhan, and Sheridan Titman (1993), "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency". Journal of Finance. March 1993, Volume 48, Issue 1, Pages 65-91.

Newey, Whitney K, West, Kenneth D (1987). "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix". Econometrica. 55 (3): 703–708.

Hong, Harrison, Terence Lim, Jeremy C. Stein, 2000, "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies", Volume 55, Issue 1, Pages 265-295. https://doi.org/10.1111/0022-1082.00206

FRM Exam Book Part I Quantative Analysis Chapter 6

MIT License. Copyright 2021-2025, Terence Lim

CHAPTER

FAMA-FRENCH PORTFOLIO SORTS

The way to become rich is to put all your eggs in one basket and then watch that basket - Andrew Carnegie

The Fama-French portfolio sorting methodology is widely used in empirical asset pricing research, particularly in understanding the cross-section of stock returns. By classifying stocks based on fundamental characteristics such as bookto-market ratio and firm size, this approach provides insights into the risk and return dynamics of different investment strategies. This notebook also includes linear regression analysis to assess factor exposures, tests for the value and smallfirm effects, and a structural break analysis using the Chow test.

```
import numpy as np
import scipy
from scipy.stats import skew, kurtosis
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, CRSPBuffer, Signals, Benchmarks, PSTAT
from finds.utils import plot_date
from finds.backtesting import bivariate_sorts, BackTest
from finds.utils import plot_date, plot_scatter, plot_hist
from tqdm import tqdm
from secret import credentials, CRSP_DATE
```

```
VERBOSE = 0
# %matplotlib qt
```

```
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
signals = Signals(user, verbose=VERBOSE)
bench = Benchmarks(sql, bd, verbose=VERBOSE)
backtest = BackTest(user, bench, rf='RF', max_date=CRSP_DATE, verbose=VERBOSE)
LAST_DATE = bd.endmo(CRSP_DATE, -1)  # last monthly rebalance date
```

3.1 Stock fundementals data

3.1.1 Compustat

Compustat is a database containing financial statements and market data for both active and inactive U.S. and international companies. It is commonly used in academic and industry research.

To compute book-to-price ratios from financial statements, we:

- Extract balance sheet items from the Compustat Annual dataset.
- Construct the High Minus Low (HML) factor by calculating book equity as shareholders' equity plus investment tax credits, minus preferred stock, divided by the market capitalization at the end of December.
- Apply a six-month reporting lag and require at least two years of history in Compustat.
- Exclude deferred taxes and investment tax credits from book equity for fiscal years ending in 1993 or later, following FASB 109, which improved the accounting treatment for deferred income taxes.

```
# subtract preferred stock
df[label] = np.where(df['pstkrv'].isna(), df['pstkl'], df['pstkrv'])
df[label] = np.where(df[label].isna(), df['pstk'], df[label])
df[label] = np.where(df[label].isna(), 0, df[label])
```

```
# count years in Compustat
df = df.sort_values(by=['gvkey','datadate'])
df['count'] = df.groupby(['gvkey']).cumcount()
```

```
# construct b/m ratio
df['rebaldate'] = 0
for datadate in tqdm(sorted(df['datadate'].unique())):
    f = df['datadate'].eq(datadate)
    rebaldate = bd.endmo(datadate, abs(lag)) # 6 month lag
    capdate = bd.endyr(datadate)  # Dec mktcap
    if rebaldate >= CRSP_DATE or capdate >= CRSP_DATE:
        continue
```

100%| 758/758 [00:02<00:00, 317.69it/s]

227642

3.2 Bivariate sorts

Independent bivariate sorts categorize stocks based on two characteristics: book-to-market ratio and market capitalization. Portfolios are formed at the end of each June and represent the intersections of:

- Two groups sorted by size (market equity, ME).
- Three groups sorted by book-to-market ratio (BE/ME).

The size breakpoint for year *t* is the median NYSE market equity at the end of June in that year. Stocks within each of the six resulting portfolios are weighted by market capitalization.

The two key factors derived from these sorts are:

- HML (High Minus Low): The equal-weighted average return of the two value portfolios minus the average return of the two growth portfolios.
- SMB (Small Minus Big): The equal-weighted average return of the three small-size portfolios minus the average return of the three large-size portfolios.

Causal Analysis

This sorting approach has conceptual parallels with causal analysis techniques. Specifically, propensity score matching is often used in statistical research to mitigate confounding effects when estimating treatment effects. Propensity scores, estimated via logistic regression, allow researchers to:

- Stratify subjects into groups based on similar propensity scores.
- Match treated and control subjects with comparable propensity scores.
- Adjust for imbalances using regression models.

Since firm size directly influences the book-to-market ratio (as its denominator), applying bivariate sorting ensures that value returns are estimated while controlling for the small-firm effect—similar to how propensity score matching controls for confounding variables in observational studies.

3.2.1 HML

Compute High Minus Low book-to-price monthly returns and compare to Fama-French research factor

```
label, benchname = 'hml', 'HML(mo)'
rebalend = LAST_DATE
rebalbeg = 19700101
```

Helpers to show histograms and comparisons of portfolio returns

```
# Plot histogram and comparison of HML returns
holdings = hml
result = backtest(monthly, holdings, label)
y = backtest.fit([benchname], rebalbeg, LAST_DATE)
plot_ff(y, label)
plot_summary(y, benchname)
```


<R-squared of hml vs HML(mo) (19700227 - 20241129): 0.9784

Monthly rebalances (19700227-20241129)

3.2.2 SMB

Compare Small-Minus-Big monthly returns and compare to Fama-French research factor

```
# Plot histogram and comparison of SMB returns
label, benchname = 'smb', 'SMB(mo)'
holdings = smb
result = backtest(monthly, holdings, label)
y = backtest.fit([benchname], rebalbeg, LAST_DATE)
plot_ff(y, label)
plot_summary(y, benchname)
```

<R-squared of smb vs SMB(mo) (19700227 - 20241129): 0.9636

3.3 Linear regression

Simple Linear Regression

The simple linear regression (SLR) model relates a continuous response (or dependent) variable y_i with one predictor (or explanatory or independent) variable x_i and an error term ϵ_i :

$$y_i = f(x_i) + \epsilon_i = a + bx_i + \epsilon_i$$

Coefficient estimates of the slope b and intercept a are chosen to minimize the residual sum of squares:

$$\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \hat{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
$$\hat{a} = \bar{y} - \hat{b}\bar{x}$$

Key concepts:

- Residuals are the difference between the observed response values and the response values predicted by the model, $e_i = y_i - \hat{y}_i$.
- Residual sum of squares (RSS) over all observations is $RSS = e_1^2 + e_2^2 + ... + e_n^2$ or equivalently $RSS = \sum_{i=1}^n (y_i \hat{y}_i)^2$.
- Mean square error (MSE) is an estimate of the variance of the residuals $s^2 = \hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i \hat{y}_i)^2$.
- Residual standard error (RSE) or residual standard deviation is the estimate of the (square root of the) variance of the residuals. Standard error tells us the average amount that the estimate differs from the actual value. The residual standard error is the estimate of the (square root of the) variance of the residuals $\hat{s} \equiv RSE = \sqrt{RSS/(n-2)}$.

Hypothesis testing and confidence intervals

The estimators of the coefficients follow a normal distribution in large samples. Therefore, tests of a hypothesis about a regression parameter are implemented using a t-test. The standard errors associated with linear regression coefficient and mean response estimates are:

• Slope:
$$se(\hat{b}) = \sqrt{\frac{s^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}$$

• Intercept:
$$se(\hat{a}) = \sqrt{s^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right]}$$

• Mean response:
$$se(\hat{y}) = \sqrt{s^2 [\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}]}$$

• Confidence intervals can be computed from standard errors. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. The confidence interval for coefficient estimates is: $b_j \pm t_{n-(k+1),1-\frac{\alpha}{2}} se(b_j)$, where k, the number of regressors, equals 1 for SLR.

• Prediction interval for a new response is
$$se(\hat{y}_{n+1}) = \sqrt{s^2(1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2})}$$

Multiple Linear Regression

With multiple regressors, the linear model $y = b_0 + b_1 x_1 + ... + b_k x_k + \epsilon$ has coefficient estimates: $\hat{b} = (X^T X)^{-1} X^T y \hat{b}$

The coefficient b_j quantifies the association between the j 'th predictor and the response. It is the average effect on Y of a one unit increase in X_j , holding all other predictors fixed.

Additional concepts:

- Sum of squares total (SST) measures the total variance in the response Y, and can be thought of as the amount of variability inherent in the response before the regression is performed. SST = $\sum_{i=1}^{n} (y_i \overline{y})^2$ measures the total variance in the response Y.
- Sum of squares regression (SSR) measures the total amount variance captured by the regression model: SSR = $\sum i = 1^n (\hat{y}_i \overline{y})^2$
- Sum of squares error (SSE) measures the total variance of the response not explained by the regression model. In the linear regression context, we may intepret total deviation to equal the deviation not explained by the explanatory variables plus deviation explained by the explanatory variables: $(y_i \overline{y}) = (y_i \hat{y}_i) + (\hat{y}_i \overline{y}_i)$. Squaring each side and summing over all observations yields for the total sum of squared deviations $SST = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y}_i)^2 = SSE + SSR$, where the sum of the cross-product terms turns out to be
- R^2 statistic or coefficient of determination measures the proportion of variability in Y that can be explained using X. It is also identical to the squared correlation between X and Y. An R^2 statistic that is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression. A number near 0 indicates that the regression did not explain much of the variability in the response. The R^2 statistic provides a relative measure of the quality of a linear regression fit $R^2 = 1 \frac{RSS}{SST}$, and always takes on a value between 0 and 1, and is independent of the scale. R^2 is identical to the squared correlation between X and Y.
- Adjusted R^2 : The usual R^2 always increases (since residual sum of squares RSS always decreases) as more variables are added. The intuition behind the adjusted R^2 is that once all of the correct variables have been included in the model, adding noise variables will lead to a decrease in the statistic. In theory, the model with the largest adjusted R^2 will have only correct variables and no noise variables.
- Partial correlation coefficients, which measure the correlation between y and the j 'th explanatory variable x_j controlling for other explanatory variables, can also be obtained by running only one regression: $r(y, x_j | x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_k) = \frac{t(b_j)}{\sqrt{t(b_j)^2 + n (k+1)}} wheret(\mathbf{b_j}) is thet ratio for \mathbf{b_j} from a regression of yon \mathbf{x_1}, ..., \mathbf{x_k} (including the variables_j \mathbf{s}).$

• t-statistic or t-ratio: $t(b_j) = \frac{b_j}{se(b_j)}$ can be interpreted to be the number of standard errors that b_j is away from zero. In a t-test, the null hypothesis $(H_0 : \beta_j = 0)$ is rejected in favor of the alternative if the absolute value of the t-ratio $|t(b_j)|$ exceeds a t-value, denoted $t_{n-(k+1),1-\frac{\alpha}{2}}$, equal to the $(1-\frac{\alpha}{2})$ 'th percentile from the t-distribution using df = n - (k+1) degrees of freedom.

*Hypothesis tests

The t-test is not directly applicable when testing hypotheses that involve more than one parameter, because the parameter estimators can be correlated. Instead, a common alternative called the **F-test** compares the fit of the model (measured using the RSS) when the null hypothesis is true relative to the fit of the model without the restriction on the parameters assumed by the null. To test whether all regression slope coefficients are zero H_0 : $b_1 = \dots = b_p = 0$, versus the alternative H_a : at least one b_j is non-zero, compute the statistic. which has a F(p, n - p - 1) distribution:

$$F = \frac{(TSS - RSS)/p}{RSS/(n - p - 1)}$$

Partial F-test: Sometimes, we want to test that a particular subset of q of the coefficients are zero. In this case we fit a second model that uses all the variables except those last q, then compute residual sum of squares for that model and the appropriate F-statistic, which has a F(p-q, n-p-1) distribution:

$$F = \frac{(RSS_q - RSS)/(p-q)}{RSS/(n-p-1)}$$

3.3.1 Value effect

The value effect refers to the observed tendency of value stocks (low price-to-book ratios) to outperform growth stocks (high price-to-book ratios) over time. This phenomenon supports value investing, a strategy linked to Benjamin Graham and David Dodd, which focuses on identifying undervalued stocks based on fundamental analysis.

```
# Linear regression on Mkt-Rf and intercept
x = ["HML(mo)", "Mkt-RF(mo)"]
formula = f'Q("{x[0]}") ~ ' + " + ".join(f'Q("{v}")' for v in x[1:])
data = bench.get_series(x, field='ret', beg=19620701, end=20991231)
lm = smf.ols(formula, data=data).fit(cov_type='HAC', cov_kwds={'maxlags': 6})
print(f"Period: {data.index[0]}-{data.index[-1]}")
print(lm.summary())
```

Period: 19620731-2	20241231					
		OLS Regres	sion Results			
=======================================						====
Dep. Variable:	Q ("	HML(mo)")	R-squared:		0	.041
Model:		OLS	Adj. R-squa	ared:	0	.040
Method:	Leas	t Squares	F-statistic	e:	8	.701
Date:	Sun, 02	Mar 2025	Prob (F-sta	atistic):	0.0	0328
Time:		14:45:35	Log-Likelih	nood:	15	87.2
No. Observations:		750	AIC:		-3	170.
Df Residuals:		748	BIC:		-3	161.
Df Model:		1				
Covariance Type:		HAC				
	coef	std err	==================== Z	P> z	[0.025	0.9751
Intercept	0.0037	0.001	2.615	0.009	0.001	0.006
Q("Mkt-RF(mo)")	-0.1344	0.046	-2.950	0.003	-0.224	-0.045

					===
Omnibus:	54.218	Durbin-Watson:		1.	670
Prob(Omnibus):	0.000	Jarque-Bera (JB):		243.	740
Skew:	-0.030	Prob(JB):		1.18e	-53
Kurtosis:	5.792	Cond. No.		2	2.3
Notes:					
[1] Standard Errors a	re heteroscedastic	city and autocorrelation	robust	(HAC)	using <mark>.</mark>
\hookrightarrow 6 lags and without	small sample corre	ection			

3.3.2 Small firm effect

The small firm effect, identified by Rolf Banz in 1981, describes the tendency of small-cap stocks to generate higher risk-adjusted returns than large-cap stocks. This suggests that smaller companies may offer higher expected returns as compensation for their increased risk and lower liquidity.

```
# Linear regression on Mkt-Rf, HML and intercept
x = ["SMB(mo)", "HML(mo)", "Mkt-RF(mo)"]
formula = f'Q("{x[0]}") ~ ' + " + ".join(f'Q("{v}")' for v in x[1:])
data = bench.get_series(x, field='ret', beg=19620701, end=20991231)
lm = smf.ols(formula, data=data).fit(cov_type='HAC', cov_kwds={'maxlags': 6})
print(f"Period: {data.index[0]}-{data.index[-1]}")
print(lm.summary())
```

Dep. Variable:	Q ("	SMB(mo)")	R-squared:		0	.097
Model:		OLS	Adj. R-squa	ared:	0	.095
Method:	Leas	t Squares	F-statistic	e:	2	8.64
Date:	Sun, 02	Mar 2025	Prob (F-sta	atistic):	1.03	e-12
Time:		14:45:35	Log-Likelih	nood:	15	93.2
No. Observations:		750	AIC:		-3	180.
Df Residuals:		747	BIC:		-3	167.
Df Model:		2				
Covariance Type:		HAC				
	coef	std err	Z	P> z	[0.025	0.975]
Intercept	0.0007	0.001	0.592	0.554	-0.002	0.003
Q("HML(mo)")	-0.0937	0.088	-1.066	0.286	-0.266	0.079
Q("Mkt-RF(mo)")	0.1901	0.028	6.672	0.000	0.134	0.246
Omnibus:		105.898	Durbin-Wats	======================================	2	.056
Prob(Omnibus):		0.000	Jarque-Bera	a (JB):	722	.449
Skew:		0.406	Prob(JB):		1.33e	-157
Kurtosis:		7.739	Cond. No.			34.8

 \hookrightarrow 6 lags and without small sample correction

3.4 Structural break test

The **Chow test** is used to detect structural breaks in time-series data. This involves estimating separate regression models before and after a specified breakpoint (e.g., the publication of the HML factor in 1993). The test statistic is:

$$\label{eq:chow} \text{Chow} = \frac{(RSS - (RSS_1 + RSS_2))/K}{(RSS_1 + RSS_2)/(N-2K)}$$

where the test follows an F(K, N - 2K) distribution. If the test statistic exceeds a critical value, we reject the null hypothesis that the regression coefficients remain constant across both time periods.

```
# Run restricted and unregression models
x = ["HML(mo)", "Mkt-RF(mo)"]
formula = f'Q("{x[0]}") ~ ' + " + ".join(f'Q("{v}")' for v in x[1:])
#formula = f'Q("HML(mo)")~ .'
bp = 19931231  # breakpoint date
lm1 = smf.ols(formula, data=data[data.index<=bp]).fit()
print(f'\nSub Model 1 ({data.index[0]}-{bp}):')
print(lm1.summary())
lm2 = smf.ols(formula, data=data[data.index>bp]).fit()
print(f'\nSub Model 2 ({bp}-{data.index[-1]}):')
print(lm2.summary())
lm0 = smf.ols(formula, data=data].fit()
print('\nRestricted Model (coefficient is equal):')
print(lm0.summary())
```

Sub Model 1 (1962)	0731-199312	31): OLS Regres	sion Results			
Dep. Variable:	 Q("	HML(mo)")	R-squared:		C	.125
Model:		OLS	Adj. R-squa	red:	C	.122
Method:	Leas	t Squares	F-statistic	:	5	53.47
Date:	Sun, 02	Mar 2025	Prob (F-sta	tistic):	1.59	e-12
Time:		16:34:00	Log-Likelih	nood:	87	4.79
No. Observations:		378	AIC:		-1	746.
Df Residuals:		376	BIC:		-1	738.
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0056	0.001	4.524	0.000	0.003	0.008
Q("Mkt-RF(mo)")	-0.2021	0.028	-7.312	0.000	-0.256	-0.148
Omnibus:		29.355	Durbin-Wats	on:	1	.600
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	55	5.192
Skew:		0.462	Prob(JB):		1.04	le-12
Kurtosis:		4.628	Cond. No.			22.4
Notes: [1] Standard Erron ⇔specified.	rs assume t	hat the co	variance matr	ix of the e	rrors is cor	rrectly_
Sub Model 2 (1993)	1231-202412	31):	ning Decult			
		ULS Kegres	SION KESUITS			

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Q(" Leas Sun, 02	HML(mo)") OLS t Squares Mar 2025 16:34:00 372 370 1 nonrobust	R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	red: : tistic): ood:	0 0 2 0. 73 -1 -1	.007 .005 .752 0980 8.00 472. 464.
	coef	std err	t	P> t	[0.025	0.975]
Intercept Q("Mkt-RF(mo)")	0.0015	0.002 0.039	0.866 -1.659	0.387 0.098	-0.002 -0.140	0.005 0.012
Omnibus: Prob(Omnibus): Skew: Kurtosis:		25.036 0.000 0.058 5.371	Durbin-Wats Jarque-Bera Prob(JB): Cond. No.	on: (JB):	1 87 1.08	.720 .339 e-19 22.3
Notes: [1] Standard Error ⇔specified. Restricted Model (s assume t coefficien	hat the co t is equal OLS Regress	variance matr): sion Results	ix of the e	errors is cor	rectly
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Q(" Leas Sun, 02	HML(mo)") OLS t Squares Mar 2025 16:34:00 750 748 1 nonrobust	R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	red: : tistic): ood:	0 3 2.39 15 -3 -3	.041 .040 1.83 e-08 87.2 170. 161.
	coef	std err	t	============== P> t	[0.025	0.975]
Intercept Q("Mkt-RF(mo)")	0.0037 -0.1344	0.001 0.024	3.421 -5.642	0.001 0.000	0.002 -0.181	0.006 -0.088
Omnibus: Prob(Omnibus): Skew: Kurtosis:		54.218 0.000 -0.030 5.792	Durbin-Wats Jarque-Bera Prob(JB): Cond. No.	on: (JB):	1 243 1.18	.670 .740 e-53 22.3 ====
Notes: [1] Standard Error →specified.	s assume t	hat the co	variance matr	ix of the ϵ	errors is cor	rectly_

Test statistic with K parameters and N observations follows a ${\cal F}(K,N-2K)-{\rm distribution}$

```
# Compute test statistic
K = len(lm0.params)
N = len(data)
RSS = lm0.resid.dot(lm0.resid)
RSS1 = lm1.resid.dot(lm1.resid)
RSS2 = lm2.resid.dot(lm2.resid)
chow = ((RSS - (RSS1 + RSS2)) / K) / ((RSS1 + RSS2) / (N - 2*K))
chow, N, K
```

(5.425564122014983, 750, 2)

p-value of Chow test statitic

1 - scipy.stats.f.cdf(chow, dfn=K, dfd=N - 2*K)

0.0045780451491863605

5% critical value to reject null

scipy.stats.f.ppf(q=1 - 0.05, dfn=K, dfd=N - 2*K)

3.0077945872688696

References:

Eugene F. Fama and Kenneth R. French (1992), "The Cross-Section of Expected Stock Returns", Journal of Finance, Volume 47, Issue 2, June 1992, pages 427-465

Eugene Fama and Kenneth French (2023), "Production of U.S. Rm-Rf, SMB, and HML in the Fama-French Data Library", Chicago Booth Paper No. 23-22

FRM Exam I Book Quantative Analysis Chapter 7-8

Wharton Research Data Services.

FOUR

FAMA-MACBETH CROSS-SECTIONAL REGRESSIONS

If you don' t risk anything, you risk even more - Erica Jong

The Fama-MacBeth (1973) cross-sectional regression methodology is a fundamental tool in empirical asset pricing, used to estimate risk factor loadings and associated risk premia while accounting for cross-sectional correlation in errors. By performing two-stage regressions, the method first estimates factor loadings for individual assets and then determines the associated risk premia over time. This approach has broad applications in testing asset pricing models, including the Capital Asset Pricing Model (CAPM) and multi-factor models. The following sections also analyze efficient frontier construction, Black-Litterman implied alphas and portfolio optimization, risk factor modeling, and non-linear regressions.

```
import numpy as np
from numpy import linalg as la
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
from sklearn.kernel ridge import KernelRidge
import random
from tqdm import tqdm
import cvxpy as cp
from finds.database import SQL, RedisDB
from finds.structured import (BusDay, Signals, Benchmarks, CRSP,
                              CRSPBuffer, SignalsFrame)
from finds.backtesting import RiskPremium
from finds.recipes import winsorize, least_squares
from finds.readers import FFReader
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
#%matplotlib qt
```

```
# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
signals = Signals(user, verbose=VERBOSE)
bench = Benchmarks(sql, bd, verbose=VERBOSE)
imgdir = paths['images']
LAST_DATE = bd.endmo(CRSP_DATE, -1)
```

import warnings warnings.simplefilter(action='ignore', category=FutureWarning)

4.1 Mean variance optimization

Markowitz demonstrated that, given two investments with the same expected return (measured as the mean of returns), a risk-averse investor will prefer the one with lower risk (measured by variance). His theory relies on several assumptions, including the absence of market frictions (such as taxes or transaction costs) and normally distributed returns.

The assumption of normally distributed returns implies that rational investors should evaluate potential portfolio allocations based solely on the means and variances of their return distributions. Investors generally seek higher mean returns while minimizing variance. Diversification plays a crucial role in reducing portfolio risk by incorporating assets whose price movements are not perfectly correlated.

A key challenge in implementing this framework is estimating the necessary parameters—mean returns, variances, and asset correlations—using historical data. The choice of historical period or forecast assumptions can significantly impact the resulting allocation. To address this uncertainty, techniques such as robust portfolio optimization and the Black-Litterman model have been developed.

```
# Retrieve test asset returns and risk-free rate
symbol = '6_Portfolios_2x3'
ff = FFReader(symbol)
rf = FFReader('F-F_Research_Data_Factors')[0]['RF'] / 100 # risk-free rates
mktcaps = ff[4] * ff[5] # number of firms x average market cap
labels = [s.replace('ME1', 'BIG').replace('ME2', 'SMALL') for s in mktcaps.columns]
n = len(labels)
```

```
r = (ff[0]/100).sub(rf.fillna(0), axis=0) # excess, of the risk-free, returns
sigma = np.cov(r, rowvar=False)
mu = np.mean(r, axis=0).values
assets = DataFrame(data={'mean': mu, 'volatility': np.sqrt(np.diag(sigma))},______
___index=labels)
```

```
name='Mkt')], axis=1)
```

mean volatility	SMALL LoBM 0.007149 0.074748	BIG BM2 0.009629 0.069687	SMALL HiBM 0.011528 0.081045	BIG LoBM 0.006860 0.052923	SMALL BM2 0.006886 0.056215	BIG HiBM 0.009252 0.071231	\
mean volatility	Mkt 0.007152 0.053822						

4.1.1 Global minimum variance portfolio

The Global Minimum Variance (GMV) portfolio is the allocation that achieves the lowest possible risk based on estimated asset variances and correlations while disregarding expected returns. This optimization problem is convex (quadratic) and subject to the constraint that portfolio weights sum to one.

Mathematically, the GMV portfolio is obtained by solving:

 $\min_{w} w^T \Sigma w$, subject to $w^T 1 = 1$ where Sigma represents the covariance matrix of asset returns. This can be solved numerically with the cvxpy Python package for convext optimization.

```
W = cp.Variable(n)  # variable to optimize over - portfolio weights
Var = cp.quad_form(W, sigma)  # objective to minimize portfolio volatility
Ret = mu.T @ W  # objective to maximize portfolio return
```

The GMV portfolio weights can also be derived using a closed form solution by differentiating the (convex) objective function and setting the first-order conditions to zero: $\text{GMV} = \frac{\Sigma^{-1}1}{1^T \Sigma^{-1}1}$

```
def gmv_portfolio(sigma, mu=None):
    """Returns position weights of global minimum variance portfolio"""
    ones = np.ones((sigma.shape[0], 1))
    w = la.inv(sigma).dot(ones) / ones.T.dot(la.inv(sigma)).dot(ones)
    return {'weights': w, 'volatility': np.sqrt(w.T.dot(sigma).dot(w)),
            'mean': None if mu is None else w.T.dot(mu)}
```

	SMALL LoBM	BIG BM2	SMALL HiBM	BIG LoBM	SMALL BM2	BIG HiBM
numerical	-0.485571	0.668181	-0.330072	0.789931	0.83042	-0.47289
formula	-0.485571	0.668181	-0.330072	0.789931	0.83042	-0.47289

4.1.2 Efficient frontier

Each point on the efficient frontier represents a portfolio that offers the highest expected return for a given level of risk, measured by the standard deviation of returns. A line drawn from the risk-free rate becomes tangent to the efficient frontier at the **tangency portfolio**, defining the **Capital Market Line** (CML):

$$E(R_p) = r_f + \frac{E[R_M] - r_f}{\sigma_M} \sigma_p$$

Portfolios along this line dominate all other portfolios on the efficient frontier. This leads to the **Two-Fund Separation Theorem**, which states that all investors should allocate capital between the risk-free asset and the tangency portfolio.

```
var_ticks = np.linspace(gmv['variance'], 3*np.max(np.diag(sigma)), 200)
best_slope, tangency = 0, tuple()  # to find the tangency portfolio
efficient = []
for var in var_ticks:
    obj = cp.Problem(cp.Maximize(Ret), [cp.sum(W) == 1, Var <= var])
    obj.solve(verbose=False)
    # tangency portfolio has best slope
    risk = np.sqrt(var)
    slope = Ret.value / risk
    if slope > best_slope:
        best_slope = slope
        tangency = {'coords': (risk, Ret.value), 'weights': W.value}
    efficient.append(dict(mean=Ret.value, volatility=risk))
```

```
frontier = [] # inefficient frontier
for var in var_ticks:
    obj = cp.Problem(cp.Minimize(Ret), [cp.sum(W) == 1, Var <= var])
    obj.solve(verbose=False)
    frontier.append(dict(mean=Ret.value, volatility=np.sqrt(var)))</pre>
```

The efficient and tangency portfolios can be derived as:

- Efficient portfolio (target return μ_0) = $\Sigma^{-1}M(M^T\Sigma^{-1}M)^{-1}[\mu_0 \ 1]^T$, where $M = [\mu \ 1]$
- Tangency portfolio = $\frac{\Sigma^{-1}\mu}{1^T\Sigma^{-1}\mu}$

Any portfolio on the efficient frontier can be expressed as a linear combination of two other efficient portfolios.

```
p = random.choice(efficient)
e = efficient_portfolio(mu,sigma, p['mean'])
df = DataFrame({'random efficient portfolio': p,
                         'by formula': dict(mean=e['mean'], volatility=e['volatility'])})
```

```
/tmp/ipykernel_1785309/3388186085.py:9: DeprecationWarning: Conversion of an array_

with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you_

extract a single element from your array before performing this operation._

(Deprecated NumPy 1.25.)

return {'weights': w, 'volatility': np.sqrt(float(w.T.dot(sigma).dot(w))),

/tmp/ipykernel_1785309/3388186085.py:10: DeprecationWarning: Conversion of an_

earray with ndim > 0 to a scalar is deprecated, and will error in future. Ensure_

eyou extract a single element from your array before performing this operation._

e(Deprecated NumPy 1.25.)

'mean': float(w.T.dot(mu))}
```

s = tangency_portfolio(mu, sigma)

volatility mean	tangency portfolio 0.080541 0.016848	tangency formula 0.080748 0.016891	random efficient portfolio 0.08782 0.01834	\
volatility mean	by formula 0.08782 0.01834			

Plot efficient frontier and portfolios

```
fig, ax = plt.subplots(figsize=(10, 9))
DataFrame(efficient).set_index('volatility').plot(ax=ax, color='darkblue')
DataFrame(frontier).set_index('volatility').plot(ax=ax, color='lightgrey')
ax.plot([0, np.sqrt(max(var_ticks))], [0, np.sqrt(max(var_ticks))*best_slope],
        color='cyan') # capital market line
ax.plot(*tangency['coords'], "r*", ms=10)
                                                             # tangency portfolio
ax.plot(np.sqrt(gmv['variance']), gmv['mean'], "ms", ms=8) # GMV portfolio
ax.plot(np.sqrt(mkt['variance']), mkt['mean'], "yd", ms=10) # market portfolio
plt.legend(['Efficient Frontier', 'Inefficient Frontier', 'Capital Market Line',
            'Tangency Portfolio', 'Global Minimum Variance Portfolio', 'Market'])
for c, r in enumerate(assets.itertuples()): # risky assets
    ax.plot(r.volatility, r.mean, marker='o', color=f"C{c}")
    ax.annotate(text=r.Index, xy=(r.volatility, r.mean),
               xytext=(0.5, 0), textcoords="offset fontsize", color=f"C{c}")
ax.set_xlabel('Standard Deviation (risk)')
ax.set_ylabel('Average Monthly Excess Returns')
ax.set_title('Efficient Frontier with FF 3x2 BM-Size Risky Assets')
plt.tight_layout()
```


4.1.3 CAPM

Sharpe, Lintner, and Mossin developed the CAPM, an equilibrium model that describes the relationship between risk and expected return for risky assets. The model assumes market efficiency and that investors optimize portfolios based on mean-variance principles.

The CAPM posits that market equilibrium is reached when all investors hold combinations of the risk-free asset and the market portfolio. An asset's expected return is determined by its contribution to the market portfolio's total risk, specifically its **systematic risk**, which cannot be diversified away. This risk is measured by beta:

$$\beta_i = \frac{\operatorname{cov}(R_i, R_M)}{\operatorname{var}(R_M)}$$

The Security Market Line (SML) represents the relationship between expected returns and beta:

$$E(R_i) = r_f + \beta_i (E[R_M] - r_f)$$

4.2 Implied alphas

If a known portfolio allocation W is an optimal solution to a mean-variance objective, the implied mean return inputs can be inferred given the covariance matrix. These **implied alphas**, proportional to $w^T \Sigma$, when used as expected returns in the optimization process, yield the same portfolio W.

```
# market cap-weighted portfolio implied expected returns
capm = mkt['weights'].dot(sigma) * 2
```

```
# HML implied alphas
hml = Series(0.0, index=assets.index)
hml['BIG HiBM'] = 0.5
hml['SMALL HiBM'] = 0.5
hml['BIG LoBM'] = -0.5
hml['SMALL LoBM'] = -0.5
#hml = {'weights': hml.values}
#hml['variance'] = hml['weights'].dot(sigma).dot(hml['weights'])
#hml['coords'] = (np.sqrt(hml['variance']), hml['weights'].dot(mu))
alphas = hml.dot(sigma) * 2
```

```
pd.concat([Series(hml.values).rename('HML weights'),
        Series(alphas).rename('HML implied-alpha'),
        Series(mkt['weights']).rename('Market weights'),
        Series(capm).rename('CAPM equilibrium returns'),
        Series(mu).rename('historical mu'),
        Series(Series(alphas)/Series(capm)).rename('implied/capm')],
        axis=1, ignore_index=False)
    .set_index(assets.index).T
```

```
SMALL LOBM BIG BM2 SMALL HiBM BIG LOBM \
                       -0.500000 0.000000 0.500000 -0.500000
HML weights
HML implied-alpha
                       0.000742 0.001827 0.003132 0.000277
Market weights
                       0.010631 0.017235 0.011753 0.693932
CAPM equilibrium returns 0.007044 0.006705 0.007413 0.005624
                        0.007149 0.009629 0.011528 0.006860
historical mu
                        0.105320 0.272514
                                            0.422451 0.049240
implied/capm
                      SMALL BM2 BIG HiBM
                      0.000000 0.500000
HML weights
HML implied-alpha
Market weights
                      0.001634 0.002967
                       0.190550 0.075900
CAPM equilibrium returns 0.005733 0.006865
historical mu
                 0.006886 0.009252
implied/capm
                       0.285082 0.432198
```

				historical mu	capm equilbrium
Correlation	with	implied	alphas	0.836893	0.610935

	SMALL LOBM	BIG BM2	SMALL HiBM	BIG LoBM	SMALL BM2	\
HML Weights	-0.5	0.0	0.5	-0.5	0.0	
mean-variance weights	-0.5	0.0	0.5	-0.5	0.0	
	BIG HiBM					
HML weights	0.5					
mean-variance weights	0.5					

	SMALL LoBM	BIG BM2	SMALL HiBM	BIG LoBM	SMALL BM2	\backslash
Market weights	0.010631	0.017235	0.011753	0.693932	0.19055	
mean-variance weights	0.010631	0.017235	0.011753	0.693932	0.19055	
formula	0.010631	0.017235	0.011753	0.693932	0.19055	
	BIG HiBM					
Market weights	0.0759					
mean-variance weights	0.0759					
formula	0.0759					

4.2.1 Black-Litterman Model

Mean-variance portfolios are highly sensitive to input estimates, particularly expected returns. Errors in estimating expected returns have a far greater impact than errors in estimating variances and covariances. Black and Litterman (1992) proposed *shrinking* investor expectations toward equilibrium market returns to reduce sensitivity to estimation errors.

	SMALL LoBM	BIG BM2	SMALL HiBM	BIG LoBM	\backslash
Tangency Portfolio Weights	-2.807841	2.631802	1.023199	2.132014	
Market Weights	0.010631	0.017235	0.011753	0.693932	
Active Weights	-2.818472	2.614567	1.011446	1.438083	
	SMALL BM2	BIG HiBM			
Tangency Portfolio Weights	-1.466995	-0.51218			

Market	Weights	0.190550	0.07590
Active	Weights	-1.657544	-0.58808

The Black-Litterman expected return estimates are computed as:

 $E[R] = [(\tau \Sigma)^{-1} + P^T \Omega^{-1} P]^{-1} [(\tau \Sigma)^{-1} \Pi + P^T \Omega^{-1} Q]$

where:

- τ is a confidence scalar for investor views versus equilibrium returns.
- In Bayesian terms, τ represents uncertainty in equilibrium return estimation.

```
tau = 0.05 # He and Litterman (1992) for a moderate amount of active risk
k = 1
Pi = capm.reshape((n, 1))  # equilbrium views: CAPM implied excess returns
P = (tangency['weights']).reshape((k, n))  # view portfolio weights
Q = (tangency['weights'].dot(mu)).reshape((k, k)) # portfolio view
Omega = np.diag(np.array(P.dot(sigma).dot(P.T)).reshape((k,k))) # uncertainty
```

```
def black_litterman(tau, Pi, Sigma, P, Q):
    """Returns black-litterman alphas"""
    def inv(x):
        """helper wraps over la.inv to handle scalar/1d inputs"""
        try:
            return la.inv(x)
        except:
            return np.array(1/x).reshape((1,1))
    return inv(inv(tau*Sigma)+P.T.dot(inv(Omega)).dot(P))\
        .dot(inv(tau*Sigma).dot(Pi) + P.T.dot(inv(Omega)).dot(Q))
```

Active Risk: 0.0024824588797282025

	SMALL LOBM	BIG BM2	SMALL HiBM	BIG LoBM
Black-Litterman weights	-0.101900	0.121624	0.052136	0.751349
Market weights	0.010631	0.017235	0.011753	0.693932
Active weights	-0.112531	0.104390	0.040383	0.057417
	SMALL BM2	BIG HiBM		
Black-Litterman weights	0.124370	0.05242		
Market weights	0.190550	0.07590		
Active weights	-0.066179	-0.02348		

```
\# \ BL \ tilts \ the \ optimal \ weights \ towards \ the \ active \ positions \ in \ the \ view \ portfolio \ bl['tilt'] / active
```

```
array([0.03992611, 0.03992611, 0.03992611, 0.03992611, 0.03992611, 0.03992611])
```

With numerical solvers, constraints like no short-selling can be incorporated, and additional constraints can be iteratively added to achieve more reasonable portfolio allocations.

Alpha = W @ mu

```
Minimize variance to achieve target return, with no short sales: Active Risk: 0.004263652598782702
```

	SMALL LoBM	BIG BM2	SMALL HiBM	BIG LoBM	SMALL BM2	\backslash
Constrained weights	-0.000000	-0.000000	0.145177	0.790527	0.064296	
Market weights	0.010631	0.017235	0.011753	0.693932	0.190550	
Active weights	-0.010631	-0.017235	0.133425	0.096595	-0.126254	
	BIG HiBM					
Constrained weights	0.0000					
Market weights	0.0759					
Active weights	-0.0759					

Maximize return within target variance, with no short sales: Active Risk (annualized): 0.009003930083077559

	SMALL LOBM	BIG BM2	SMALL HiBM	BIG LoBM	SMALL BM2	\setminus
Constrained weights	0.00000	0.00001	0.079741	0.778467	0.141791	
Market weights	0.010631	0.017235	0.011753	0.693932	0.190550	
Active weights	-0.010631	-0.017234	0.067988	0.084535	-0.048759	

	BIG HiBM
Constrained weights	0.0000
Market weights	0.0759
Active weights	-0.0759

4.3 Cross-sectional regressions

The Fama-MacBeth (1973) methodology estimates factor betas and risk premia in two steps:

- 1. Time-Series Regressions: Estimate each asset' s beta by regressing its returns against proposed factor returns.
- Cross-Sectional Regressions: Estimate factor risk premia by regressing all asset returns against their betas across multiple time periods.

This approach provides standard errors adjusted for cross-sectional correlation.

4.3.1 Testing the CAPM

We retrieve test asset returns and the risk-free rate. To test whether beta is priced, we examine whether higher-beta assets earn proportionally higher risk premia. We also test for **non-linearity** (beta-squared) and for the pricing of residual risk.

```
factors = FFReader('F-F_Research_Data_Factors')[0] / 100 # risk-free rates
test_assets = FFReader('25_Portfolios_ME_BETA_5x5')
df = test_assets[1] / 100
df = df.sub(factors['RF'], axis=0).dropna().copy()
```

```
# unpivot the wide table to a long one
rets = df.stack()\
                .reset_index(name='ret')\
                .rename(columns={'level_1':'port', 'level_0':'Date'})
```

```
# estimate test assets' market betas from their time-series of returns
data = df.join(factors[['Mkt-RF']], how='left')
betas = least_squares(data, y=df.columns, x=['Mkt-RF'], stdres=True)
betas = betas.rename(columns={'Mkt-RF': 'BETA'})[['BETA', '_stdres']]
```

```
# collect test asset mean returns and betas
assets_df = betas[['BETA']].join(df.mean().rename('premiums')).sort_values('BETA')
```

```
# Orthogonalize polynomial (quadratic) beta<sup>2</sup> and residual-volatility features
betas['BETA2'] = smf.ols("I(BETA**2) ~ BETA", data=betas).fit().resid
betas['RES'] = smf.ols("_stdres ~ BETA + BETA2", data=betas).fit().resid
r = rets.join(betas, on='port').sort_values(['port', 'Date'], ignore_index=True)
```

```
# run monthly Fama-MacBeth cross-sectional regressions
fm = r.groupby(by='Date')\
    .apply(least_squares, y=['ret'], x=['BETA', 'BETA2', 'RES'])
```

/tmp/ipykernel_1785309/3663017786.py:3: DeprecationWarning: DataFrameGroupBy.apply_ operated on the grouping columns. This behavior is deprecated, and in a future_ oversion of pandas the grouping columns will be excluded from the operation... Either pass `include_groups=False` to exclude the groupings or explicitly select. othe grouping columns after groupby to silence this warning. .apply(least_squares, y=['ret'], x=['BETA', 'BETA2', 'RES'])

```
# compute time-series means and standard errors of the Fama-MacBeth coefficients
out = DataFrame(dict(mean=fm.mean(), stderr=fm.sem(), tstat=fm.mean()/fm.sem())).T
```

```
print("Monthly Cross-sectional Regressions" +
    f" {min(rets['Date'])} to {max(rets['Date'])}")
```

out

Monthly Cross-sectional Regressions 1963-07 to 2024-12

__intercept BETA BETA2 RES mean 0.007817 0.000124 -0.008395 0.121528 stderr 0.001535 0.002255 0.002544 0.060507 tstat 5.091416 0.054945 -3.299643 2.008509

Clustered standard errors

Alternative corrections for standard errors account for both time-series and cross-sectional correlation, such as double clustering by firm and year.

```
### Compare uncorrected to robust cov
ls = smf.ols("ret ~ BETA + BETA2 + RES", data=r).fit()
print(ls.summary())
# print(ls.get_robustcov_results('HCO').summary())
# print(ls.get_robustcov_results('HAC', maxlags=6).summary())
```

		OLS Reg	gression Re	sults		
Dep. Variable Model: Method: Date: Time: No. Observat: Df Residuals Df Model: Covariance Ty	e: Mc ions: : ype:	Least Squar on, 03 Mar 20 07:02: 184 184 nonrobu	ret R-squ DLS Adj. res F-sta 025 Prob 221 Log-L 150 AIC: 146 BIC: 3 151	ared: R-squared: tistic: (F-statistic) ikelihood:	:	0.000 0.000 2.554 0.0535 25722. -5.144e+04 -5.141e+04
	coef	std err	t	P> t	[0.025	0.975]
Intercept BETA BETA2 RES	0.0078 0.0001 -0.0084 0.1215	0.002 0.002 0.006 0.051	4.174 0.076 -1.390 2.393	0.000 0.940 0.165 0.017	0.004 -0.003 -0.020 0.022	0.011 0.003 0.003 0.221
Omnibus: Prob(Omnibus)):	1547.0 0.0	560 Durbi)00 Jarqu	n-Watson: e-Bera (JB):		1.778 9926.401

Skew: Kurtosis:			-	-0.05	51 Prob(J) 92 Cond.1	B): No.					0.00 174.
Notes: [1] Standard ⇔specified.	Errors	assume	that	the	covariance	matrix	of	the	errors	is	correctly_

		OLS Reg	ression Re	esults		
Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	Le: M Lions: S: Type:	r O Least Squar Ion, 03 Mar 20 07:02: 184 184 hac-pan	et R-sq LS Adj. es F-st. 25 Prob 21 Log-: 50 AIC: 46 BIC: 3 el	uared: R-squared: atistic: (F-statistic Likelihood:):	0.000 0.000 1.636 0.207 25722. -5.144e+04 -5.141e+04
	coef	std err	t	========== P> t	[0.025	0.975]
Intercept BETA BETA2 RES	0.0078 0.0001 -0.0084 0.1215	0.002 0.002 0.006 0.066	4.003 0.066 -1.330 1.847	0.001 0.948 0.196 0.077	0.004 -0.004 -0.021 -0.014	0.012 0.004 0.005 0.257
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	1547.6 0.0 -0.0 6.5	60 Durb 00 Jarq 51 Prob 92 Cond	in-Watson: ue-Bera (JB): (JB): . No.		1.778 9926.401 0.00 174.
Notes: [1] Standard	d Errors ar	re robust to c	luster co:	rrelation (HA	C-Panel)	

4.3.2 Factor risk models

Beginning with Barra in the mid-1970's, industry practitioners have employed cross-sectional models to forecast risk premia and measure risk factors. Monthly cross-sectional regressions are run on standardized individual stock characteristics such as:

- Size: Market capitalization rank
- Value: Book-to-market ratio
- Momentum: 12-month return (excluding past month)
- Reversal: 1-month return reversal

The stock characteristic values are winsored at their 5% tails to reduce the influence of outliers. These risk premia are interpreted as returns on dollar-neutral portfolios with unit exposure to a characteristic and zero exposure to other characteristics.

Their estimated risk premiums are compared to Fama-French research factor returns (which are constructed as returns from long-short spread portfolios).

```
intervals = { 'mom': (2, 12, 1), 'strev': (1, 1, -1) } # signal: (start, end, sign)
for label, past in intervals.items():
   out = []
   rebaldates = bd.date_range(bd.endmo(rebalbeg), rebalend, 'endmo')
   for rebaldate in tqdm(rebaldates, total=len(rebaldates)):
        start = bd.endmo(rebaldate, -past[1])
       beg1 = bd.offset(start, 1)
       end1 = bd.endmo(rebaldate, 1-past[0])
       df = monthly.get_universe(end1)
        # require data available at start month and at last month (universe)
       df['start'] = monthly.get_section(dataset='monthly',
                                          fields=['ret'],
                                          date_field='date',
                                          date=start).reindex(df.index)
       df[label] = past[2] * monthly.get_ret(beg1, end1).reindex(df.index)
       df['permno'] = df.index
       df['rebaldate'] = rebaldate
       df = df.dropna(subset=['start'])
       out.append(df[['rebaldate', 'permno', label]]) # append rows
   out = pd.concat(out, axis=0, ignore_index=True)
   n = signals.write(out, label, overwrite=True)
```

100%| 726/726 [00:43<00:00, 16.53it/s] 100%| 726/726 [00:41<00:00, 17.50it/s]


```
df = out[0]
df['tvalue'] = df['mean']/df['stderr']
df['sharpe'] = np.sqrt(12) * df['mean']/df['std']
print("Fama-MacBeth Cross-sectional Regression Risk Premiums")
df.round(4)
```

Fama-MacBeth Cross-sectional Regression Risk Premiums

mean	stderr	std	count	tvalue	sharpe
0.0059	0.0005	0.0143	725	11.1314	1.4321
0.0020	0.0004	0.0112	725	4.7378	0.6095
0.0011	0.0007	0.0178	725	1.6812	0.2163
0.0023	0.0007	0.0175	725	3.5671	0.4589
	mean 0.0059 0.0020 0.0011 0.0023	<pre>mean stderr 0.0059 0.0005 0.0020 0.0004 0.0011 0.0007 0.0023 0.0007</pre>	meanstderrstd0.00590.00050.01430.00200.00040.01120.00110.00070.01780.00230.00070.0175	meanstderrstdcount0.00590.00050.01437250.00200.00040.01127250.00110.00070.01787250.00230.00070.0175725	meanstderrstdcounttvalue0.00590.00050.014372511.13140.00200.00040.01127254.73780.00110.00070.01787251.68120.00230.00070.01757253.5671

```
# Summarize time-series means of Fama-French portfolio-sort returns
df = out[2]
df['tvalue'] = df['mean']/df['stderr']
df['sharpe'] = np.sqrt(12) * df['mean']/df['std']
print("Fama-French Portfolio-Sorts")
df.round(4)
```

Fama-French Portfolio-Sorts

mean	stderr	std	count	tvalue	sharpe
0.0061	0.0016	0.0423	725	3.8647	0.4972
0.0044	0.0012	0.0315	725	3.7562	0.4833
0.0018	0.0011	0.0308	725	1.5941	0.2051
0.0027	0.0011	0.0301	725	2.4116	0.3103
	mean 0.0061 0.0044 0.0018 0.0027	<pre>mean stderr 0.0061 0.0016 0.0044 0.0012 0.0018 0.0011 0.0027 0.0011</pre>	meanstderrstd0.00610.00160.04230.00440.00120.03150.00180.00110.03080.00270.00110.0301	meanstderrstdcount0.00610.00160.04237250.00440.00120.03157250.00180.00110.03087250.00270.00110.0301725	meanstderrstdcounttvalue0.00610.00160.04237253.86470.00440.00120.03157253.75620.00180.00110.03087251.59410.00270.00110.03017252.4116

```
# Show correlation of returns
```

print('Correlation of FM-Crossectional Risk Premiums and FF-Sorted Portfolio Returns')
pd.concat([out[1].join(out[4]), out[4].T.join(out[3])], axis=0).round(3)

Correlation of FM-Crossectional Risk Premiums and FF-Sorted Portfolio Returns

	reversal	value	smallsize	momentum	Mom (mo)	ST_Rev(mo)	\
reversal	1.000	0.016	0.077	-0.444	-0.388	0.793	
value	0.016	1.000	-0.227	-0.194	-0.169	-0.019	
smallsize	0.077	-0.227	1.000	-0.003	0.133	0.008	
momentum	-0.444	-0.194	-0.003	1.000	0.884	-0.279	
Mom(mo)	-0.388	-0.169	0.133	0.884	1.000	-0.307	
ST_Rev(mo)	0.793	-0.019	0.008	-0.279	-0.307	1.000	
SMB(mo)	0.145	-0.203	0.517	-0.066	-0.047	0.178	
HML(mo)	0.051	0.810	-0.151	-0.207	-0.195	0.013	
	SMB(mo)	HML(mo)					
reversal	0.145	0.051					
value	-0.203	0.810					
smallsize	0.517	-0.151					
momentum	-0.066	-0.207					
Mom(mo)	-0.047	-0.195					
ST_Rev(mo)	0.178	0.013					
SMB(mo)	1.000	-0.150					
HML(mo)	-0.150	1.000					

4.4 Nonlinear regression

4.4.1 Feature transformations

A simple way to directly extend the linear model to accommodate non-linear relationships, using polynomial regression, is to include transformed versions of the predictors in the model, such as a quadratic term or several polynomial functions of the predictors, and use standard linear regression to estimate coefficients in order to produce a non-linear fit. The CAPM predicts that these coefficients on non-linear transformations of beta should be zero.

Raw polynomial terms may be highly correlated with each other: *Orthogonal polynomials* transform the raw data matrix of polynomial terms to another whose columns are a basis of orthogonal terms which span the same column space. For example, regress the second predictor on the first and replace its column with the residuals, then regress the third predictor on the first two and replace its column with the residuals, and so on.

Other feature transformation approaches include:

- · dummy or binary indicator variable
- · categorical variables with two or more levels
- binarization or turning a categorical variable into several binary variables (4)
- Legendre polynomials which are defined as a system of orthogonal polynomials over the interval [-1, 1]
- interaction term constructed by computing the product of the values of the two variables to capture the effect that response of one predictor is dependent on the value of another predictor.

4.4.2 Kernel regression

If there are already a large number of k features, then polynomial transformations, say up to degree d, may be computational expensive since we could be working in $O(k^d)$ dimensional space. Fortunately, many high-dimensional feature mappings, denoted $\phi(x)$, correspond to kernel functions K, where model fitting and prediction calculations only require inner products of these kernel matrices and we never need to explicitly represent vectors in the very high-dimensional feature space. For example, the kernel $K(x, y) = (x^T y + c)^d$, which requires only O(k) to compute, expands to the feature space corresponding with all polynomial terms up to degree d of the features in x and y.

Kernels can be viewed as similarity metrics, that measure how close together the feature maps $\phi(x)$ and $\phi(y)$ are. The radial basis function (RBF), or Gaussian, kernel uses distance in Euclidean space which corresponds to an infinite-dimension feature mapping.

This application of Kernel functions that can be efficiently computed, where only their inner products are needed without ever explicitly computing their corresponding feature vectors in very high-dimensional space, has come to be known as the **kernel trick**.

factors

```
Mkt-RF
                   SMB
                           HMT.
                                    RF
Date
1926-07 0.0296 -0.0256 -0.0243 0.0022
1926-08 0.0264 -0.0117 0.0382 0.0025
1926-09 0.0036 -0.0140 0.0013 0.0023
1926-10 -0.0324 -0.0009 0.0070 0.0032
1926-11 0.0253 -0.0010 -0.0051 0.0031
           . . .
                . . .
. . .
                          . . .
2024-08 0.0161 -0.0355 -0.0113 0.0048
2024-09 0.0174 -0.0017 -0.0259 0.0040
```

2024-10 -0.0097 -0.0101 0.0089 0.0039 2024-11 0.0651 0.0463 -0.0005 0.0040 2024-12 -0.0317 -0.0273 -0.0295 0.0037 [1182 rows x 4 columns]

The concave shape of the fitted kernel regression curve is consistent with the negative average premiums observed for the squared-beta factor in earlier Fama-MacBeth tests.

```
y_train = assets_df[['premiums']].values
X_train = assets_df[['BETA']].values
X_test = np.linspace(0.5, 1.75, 100).reshape(-1, 1)
bandwidth = float((max(X_train) - min(X_train)) * 4 / len(X_train))
fig, ax = plt.subplots(figsize=(10,6))
legend = []
color = 1
for h in [0.25, 0.5, 1, 2]:
    for alpha in [0.01]:
        model = KernelRidge(alpha=alpha, kernel='rbf', gamma=1/(h*bandwidth)**2)
        model.fit(X=X_train, y=y_train)
        y_pred = model.predict(X_test)
        ax.plot(X_test, y_pred, ls='-', color=f"C{color}")
        legend.append(f"h={h*bandwidth:.2f}")
        color += 1
# scatter plot actual
 \hookrightarrow
assets_df.plot(x='BETA', y='premiums', kind='scatter', ax=ax, marker="*", color="C0")
ax.set_ylim(bottom=0)
plt.legend(legend, loc='best', title='bandwidth')
plt.title('Kernel Regression of Risk Premiums on Beta Exposure' +
          f" ({factors.index[0]} to {factors.index[-1]})")
plt.tight_layout()
```

/tmp/ipykernel_1785309/182542393.py:4: DeprecationWarning: Conversion of an array_ with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation... (Deprecated NumPy 1.25.) bandwidth = float((max(X_train) - min(X_train)) * 4 / len(X_train))

References:

H. M. Markowitz, "Portfolio Selection," Journal of Finance 7, 1952, pp. 77-91.

W. F. Sharpe, "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk," Journal of Finance 19, 1964, pp. 425–442.

J. Lintner, "Security Prices, Risk and Maximal Gains from Diversification," Journal of Finance 20, 1965, pp. 587–615, and J. Mossin, "Equilibrium in a Capital Asset Market," Econometrica 34, 1966, pp, 768–783.

Fama, Eugene F.; MacBeth, James D. (1973). "Risk, Return, and Equilibrium: Empirical Tests". Journal of Political Economy. 81 (3): 607–636.

Black, F., and R. Litterman. 1992. "Global Portfolio Optimization." Financial Analysts Journal, vol. 48, no. 5 (September/October): 28-43

He, G., and R. Litterman. 1999. "The Intuition Behind Black-Litterman Model Portfolios." Goldman Sachs Investment Management Series.

R. C. Jones, T. Lim and P. J. Zangari. "The Black-Litterman Model for Structured Equity Portfolios," Journal of Portfolio Management, Vol. 33, No. 2, 2007, pp. 24-43. doi:10.3905/jpm.2007.674791

FRM Part I Exam Book Foundations of Risk Management Ch. 5.

CHAPTER

CONTRARIAN TRADING

Fortune befriends the bold - Emily Dickinson

Contrarian trading strategies are based on the premise of mean reversion, which posits that asset prices tend to revert to their long-term average over time. This idea is integral to various investment strategies, as it suggests that prices that have deviated significantly from historical norms will eventually return to their equilibrium levels. In these strategies, mispricing can occur due to investor overreaction, leading to temporary opportunities for profitable trades. Common approaches, such as pairs trading and statistical arbitrage, capitalize on these price deviations by simultaneously taking opposing positions in correlated assets. This analysis examines the construction of a contrarian trading strategy, evaluates its performance using key risk-adjusted metrics like the Sharpe ratio, and assesses the effects of implementation shortfall and structural breaks in the strategy' s effectiveness over time.

```
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
from tqdm import tqdm
import matplotlib.pyplot as plt
import rpy2.robjects as ro
from rpy2.robjects.packages import importr
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, Benchmarks
from finds.recipes import fractile_split, least_squares
from finds.utils import PyR, row_formatted
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
#%matplotlib qt
```

importr('strucchange') # R package to use

rpy2.robjects.packages.Package as a <module 'strucchange'>

```
# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
bench = Benchmarks(sql, bd)
```

5.1 Mean reversion

The concept of **mean reversion** forms the foundation of many trading strategies. According to the **law of one price**, similar assets should be priced similarly. When this does not hold, traders can exploit the mispricing through **arbitrage** by buying undervalued assets and short-selling overvalued ones, causing the prices to converge. Deviations from expected long-term values, such as yield spreads in fixed income assets, are typically not persistent. **Pairs trading** involves selecting two related securities and trading them to profit from their temporary price divergences. Meanwhile, **statistical arbitrage** (or **stat arb**) relies on complex algorithms to identify and exploit statistical relationships between securities. Although these relationships are not risk-free, stat arb strategies diversify across numerous positions to reduce exposure to risk. However, correlations between asset classes often increase during financial crises due to liquidity constraints and deleveraging, complicating risk management.

We evaluate a **contrarian strategy** based on weekly returns of US stocks, driven by the idea that stock mispricing arises from investor overreaction, as discussed by Lo and Mackinlay (1990). The **alpha** of this strategy can be measured by its **information coefficient** and **volatility** components, as outlined by Grinold (1994). To examine the strategy' s effectiveness over time, we apply tests for **structural breaks** with unknown change points. A key consideration in this analysis is the discrepancy between theoretical portfolio returns, based on assumed execution at decision prices, and actual returns, influenced by factors such as trading costs. The concept of **implementation shortfall** (introduced by Perold in 1988) captures the total cost of executing an investment decision, accounting for both explicit and implicit costs like market impact and opportunity costs.

Weekly returns reversals

Daily returns from CRSP are compounded in to weekly stock returns assuming Wednesday-close to Wednesday-close. This skips over weekend and holiday (which often occur over a long weekend) effects. The backtest starts in January 1974, after an expansion of the stocks universe the previous year, and excludes the smallest market cap quintile (based on NYSE breakpoints) comprising microcap stocks.

Let \overline{r}_t and σ_t be the cross-sectional mean and standard deviation of stock returns in week t. Define $\tilde{r}_t = r_t - \overline{r}_t$ as the vector of demeaned stock returns, and $X_t = -\tilde{r}_t/\sigma_t$ as the vector of normalized scores. In other words, stocks ' "exposures" to (minus) their respective prior week' s returns are standardized to have cross-sectional variance and standard deviation equal to 1.0.

Each week, a portfolio is rebalanced to hold an amount in each stock equal to their respective exposure values divided by the number of holdings $w_t = X_t/n$. hence the portfolio overall has unit exposure to prior week' s returns $w_t^T X_t = 1$ and is dollar-neutral $\sum w_t = \sum X_t/n = 0$.

This portfolio construction approach can more generally incorporate additional signals where X may be a matrix with ones in the first column and standardized signal exposures in other columns. Then each row, except the first, of $W = (X'X)^{-1}X'$ contains stock weights of a long-short characteristic porfolio: a dollar-neutral, minimum-norm (in terms of squared weights) portfolio with unit exposure through long positions in stocks with positive exposure and short positions in stocks with negative exposure to the signal, and zero exposure to the other characteristics.

The portfolio's realized return in the following week t + 1 is

$$W'_t r_{t+1} = \frac{X'_t \tilde{r}_t}{n} + \frac{X'_t \hat{r}_t}{n} = -\frac{\tilde{r}'_t \tilde{r}_{t+1} \sigma_{t+1}}{n \sigma_t \sigma_{t+1}} = -\rho_{t,t+1} \sigma_{t+1}$$

that is the product of the (negative) cross-sectional correlation of stock returns times the amount of cross-sectional stock volatility at week t + 1.

```
weekday = 3  # wednesday close-to-close
bd = BusDay(sql, endweek=weekday)  # Generate weekly cal
begweek = 19740102  # increased stocks coverage in CRSP in Jan 1973
endweek = bd.endwk(CRSP_DATE, -1)
rebaldates = bd.date_range(begweek, endweek, freq='weekly')
retdates = bd.date_tuples(rebaldates)
```

```
june_universe = 0 # to track date when reached a June end to update universe
vear = 0
                 # to track new year to pre-load stocks datas in batch by year
results = []
lagged_weights = Series(dtype=float) # to track "turnover" of stock weights
for rebaldate, pastdates, nextdates in tqdm(zip(
        rebaldates[1:-1], retdates[:-1], retdates[1:]), total=len(rebaldates)-1):
    # screen universe each June: largest 5 size deciles
    d = bd.june_universe(rebaldate)
    if d != june_universe: # need next June's universe
        june_universe = d
                                                 # update universe every June
        univ = crsp.get_universe(june_universe) # usual CRSP universe screen
        univ = univ[univ['decile'] <= 8]
                                                 # drop smallest quintile stocks
    # retrieve new annual batch of daily prices and returns when start new year
    if bd.begyr(rebaldate) != year:
        year = bd.begyr(rebaldate)
        prc = crsp.get_range(dataset='daily',
                             fields=['bidlo', 'askhi', 'prc', 'retx', 'ret'],
                             date_field='date',
                             beg=year,
                             end=bd.offset(bd.endyr(year), 10),
                             cache_mode="rw")
    # get past week's returns, require price at rebalance (decision) date
    past_week = prc[prc.index.get_level_values('date') == rebaldate]['prc']\
        .reset_index() \
        .set_index('permno')\
        .join(crsp.get_ret(*pastdates).reindex(univ.index))\
        .dropna()
    # convert past week's returns to desired standardized portfolio weights
    weights = ((past_week['ret'].mean() - past_week['ret']) /
               (past_week['ret'].std(ddof=0) * len(past_week)))
    # adjust past week's holdings by change stock price
    lagged_weights = lagged_weights.mul(crsp.get_ret(*pastdates, field='retx')\
                                        .reindex(lagged_weights.index)\
                                        .fillna(0) + 1)
    # compute how much to buy (or sell) to achieve desired new portfolio weights
    chg_weights = pd.concat([weights, -lagged_weights], axis=1)\
                    .fillna(0) \setminus
                    .sum(axis=1)
    # calculate total abs weight as denominator for scaling turnover
    total_weight = weights.abs().sum() + lagged_weights.abs().sum()
    # get next week's gross returns
    next_week = crsp.get_ret(*nextdates).reindex(weights.index).fillna(0)
    # get next day's prices to compute one-day slippage cost
    next_day = prc[prc.index.get_level_values('date') ==
                   bd.offset(rebaldate, 1)]
                   .reset_index() \
```

```
.set_index('permno')\
                  .drop(columns='date') \
                  .reindex(chg_weights.index)
   # if no trade next day, then enter position at askhi (buy) or bidlo (sell)
  bidask = next_day['askhi'].where(chg_weights > 0, next_day['bidlo']).abs()
   # spread is relevant askhi or bidlo divided by recorded close, minus 1
  spread = next_day['prc'].where(next_day['prc'] > 0, bidask)\
                           .div(next_day['prc'].abs()) \
                           . sub(1) \setminus
                           .fillna(0)
   # finally, trade_prc is the next day's close, or the relevent askhi or bidlo
  trade_prc = next_day['prc'].where(next_day['prc'] > 0, bidask).fillna(0)
   # drift is next day's trade price with dividends over today's decision price
   # delay (positive is cost) will be chg_weights * drift
  drift = trade_prc.div(next_day['prc'].abs())\
                    .mul(1 + next_day['ret']) \
                    .sub(1)\
                    .fillna(0)
   # exit and enter delay should sum to chg_weights.dot(next_day['ret'])
  exit1 = -lagged_weights.dot(next_day['ret'].reindex(lagged_weights.index).
⇔fillna(0))
  enter1 = weights.dot(next_day['ret'].reindex(weights.index).fillna(0))
   # accumulate weekly calculations
  results.append(DataFrame(
       { 'ret': weights.dot(next_week),
        'exit1': exit1,
        'enter1': enter1,
        'delay': chg_weights.dot(next_day['ret'].fillna(0)), # delay=enter+exit
        'spread': chg_weights.dot(spread),
        'slippage': chg_weights.dot(drift), # total slippage
        'ic': weights.corr(next_week),
        'n': len(next_week),
        'beg': nextdates[0],
        'end': nextdates[1],
        'absweight': np.sum(weights.abs()),
        'turnover': chg_weights.abs().sum()/total_weight,
        'vol': next_week.std(ddof=0) },
       index=[rebaldate]))
   # carry forward to next week as lagged portfolio weights
  lagged_weights = weights
 100% 2659/2660 [01:29<00:00, 29.74it/s]
```

```
# Combine accumulated computations and report
df = pd.concat(results, axis=0)
dates = df.index
df.index = pd.DatetimeIndex(df.index.astype(str))
```

```
df['net'] = df['ret'].sub(df['slippage'])
# Show summary
cols = ['ic','vol', 'ret', 'slippage', 'net', 'exit1', 'enter1', 'delay',
                         'spread', 'turnover']
indexes = ['Information coefficient', 'Cross-sectional Volatility',
                    'Gross return (alpha)', 'Slippage cost', 'Net (of slippage) return',
                    'Exit one day delay ', 'Enter one day delay ', 'Delay cost',
                    'Spread cost', 'Portfolio turnover']
```

Summary of Weekly Mean Reversion Strategy 19740109-20241218

	mean	std
Information coefficient	0.0376	0.1022
Cross-sectional Volatility	0.0536	0.0191
Gross return (alpha)	0.0021	0.0080
Slippage cost	0.0017	0.0047
Net (of slippage) return	0.0005	0.0078
Exit one day delay	-0.0003	0.0029
Enter one day delay	0.0006	0.0036
Delay cost	0.0004	0.0041
Spread cost	0.0013	0.0023
Portfolio turnover	0.7363	0.0407

5.2 Implementation shortfall

Perold (1988) observed that the a paper portfolio based upon a well-known stock rankings system significantly outperformed the actual track record of funds that make use of the system. He defined implementation shortfall as the difference in return between a theoretical portfolio and the implemented portfolio, which captures explicit fees and commissions as well as market impact, delay and opportunity costs.

- Decision price is the price at the time the investment decision was made
- Arrival price is the midquote (mid-point of bid-ask prices) at the time the trader, broker or trading system received the order, or the trade decision is made.
- **Market drift** is the amount of buys (sells) multiplied by the increase (decrease) in execution price relative to the arrival price, due to execution delay.
- Delay is the adverse change in execution price relative to the decision price
- Opportunity costs are the profits lost due to trades that are cancelled or not executed.
- Market impact costs are bid-ask spreads as well as the amount that buying or selling moves the price against the buyer or seller

The **trader**'s **dilemma** refers to the trade-off between market drift and impact: one can trade faster with more impact to minimize market drift, or trade slower to minimize market impact but at the risk of the market drifting away.

In practice, stocks in the CRSP database are not available at finer than daily frequency, so we assume that trades are executed at the next day's closing prices.

If stocks do not trade, we estimate execution prices based on bid-ask spreads. This approach helps address slippage and delays in execution, although transaction costs cannot be directly observed in historical backtests.

Unfortunately, stock prices in CRSP are not available at a finer than daily frequency. We adjust estimated profits for slippage by waiting a full day after the decision price then setting the execution price at the next day's closing price, when stock market exchanges typically experience the most liquidity at the close of a trading dollar. For stocks that did not trade during that day, we assumed the desired buys are executed at the (higher) ask price and sells are executed at the (lower) bid price (in CRSP for such cases, closing bid and ask quotes are recorded and the closing price is set to the negative of the bid-ask average). This approach helps address slippage and delays in execution, although transaction costs cannot be directly observed in historical backtests.

Over the full period, much of the profitability of this version of the strategy appears to be dissipated after considering a one-day execution delay and bid-ask spreads.

5.3 Structural break with unknown changepoint

In a linear regression, the Chow test is commonly used to test for the presence of a structural break in the model at a period known *a priori*; it essentially constructs a test of whether the true coefficients on the independent variable split into two subsets are equal. Welch' s test that two populations have equal means is a special case with no independent variables and only an intercept whose true values are tested in the two time periods. However, when the breakpoints are unknown, these standard tests are not applicable. Andrews (1993) and others have developed alternative tests, based on *supremum statistics*, for identifying changes in mean that occur at unknown points in the time series.

The **R** library strucchange provides tools for detecting structural breaks, and the **rpy2** Python package facilitates integration with R. The PyR wrapper class in the FinDS package facilitates converting Pandas DataFrames to and from R objects and function calls.

```
# Structural Break Test with Unknown Changepoint
# Set up data and formulas for R
Y = df['ret']
formula = ro.Formula('y ~ 1')
formula.environment['y'] = PyR(Y.values).ro
# Call R strucchange routines to compute breakpoint statistics
fstats_r = ro.r['Fstats'](formula, **{'from': 1})  # Fstats at every break
breakpoints_r = ro.r['breakpoints'](formula)
                                                     # candidate breakpoints
confint_r = ro.r['confint'](breakpoints_r, breaks=1) # conf interval for 1 break
sctest_r = ro.r['sctest'](fstats_r, **{'type': 'aveF'})
# Extract output from R results
confint = PyR(confint_r[0]).frame.iloc[0].astype(int) - 1 # R index starts at 1
output = dict(zip(confint.index, df.index[confint]))
                                                          # confidence interval
for k,v in zip(sctest_r.slots['names'][:3], sctest_r[:3]): # significance values
    output[k] = PyR(v).values[0]
output['mean(pre)'] = Y[df.index <= output['breakpoints']].mean()</pre>
output['mean(post)'] = Y[df.index > output['breakpoints']].mean()
fstat = [0] + list(PyR(fstats_r[0]).values) + [0, 0] # pad before and after
```

```
print("Structural break test with unknown changepoint")
DataFrame(output, index=['sctest'])
```

Structural break test with unknown changepoint

```
2.5 % breakpoints 97.5 % statistic p.value method \
sctest 1996-12-04 2001-05-30 2002-11-20 17.588886 0.0 aveF test
mean(pre) mean(post)
sctest 0.003112 0.000969
```

Plot breakpoint F-stats

```
fig, ax = plt.subplots(num=2, clear=True, figsize=(10, 6))
ax.plot(df.index, fstat, color='CO')
argmax = np.nanargmax(fstat)  # where maximum fstat
ax.axvline(df.index[argmax], color='C1')
ax.axvspan(df.index[confint[0]], df.index[confint[2]], alpha=0.3, color='grey')
ax.legend(['F-stat', 'Max-F', 'C.I. of Break Date'])
ax.annotate(
    df.index[argmax].strftime('%Y-%m-%d'), xy=(df.index[argmax], fstat[argmax]))
ax.set_ylabel('F-statistic at Breakpoints')
ax.set_xlabel('Date of Breakpoints')
ax.set_title('Weekly Mean Reversion Structural Break F-stats')
plt.tight_layout()
```


5.4 Performance evaluation

5.4.1 Information coefficient

Grinold (1994) linked the expected alpha of a signal to its information coefficient and an asset's signal score and idiosyncratic volatility: $\alpha = IC \times volatility \times score$.

- IC: The information coefficient can be understood as the correlation between a signal and residual returns. It tells how well forecasts align wih actual returns and is a measure of manager forecasting skill.
- Volatility: The volatility can be understood as an asset' s residual risk. This component allows for forecast alpha to be expressed in units of returns.
- Score: The score is a standardized measure of an asset' s raw signal exposure, and reflects relative expectations about an asset. Standardization, by subtracing the cross-sectional mean and dividing by the cross-sectional standard deviation, allows assets to be compared to one another and over time.

Recall that the weekly reversal portfolio W_t was constructed to be dollar-neutral with exposure equal to 1.0, with weekly profitability $W'_t r_{t+1} = -\rho_{t,t+1} \sigma_{t+1}$. Hence the **IC** of this strategy can be computed using the negative cross-sectional correlation of stock returns over time. The rolling average of alpha and its components—information coefficient and volatility—reveal trends over the strategy' s life. The data show that while volatility fluctuated over time, the **IC** sharply declined after reaching a peak in the mid-1990s, continuing its downward trajectory through 2010.

```
## Plot returns, and rolling avg information coefficient and cross-sectional vol
fig, ax = plt.subplots(num=1, clear=True, figsize=(10, 6))
df['ret'].cumsum().plot(ax=ax, ls='-', color='r', rot=0)
ax.legend(['cumulative returns'], loc='center left')
ax.set_ylabel('cumulative returns')
bx = ax.twinx()
roll = 250  # 250 week rolling average ~ 5 years
```


5.4.2 Risk-adjusted performance measures

In a CAPM equilibrium, no investor can achieve an abnormal return, and each investment yields an identical risk-adjusted return. In the real world, assets may yield a return in excess of, or below, that which fairly compensates for their risk exposure. To assess the strategy's risk-adjusted performance, we employ several key metrics:

- Sharpe ratio slope of the capital market line is the fair equilibrium compensation: $\frac{R_P r_f}{\sigma_P}$
- Treynor ratio uses beta which is an approriate measure of risk for a well-diversified portfolio: $\frac{R_P r_f}{\beta_P}$
- Jensen' s alpha the intercept of a CAPM regression should be zero in equilibrium: $R_P r_f \beta_P (R_M r_f)$
- Appraisal ratio Jensen's alpha scaled by the volatility of residual returns $\frac{\alpha}{\sigma_{P-M}}$
- Sortino ratio focuses on downside risk relative a target required rate of return T: $\frac{R_P T}{\sqrt{\sum_t \min(0, r_t T)^2/N}}$

- Information ratio adjusts performance relative to a benchmark, called the acive return, scaled by the volatility of active returns, called tracking error: $\frac{\hat{R_P} \hat{R_B}}{\sigma_{R_P} R_P}$
- M^2 (Modigliani-squared) imagines that the given portfolio, P, is mixed with a position in T-bills so that the resulting portfolio P* matches the volatility of the market portfolio. Because the market index and portfolio P* have the same standard deviation, their performance may be compared by simply subtracting returns: $R_{P^*} R_M$

```
market = bench.get_series(permnos=['Mkt-RF'], field='ret').reset_index()
breakpoint = BusDay.to_date(output['breakpoints'])
out = dict()
for select, period in zip([dates > 0, dates <= breakpoint, dates > breakpoint],
                           ['Full', 'Pre-break', 'Post-break']):
    res = df[select].copy()
    res.index = dates[select]
    # align market returns and compute market regression beta
    #res['date'] = res.index
    res['mkt'] = [(1 + market[market['date'].between(*dt)]['Mkt-RF']).prod() - 1
                  for dt in res[['beg', 'end']].itertuples(index=False)]
    # model = lm(res['mkt'], res['ret'], flatten=True)
    model = least_squares(data=res, y=['ret'], x=['mkt'], stdres=True)
    # save df summary
    out[f"{period} Period"] = {
        'start date': min(res.index),
        'end date': max(res.index),
        'Sharpe Ratio': np.sqrt(52)*res['ret'].mean()/res['ret'].std(),
        'Average Gross Return': res['ret'].mean(),
        'Std Dev Returns': res['ret'].std(),
        'Market Beta': model.iloc[1],
        'Jensen Alpha (annualized)': model.iloc[0] * 52,
        'Appraisal Ratio': np.sqrt(52) * model.iloc[0] / model.iloc[2],
        'Information Coefficient': res['ic'].mean(),
        'Cross-sectional Vol': res['vol'].mean(),
        'Total Slippage Cost': res['slippage'].mean(),
        'Spread Cost': res['spread'].mean(),
        'Delay Cost': res['delay'].mean(),
        ' Exit Delay Cost': res['exit1'].mean(),
        ' Enter Delay Cost': res['enter1'].mean(),
        'Average Net Return': res['net'].mean(),
        'Portfolio Turnover': res['turnover'].mean(),
        #'Abs Weight': res['absweight'].mean(),
        'Average Num Stocks': int(res['n'].mean()),
    }
```

Display as formatted DataFrame
fmts = dict.fromkeys(['start date', 'end date', 'Average Num Stocks'], '{:.0f}')
print("Subperiod Performance of Weekly Reversals")
row_formatted(DataFrame(out), formats=fmts, default='{:.4f}')

Subperiod Performance of Weekly Reversals

		Full	Period	Pre-break	Period	Post-break	Period	
start	date	19	9740109	1	9740109	20	010606	
							(continu	

			(*************************************	F
end date	20241218	20010530	20241218	
Sharpe Ratio	1.9185	3.6668	0.7300	
Average Gross Return	0.0021	0.0031	0.0010	
Std Dev Returns	0.0080	0.0061	0.0096	
Market Beta	0.0898	0.0686	0.1109	
Jensen Alpha (annualized)	0.1030	0.1566	0.0407	
Appraisal Ratio	1.8537	3.6607	0.6140	
Information Coefficient	0.0376	0.0578	0.0140	
Cross-sectional Vol	0.0536	0.0542	0.0529	
Total Slippage Cost	0.0017	0.0028	0.0003	
Spread Cost	0.0013	0.0023	0.0002	
Delay Cost	0.0004	0.0005	0.0002	
Exit Delay Cost	-0.0003	-0.0004	-0.0001	
Enter Delay Cost	0.0006	0.0010	0.0002	
Average Net Return	0.0005	0.0003	0.0006	
Portfolio Turnover	0.7363	0.7393	0.7328	
Average Num Stocks	1936	1981	1884	

The structural break test identified a statistically significant change in the strategy' s weekly returns around mid-2001. Comparing performance before and after this point reveals a clear decline in the annualized Sharpe ratio and average weekly returns, along with an increase in risk. This shift roughly coincides with the adoption of decimalization by the New York and American Stock Exchanges on January 29, 2001, which resulted in tighter bid-ask spreads. Prior to this change, U.S. markets quoted prices in fractions, with one-sixteenth (1/16) of a dollar being the smallest allowable price increment.

R usage notes:

```
/usr/bin/ld: cannot find -lgfortran
collect2: error: ld returned 1 exit status
```

- check versions are the same: gfortran --version and gcc --version
- select versions to be the same: sudo update-alternatives --config gcc

References:

Andrews, D.W.K., "Tests for parameter instability and structural change with unknown change point", Econometrica, 61 (1993), 821-856.

Grinold, Richard C., 1994, "Alpha is Volatility Times IC Times Score", The Journal of Portfolio Management, Summer 1994, 20(4), 9-16

Lo, Andrew W. and MacKinlay, A. Craig, 1990, "When Are Contrarian Profits Due to Stock Market Overreaction?", The Review of Financial Studies, 3(2), 175–205

Perold, Andre, 1988, "The Implementation Shortfall: Paper versus Reality", The Journal of Portfolio Management, 14(3), 4-9

CHAPTER

SIX

QUANT FACTORS

Quants do it with models - Anonymous

Factor investing is a systematic approach to asset pricing and portfolio management based on the premise that various risk factors drive asset returns. Factor-based investing recognizes that besides broad market exposure, additional systematic risks—such as value, momentum, and volatility—play a crucial role in determining returns. This framework has evolved over time, beginning with early models like the Capital Asset Pricing Model (CAPM) and expanding to multifactor models, behavioral theories, and adaptive market perspectives. This analysis explores the empirical performance of different factor strategies, and the methodologies used to evaluate them. We also examine historical backtests and employ clustering techniques to group similar investment strategies, seeking to identify style factors and construct effective benchmarks.

```
from pandas import DataFrame, Series
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn.cluster import AgglomerativeClustering, KMeans
from scipy.cluster.hierarchy import dendrogram
from sklearn.metrics import silhouette_samples, silhouette_score
from tqdm import tqdm
import warnings
from datetime import datetime
from typing import List, Tuple
from finds.database import SQL, RedisDB
from finds.structured import (BusDay, Stocks, Benchmarks, Signals, SignalsFrame,
                              CRSP, PSTAT, IBES, CRSPBuffer)
from finds.backtesting import BackTest, univariate_sorts
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
if not VERBOSE:
    warnings.simplefilter(action='ignore', category=FutureWarning)
```

```
#%matplotlib qt
```

```
LAST_DATE = CRSP_DATE
# open connections
imgdir = paths['images']
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
```

```
bench = Benchmarks(sql, bd, verbose=VERBOSE)
signals = Signals(user, verbose=VERBOSE)
ibes = IBES(sql, bd, verbose=VERBOSE)
backtest = BackTest(user, bench, 'RF', LAST_DATE, verbose=VERBOSE)
outdir = paths['scratch'] / 'output'
```

6.1 Factor investing

Factor investing posits that asset returns are driven by exposure to specific risk factors, which determine their risk premiums. The market itself is an investable factor, as described by the Capital Asset Pricing Model (CAPM), which asserts that market exposure is the sole driver of asset returns. However, additional factors such as interest rates, value-growth investing, low volatility strategies, and momentum portfolios have been widely recognized. Macroeconomic factors, including inflation and economic growth, also influence asset returns. Assets exhibit varying degrees of exposure to these risk factors, with greater exposure leading to higher risk premiums. Essentially, assets can be viewed as bundles of different factor exposures.

Early multifactor models include Stephen Ross' s (1976) Arbitrage Pricing Theory (APT), which argues that risk factors cannot be arbitraged or diversified away, and Robert Merton' s Intertemporal Capital Asset Pricing Model (ICAPM), which accounts for investors hedging risky positions over multiple time periods. Additionally, behavioral finance theories suggest that factor premiums arise due to investor biases, such as overreaction, underreaction, and bounded rationality.

6.1.1 Adaptive Markets Hypothesis

Andrew Lo's (2004) Adaptive Markets Hypothesis proposes that financial markets are shaped by principles of evolutionary biology rather than fixed physical laws. This perspective suggests that investment performance fluctuates as the financial ecosystem and market conditions evolve. Lo advocates studying financial markets by analyzing different "species" of investors—individuals and institutions that share common traits—and tracking their size, growth, interactions, and behavioral tendencies.

6.1.2 Factor Zoo

John Cochrane (2011) coined the term *Factor Zoo* to highlight the rapid proliferation of newly identified factors in academic research. In response, Green, Hand, and Zhang (2017) systematically examined nearly 100 firm characteristic factors, addressing issues such as microcap stock overweighting and data snooping biases. Their study assessed the predictive power of these factors across different time periods.

Helper functions

```
# to lag yearly characteristics
def as_lags(df, var, key, nlags):
    """Return dataframe with {nlags} of column {var}, same {key} value in row"""
    out = df[[var]].rename(columns={var: 0})  # first col: not shifted
    for i in range(1, nlags):
        prev = df[[key, var]].shift(i, fill_value=0) # next col: shifted i+1
        prev.loc[prev[key] != df[key], :] = np.nan  # require same {key} value
        out.insert(i, i, prev[var])
    return out
```

```
# pipeline to run backtest
def backtest_pipeline(backtest: BackTest,
                      stocks: Stocks,
                      holdings: DataFrame,
                      label: str,
                      benchnames: List[str],
                      suffix: str = '',
                      overlap: int = 0,
                      outdir: str ='',
                      num: int = None) -> DataFrame:
    """wrapper to run a backtest pipeline
    Args:
     backtest: To compute backtest results
      stocks: Where securities returns can be retrieved from (e.g. CRSP)
     holdings: dict (key int date) of Series holdings (key permno)
      label: Label of signal to backtest
     benchnames: Names of benchmarks to attribute portfolio performance
      overlap: Number of overlapping holdings to smooth
     num: Figure num to plot to
    Returns:
     DataFrame of performance returns in rows
    Notes:
     graph and summary statistics are output to jpg and (appended) html
     backtest object updated with performance and attribution data
    .....
    summary = backtest(stocks, holdings, label, overlap=overlap)
    excess = backtest.fit(benchnames)
    backtest.write(label)
   backtest.plot(num=num, label=label + suffix)
    if VERBOSE:
        print(pd.Series(backtest.annualized, name=label + suffix)\
             .to_frame().T.round(3).to_string())
```

6.1.3 Past prices

Momentum and dividend yield data are sourced from CRSP monthly records

```
beg, end = 19251231, LAST_DATE
intervals = {'mom12m': (2,12),
             'mom36m': (13,36),
             'mom6m': (2,6),
             'mom1m': (1,1) }
for label, past in tqdm(intervals.items(), total=len(intervals)):
    out = []
    rebaldates = bd.date_range(bd.endmo(beg, past[1]), end, 'endmo')
    for rebaldate in rebaldates:
       start = bd.endmo(rebaldate, -past[1])
       beq1 = bd.offset(start, 1)
        end1 = bd.endmo(rebaldate, 1-past[0])
        df = crsp.get_universe(end1)
        # require data available as of start month and end month (universe)
        df['start'] = monthly.get_section(dataset='monthly',
                                           fields=['ret'],
                                          date_field='date',
                                          date=start).reindex(df.index)
        df[label] = monthly.get_ret(beg1, end1).reindex(df.index)
        df['permno'] = df.index
        df['rebaldate'] = rebaldate
        df = df.dropna(subset=['start'])
        out.append(df[['rebaldate', 'permno', label]]) # append rows
    out = pd.concat(out, axis=0, ignore_index=True)
    n = signals.write(out, label, overwrite=True)
    beg, end = 19270101, LAST_DATE
    columns = ['chmom', 'divyld', 'indmom']
    out = []
    for rebaldate in bd.date_range(beg, end, 'endmo'):
        start = bd.endmo(rebaldate, -12)
       beg1 = bd.offset(start, 1)
        end1 = bd.endmo(rebaldate, -6)
        beg2 = bd.offset(end1, 1)
        end2 = bd.endmo(rebaldate)
```

```
df = crsp.get_universe(end1)
   df['start'] = monthly.get_section(dataset='monthly',
                                      fields=['ret'],
                                      date_field='date',
                                      date=start).reindex(df.index)
    df['end2'] = monthly.get_section(dataset='monthly',
                                     fields=['ret'],
                                     date_field='date',
                                     date=end2).reindex(df.index)
   df['mom2'] = monthly.get_ret(beg2, end2).reindex(df.index)
   df['mom1'] = monthly.get_ret(beg1, end1).reindex(df.index)
   df['divyld'] = crsp.get_divamt(beg1, end2) \
                       .reindex(df.index)['divamt']\
                       .div(df['cap']) \
                       .fillna(0)
    df['chmom'] = df['mom1'] - df['mom2']
    # 6-month two-digit sic industry momentum (group means of 'mom1')
   df['sic2'] = df['siccd'] // 100
   df = df.join(DataFrame(df.groupby(['sic2'])['mom1'].mean())\
                 .rename(columns={'mom1': 'indmom'}),
                 on='sic2', how='left')
   df['permno'] = df.index
   df['rebaldate'] = rebaldate
    out.append(df.dropna(subset=['start', 'end2'])\
               [['rebaldate', 'permno'] + columns])
out = pd.concat(out, axis=0, ignore_index=True)
for label in columns: # save signal values to sql
    n = signals.write(out, label, overwrite=True)
```

100%| 4/4 [47:03<00:00, 705.93s/it]

```
benchnames = ['Mkt-RF(mo)']
rebalbeg, rebalend = 19260101, LAST_DATE
columns = ['mom12m', 'mom6m', 'chmom', 'indmom', 'divyld', 'mom1m', 'mom36m']
for label in tqdm(columns):
    holdings = univariate_sorts(monthly,
                                 label.
                                 SignalsFrame(signals.read(label)),
                                 rebalbeq,
                                 rebalend,
                                 window=1,
                                 months=[],
                                 maxdecile=8,
                                 minprc=1.0,
                                 pct=(10.0, 90.0),
                                 leverage=leverage.get(label, 1))
    excess = backtest_pipeline(backtest,
                                monthly,
                                holdings,
                                label,
                                benchnames,
                                overlap=0,
                                outdir=outdir,
                                suffix=(leverage.get(label, 1) < 0) * '(-) ')
```



```
b0 = np.linalg.inv(A0.T.dot(A0)).dot(A0.T.dot(y)) # univariate coeffs
sse0 = np.mean((y - A0.dot(b0))**2)
sst0 = np.mean((y - np.mean(y))**2)
if (sst0>0 and sse0>0):
   R0 = (1 - ((sse0 / (n0 - 2)) / (sst0 / (n0 - 1))))
else:
   R0 = 0
y4 = y[4:]
n4 = len(y4)
A4 = np.vstack([x[0:-4], x[1:-3], x[2:-2], x[3:-1], x[4:],
                np.ones(n4)]).T
b4 = np.linalg.inv(A4.T.dot(A4)).dot(A4.T.dot(y4)) # four lagged coeffs
sse4 = np.mean((y4 - A4.dot(b4))**2)
sst4 = np.mean((y4 - np.mean(y4)) * * 2)
if sst4 > 0 and sse4 > 0:
   R4 = (1 - ((sse4 / (n4 - 6)) / (sst4 / (n4 - 1))))
else:
   R4 = 0
return [b0[0],
        sse0 or np.nan,
        (1 -(R0 / R4)) if R0>0 and R4>0 else np.nan]
```

Weekly price responses derived from CRSP daily records.

```
beg, end = 19260101, LAST_DATE
columns = ['beta', 'idiovol', 'pricedelay']
wd = BusDay(sql, endweek='Wed')  # custom weekly trading day calendar
```

```
width = 3*52+1  # up to 3 years of weekly returns
minvalid = 52  # at least 52 weeks required to compute beta
weekly = DataFrame()  # rolling window of weekly stock returns
mkt = DataFrame()  # to queue equal-weighted market returns
out = []  # to accumulate final calculations
```

```
for date in tqdm(wd.date_range(beg, end, 'weekly')):
    df = crsp.get_ret(wd.begwk(date), date)
    mkt = as_rolling(mkt,  # rolling window of weekly mkt returns
                     DataFrame(data=[df.mean()], columns=[date]),
                     width=width)
    weekly = as_rolling(weekly, # rolling window of weekly stock returns
                        df.rename(date),
                        width=width)
    valid = weekly.count(axis=1) >= minvalid # require min number weeks
    if valid.any():
        result = DataFrame([regress(mkt.values[0], y)
                            for y in weekly.loc[valid].values],
                           columns=columns)
        result['permno'] = weekly.index[valid].values
        result['rebaldate'] = date
        if wd.ismonthend(date): # signal value from last week of month
            out.append(result)
out = pd.concat(out, axis=0, ignore_index=True)
for label in columns:
    signals.write(out, label, overwrite=True)
```


6.1.4 Liquidity

Liquidity signals are derived from daily stock return data.

```
beg, end = 19830601, LAST_DATE  # nasdaq/volume from after 1982
columns = ['ill', 'maxret', 'retvol', 'baspread', 'std_dolvol',
                          'zerotrade', 'std_turn', 'turn']
out = []
dolvol = []
turn = DataFrame()  # to average turn signal over rolling 3-months
dt = bd.date_range(bd.begmo(beg,-3), end, 'endmo')  # monthly rebalances
chunksize = 12  # each chunk is 12 months (1 year)
chunks = [dt[i:(i+chunksize)] for i in range(0, len(dt), chunksize)]
```

q = (f"SELECT permno, date, ret, askhi, bidlo, prc, vol, shrout "

(continues on next page)

for chunk in tqdm(chunks):

```
f" FROM {crsp['daily'].key}"
         f" WHERE date>={bd.begmo(chunk[0])}"
            AND date<={chunk[-1]}")  # retrieve a chunk
         f"
    f = crsp.sql.read_dataframe(q).sort_values(['permno', 'date'])
    f['baspread'] = ((f['askhi'] - f['bidlo']) / ((f['askhi'] + f['bidlo']) / 2))
    f['dolvol'] = f['prc'].abs() * f['vol']
    f['turn1'] = f['vol'] / f['shrout']
    f.loc[f['dolvol']>0, 'ldv'] = np.log(f.loc[f['dolvol']>0, 'dolvol'])
    f['ill'] = 1000000 * f['ret'].abs() / f['dolvol']
    for rebaldate in chunk:
                                       # for each rebaldate in the chunk
        grouped = f[f['date'].ge(bd.begmo(rebaldate))
                    & f['date'].le(rebaldate)].groupby('permno')
        df = grouped[['ret']].max().rename(columns={'ret': 'maxret'})
        df['retvol'] = grouped['ret'].std()
        df['baspread'] = grouped['baspread'].mean()
        df['std_dolvol'] = grouped['ldv'].std()
        df['ill'] = grouped['ill'].mean()
        dv = grouped['dolvol'].sum()
        df.loc[dv > 0, 'dolvol'] = np.log(dv[dv > 0])
        df['turn1'] = grouped['turn1'].sum()
        df['std_turn'] = grouped['turn1'].std()
        df['countzero'] = grouped['vol'].apply(lambda v: sum(v==0))
        df['ndays'] = grouped['prc'].count()
        turn = as_rolling(turn, df[['turn1']], width=3)
        df['turn'] = turn.reindex(df.index).mean(axis=1, skipna=False)
        df.loc[df['turn1'].le(0), 'turn1'] = 0
        df.loc[df['ndays'].le(0), 'ndays'] = 0
        df['zerotrade'] = ((df['countzero'] + ((1/df['turn1'])/480000))
                           * 21/df['ndays'])
        df['rebaldate'] = rebaldate
        df = df.reset_index()
        out.append(df[['permno', 'rebaldate'] + columns])
        if rebaldate < bd.endmo(end):</pre>
            df['rebaldate'] = bd.endmo(rebaldate, 1)
            dolvol.append(df[['permno', 'rebaldate', 'dolvol']])
out = pd.concat(out, axis=0, ignore_index=True)
dolvol = pd.concat(dolvol, axis=0, ignore_index=True)
```

100%| 42/42 [25:56<00:00, 37.05s/it]

for label in columns: n = signals.write(out, label, overwrite=True) n = signals.write(dolvol, 'dolvol', overwrite=True)

```
rebalend,
window=1,
months=[],
maxdecile=8,
pct=(10., 90.),
leverage=leverage.get(label, 1))
excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,
outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')</pre>
```


6.1.5 Fundamentals

Fundamental signals are collected from Compustat, using both annual and quarterly datasets.

```
# retrieve annual, keep [permno, datadate] with non null prccq if any
fields = ['sic', 'fyear', 'ib', 'oancf', 'at', 'act', 'che', 'lct',
          'dlc', 'dltt', 'prcc_f', 'csho', 'invt', 'dp', 'ppent',
          'dvt', 'ceq', 'txp', 'revt', 'cogs', 'rect', 'aco', 'intan',
          'ao', 'ap', 'lco', 'lo', 'capx', 'emp', 'ppegt', 'lt',
          'sale', 'xsga', 'xrd', 'fatb', 'fatl', 'dm']
df = pstat.get_linked(dataset='annual',
                      fields=fields,
                      date_field='datadate',
                      where=(f"indfmt = 'INDL' "
                             f" AND datafmt = 'STD'"
                             f" AND curcd = 'USD' "
                             f" AND popsrc = 'D'"
                             f" AND consol = 'C'"
                             f" AND datadate <= {end//100}31"))</pre>
fund = df.sort_values(['permno', 'datadate', 'ib'])\
         .drop_duplicates(['permno', 'datadate'])\
         .dropna(subset=['ib'])
fund.index = list(zip(fund['permno'], fund['datadate']))
                                                           # multi-index
fund['rebaldate'] = bd.endmo(fund.datadate, numlaq)
```

```
# precompute, and lag common metrics: mve_f avg_at sic2
fund['sic2'] = np.where(fund['sic'].notna(), fund['sic'] // 100, 0)
fund['fyear'] = fund['datadate'] // 10000  # can delete this
fund['mve_f'] = fund['prcc_f'] * fund['csho']
```

```
lag = fund.shift(1, fill_value=0)
lag.loc[lag['permno'] != fund['permno'], fields] = np.nan
fund['avg_at'] = (fund['at'] + lag['at']) / 2
```

```
lag2 = fund.shift(2, fill_value=0)
lag2.loc[lag2['permno'] != fund['permno'], fields] = np.nan
lag['avg_at'] = (lag['at'] + lag2['at']) / 2
```

```
fund['bm'] = fund['ceq'] / fund['mve_f']
fund['cashpr'] = (fund['mve_f'] + fund['dltt'] - fund['at'])/fund['che']
fund['depr'] = fund['dp'] / fund['ppent']
fund['dy'] = fund['dvt'] / fund['mve_f']
fund['ep'] = fund['ib'] / fund['mve_f']
fund['lev'] = fund['lt'] / fund['mve_f']
fund['quick'] = (fund['act'] - fund['invt']) / fund['lct']
fund['rd_sale'] = fund['xrd'] / fund['sale']
fund['rd_mve'] = fund['xrd'] / fund['mve_f']
fund['realestate'] = ((fund['fatb'] + fund['fatl']) /
                      np.where(fund['ppegt'].notna(),
                               fund['ppegt'], fund['ppent']))
fund['salecash'] = fund['sale'] / fund['che']
fund['salerec'] = fund['sale'] / fund['rect']
fund['saleinv'] = fund['sale'] / fund['invt']
fund['secured'] = fund['dm'] / fund['dltt']
fund['sp'] = fund['sale'] / fund['mve_f']
fund['tang'] = (fund['che'] + fund['rect'] * 0.715 + fund['invt'] * 0.547
                + fund['ppent'] * 0.535) / fund['at']
```

```
# changes: agr chcsho chinv egr gma egr grcapx grltnoa emp invest lgr
fund['agr'] = (fund['at'] / lag['at'])
fund['chcsho'] = (fund['csho'] / lag['csho'])
fund['chinv'] = ((fund['invt'] - lag['invt']) / fund['avg_at'])
fund['egr'] = (fund['ceq'] / lag['ceq'])
fund['gma'] = ((fund['revt'] - fund['cogs']) / lag['at'])
fund['grcapx'] = (fund['capx'] / lag2['capx'])
fund['grltnoa'] = (((fund['rect']
                      + fund['invt']
                      + fund['ppent']
                      + fund['aco']
                      + fund['intan']
                      + fund['ao']
                      - fund['ap']
                      - fund['lco']
                      - fund['lo'])
                     / (lag['rect']
                       + lag['invt']
                        + lag['ppent']
                        + lag['aco']
                        + lag['intan']
```

```
+ lag['ao']
                        - lag['ap']
                        - lag['lco']
                        - lag['lo']))
                    - ((fund['rect']
                        + fund['invt']
                        + fund['aco']
                        - fund['ap']
                        - fund['lco'])
                       - (lag['rect']
                          + lag['invt']
                          + lag['aco']
                          - lag['ap']
                          - lag['lco']))) / fund['avg_at']
fund['hire'] = ((fund['emp'] / lag['emp']) - 1).fillna(0)
fund['invest'] = (((fund['ppegt'] - lag['ppegt'])
                   + (fund['invt'] - lag['invt'])) / lag['at'])
fund['invest'] = fund['invest'].where(fund['invest'].notna(),
                                       ((fund['ppent'] - lag['ppent'])
                                       + (fund['invt'] - lag['invt'])) / lag['at'])
fund['lgr'] = (fund['lt'] / lag['lt'])
fund['pchdepr'] = ((fund['dp'] / fund['ppent']) / (lag['dp'] / lag['ppent']))
fund['pchgm_pchsale'] = (((fund['sale'] - fund['cogs']) / (lag['sale'] - lag['cogs']))
                         - (fund['sale'] / lag['sale']))
fund['pchquick'] = (((fund['act'] - fund['invt']) / fund['lct'])
                    / ((lag['act'] - lag['invt']) / lag['lct']))
fund['pchsale_pchinvt'] = ((fund['sale'] / lag['sale']) - (fund['invt'] / lag['invt
 <p']))</p>
fund['pchsale_pchrect'] = ((fund['sale'] / lag['sale']) - (fund['rect'] / lag['rect
<p']))</p>
fund['pchsale_pchxsga'] = ((fund['sale'] / lag['sale']) - (fund['xsga'] / lag['xsga
<p']))
fund['pchsaleinv'] = ((fund['sale'] / fund['invt']) / (lag['sale'] / lag['invt']))
fund['sgr'] = (fund['sale'] / lag['sale'])
```

```
fund['chato'] = ((fund['sale'] / fund['avg_at']) - (lag['sale'] / lag['avg_at']))
fund['chpm'] = (fund['ib'] / fund['sale']) - (lag['ib'] / lag['sale'])
fund['pchcapx'] = fund['capx'] / lag['capx']
```

```
# compute signals with alternative definitions: acc absacc cfp
fund['_acc'] = (((fund['act'] - lag['act']) - (fund['che'] - lag['che']))
                - ((fund['lct'] - lag['lct']) - (fund['dlc'] - lag['dlc'])
                   - (fund['txp'] - lag['txp']) - fund['dp']))
fund['cfp'] = ((fund['ib'] - (((fund['act'] - lag['act']) - (fund['che'] - lag['che
→']))
                              - ((fund['lct'] - lag['lct'])
                                 - (fund['dlc'] - lag['dlc'])
                                 - (fund['txp'] - lag['txp'])
                                 - fund['dp']))) / fund['mve_f'])
g = fund['oancf'].notnull()
fund.loc[g, 'cfp'] = fund.loc[g, 'oancf'] / fund.loc[g, 'mve_f']
fund.loc[g, '_acc'] = fund.loc[g, 'ib'] - fund.loc[g, 'oancf']
fund['acc'] = fund['_acc'] / fund['avg_at']
fund['absacc'] = abs(fund['_acc']) / fund['avg_at']
fund['pctacc'] = fund['_acc'] / abs(fund['ib'])
```

```
h = (fund['ib'].abs() <= 0.01)
fund.loc[h, 'pctacc'] = fund.loc[h, '_acc'] / 0.01</pre>
```

```
for label in columns:
    signals.write(fund, label, overwrite=True)
```

```
rebalbeg, rebalend = 19700101, LAST_DATE
benchnames = ['Mkt-RF(mo)'] #['Mom'] #['ST_Rev(mo)']
                                                        #
for label in tqdm(columns):
    holdings = univariate_sorts(monthly,
                                 label.
                                 SignalsFrame(signals.read(label)),
                                 rebalbeg,
                                 rebalend,
                                 window=12,
                                 months=[6],
                                 maxdecile=8,
                                 pct=(10., 90.),
                                 leverage=leverage.get(label, 1))
    excess = backtest_pipeline(backtest,
                                monthly,
                                holdings,
                                label,
                                benchnames,
                                overlap=0,
                                outdir=outdir,
                                suffix=(leverage.get(label, 1) < 0) * '(-) ')
```

44% 20/45 [29:40<39:56, 95.88s/it] /home/terence/Dropbox/github/datascience-notebooks/finds/backtesting/backtest.py:310: RuntimeWarning: More than. 20 figures have been opened. Figures created through the pyplot interface. (`matplotlib.pyplot.figure`) are retained until explicitly closed and may. consume too much memory. (To control this warning, see the rcParam `figure.max_ open_warning`). Consider using `matplotlib.pyplot.close()`. fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, clear=True, 100% 45/45 [1:09:08<00:00, 92.19s/it]

Fundamental signals from Compustat Quarterly

```
# compute current and lagged: scf sacc roaq nincr cinvest cash rsup chtx
lag = fund.shift(1, fill_value=0)
lag.loc[lag['permno'] != fund['permno'], fields] = np.nan
fund['_saleq'] = fund['saleq']
fund.loc[fund['_saleq'].lt(0.01), '_saleq'] = 0.01
```

```
fund['nincr'] = lags['nincr'][np.arange(8)].sum(axis=1)
```

```
for label in columns:
    signals.write(fund, label, overwrite=True)
```

```
rebalbeg, rebalend = 19700101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns):
    holdings = univariate_sorts(monthly,
                                 label,
                                 SignalsFrame(signals.read(label)),
                                 rebalbeg,
                                 rebalend,
                                 window=3,
                                 months=[],
                                 maxdecile=8,
                                 pct=(10., 90.),
                                 leverage.get(label, 1))
    excess = backtest_pipeline(backtest,
                                monthly,
                                holdings,
                                label,
                                benchnames,
                                overlap=0,
                                outdir=outdir,
                                suffix='(-)'*(leverage.get(label, 1) < 0))</pre>
```


columns = ['chfeps', 'chnanalyst', 'disp']

6.1.6 Earnings Estimates

Earnings estimate signals are drawn from IBES data, including fiscal year 1 projections, long-term growth forecasts, and announcement dates linked to CRSP daily prices and Compustat quarterly.

```
out['disp'] = out['stdev'] / abs(out['meanest'])
out.loc[abs(out['meanest']) < 0, 'disp'] = out['stdev'] / 0.01</pre>
```

```
lag1 = out.shift(1, fill_value=0)
f1 = (lag1['permno'] == out['permno'])
out.loc[f1, 'chfeps'] = out.loc[f1, 'meanest'] - lag1.loc[f1, 'meanest']
```

```
lag3 = out.shift(3, fill_value=0)
f3 = (lag3['permno'] == out['permno'])
out.loc[f3, 'chnanalyst'] = out.loc[f3, 'numest']-lag3.loc[f3, 'numest']
```

```
for label in columns:
    signals.write(out, label, overwrite=True)
```

```
rebalbeg, rebalend = 19760101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns):
   holdings = univariate_sorts(monthly,
                                 label.
                                 SignalsFrame(signals.read(label)),
                                 rebalbeg,
                                 rebalend,
                                 window=3,
                                 months=[],
                                 maxdecile=8,
                                 pct=(10., 90.),
                                 leverage=leverage.get(label, 1))
    excess = backtest_pipeline(backtest,
                                monthly,
                                holdings,
                                label,
                                benchnames,
                                overlap=0,
```


IBES Long-term Growth signals

```
columns = ['fgr5yr']
```

1319938

```
rebalbeg, rebalend = 19760101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns):
    holdings = univariate_sorts(monthly,
                                label,
                                SignalsFrame(signals.read(label)),
                                rebalbeg,
                                rebalend,
                                window=3,
                                months=[],
                                maxdecile=8,
                                pct=(10., 90.),
                                leverage.get(label, 1))
    excess = backtest_pipeline(backtest,
                               monthly,
                               holdings,
                               label,
```


Announcement date in Quarterly, linked to CRSP daily

```
columns = ['ear', 'aeavol']
```

```
# aeavol is avg volume in 3-day window over 20-day average ten-days prior
actual = crsp.get_window(dataset='daily',
```

```
field='vol',
                          date_field='date',
                          permnos=fund['permno'],
                          dates=fund['rdq'],
                          left=-1,
                          right=1)
normal = crsp.get_window(dataset='daily',
                          field='vol',
                          date_field='date',
                          permnos=fund['permno'],
                         dates=fund['rdq'],
                          left=-30,
                          right=-11,
                          avg=True)
fund['aeavol'] = normal['vol'].values
```

```
signals.write(fund, 'ear', overwrite=True)
signals.write(fund, 'aeavol', overwrite=True)
```

968315

```
rebalbeg, rebalend = 19700101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns):
    holdings = univariate_sorts(monthly,
                                 label,
                                 SignalsFrame(signals.read(label)),
                                 rebalbeg,
                                 rebalend,
                                 window=3,
                                 months=[],
                                 maxdecile=8,
                                 pct=(10., 90.),
                                 leverage=leverage.get(label, 1))
    excess = backtest_pipeline(backtest,
                                monthly,
                                holdings,
                                label,
                                benchnames,
                                overlap=0,
                                outdir=outdir,
                                suffix=(leverage.get(label, 1) < 0) * '(-) ')
```

```
100%| 2/2 [02:07<00:00, 63.88s/it]
```



```
beg, end = 19760101, LAST_DATE
monthnum = lambda d: ((d//10000)-1900)*12 + ((d//100)%100) - 1
```

```
.sort_values(['permno', 'statpers', 'fpedats'])\
          .drop_duplicates(['permno', 'statpers'])
out['monthnum'] = monthnum(out['statpers'])
out = out.set_index(['permno', 'monthnum'], drop=False)
out['sfeq'] = np.nan
```

IBES Fiscal Year 1 linked to IBES price history

```
beg, end = 19760101, LAST_DATE
```

```
# join on [permno, statpers], and reindex on [permno, rebaldate]
out = out.join(hist[['price']], how='left').reset_index()
out['rebaldate'] = bd.endmo(out['statpers'])
out = out.set_index(['permno', 'rebaldate'])
out['sfe'] = out['meanest'].div(out['price'].abs())
n = signals.write(out.reset_index(), 'sfe', overwrite=True)
```



```
IBES Fiscal Quarter 1, linked to Quarterly
```

```
columns = ['sue']
numlag = 4
end = LAST_DATE
```

0

sue with ibes surprise and price
fund['sue'] = (summ['actual'] - summ['medest']) / summ['price'].abs()

```
# sue with ibes surprice and compustat quarterly price
fund['sue'] = fund['sue'].where(
    fund['sue'].notna(), (summ['actual'] - summ['medest']) / fund['prccq'].abs())
```

```
# sue with lag(4) difference in compustat quarterly and price
lag = fund.shift(4, fill_value=0)
fund['sue'] = fund['sue'].where(
    fund['sue'].notna() | (lag['permno'] != fund['permno']),
    ((fund['ibq'] - lag['ibq']) / (fund['prccq'] * fund['cshoq']).abs()))
```

signals.write(fund.reset_index(drop=True), 'sue', overwrite=True)

1089089

6.1.7 Backtests

All backtests are conducted on univariate, dollar-neutral spreads between the top and bottom deciles of a given characteristic. Stocks are value-weighted within each decile, excluding the smallest quintile of NYSE-listed firms by market capitalization. Spread portfolios are rebalanced monthly, with fundamental data lagged in the standard manner—six months for annual data and four months for quarterly data.

Each backtest generates a time series of cumulative spread portfolio and market index returns, along with metrics such as monthly turnover rates and the number of long and short positions. Results are ranked based on Welch' s *t*-statistic, which tests for differences in mean returns before 2002 and after 2003. This aligns with findings from Green et al. (2017) and others, who observed a significant decline in the predictive power of many factors after this period.

Additionally, we compute the **maximum drawdown** for each strategy, defined as the largest peak-to-trough loss in cumulative returns before a new peak is reached. This measure provides insight into the worst-case historical performance of each strategy.

```
def maximum_drawdown(x: Series, is_price_level: bool = False) -> Series:
    """Compute max drawdown (max loss from previous high) period and returns"""
    cumsum = np.log(1 + x).cumsum()
    cummax = cumsum.cummax()
    end = (cummax - cumsum).idxmax()
```

```
beg = cumsum[cumsum.index <= end].idxmax()
dd = cumsum.loc[[beg, end]]
return np.exp(dd)</pre>
```

```
zoo = backtest.read().sort_values(['begret', 'permno'])
r = []
rets = []
for label in zoo.index:
   perf = backtest.read(label)
    rets.append(perf['ret'].rename(label))
    excess = { 'ret': backtest.fit(['Mkt-RF(mo)']) }
    excess['annualized'] = backtest.annualized
    excess['dd'] = maximum_drawdown(backtest.perf['excess'])
    post = { 'ret': backtest.fit(['Mkt-RF(mo)'],
                                beg=20020101).copy() }
    post['annualized'] = backtest.annualized.copy()
    s = label + ('(-)' if leverage.get(label, 1) < 0 else '')</pre>
    r.append(DataFrame({
                     'Start': excess['ret'].index[0],
        #
        'Sharpe Ratio': excess['annualized']['sharpe'],
        'Alpha': excess['annualized']['alpha'],
        'Appraisal Ratio': excess['annualized']['appraisal'],
        'Avg Ret': excess['ret']['excess'].mean(),
        'Vol': excess['ret']['excess'].std(ddof=0),
        'Welch-t': excess['annualized']['welch-t'],
        'Appraisal2002': post['annualized']['appraisal'],
        'Ret2002': post['ret']['excess'].mean(),
        'Drawdown': (excess['dd'].iloc[1]/excess['dd'].iloc[0]) - 1,
    }, index=[s]))
df = pd.concat(r, axis=0).round(4).sort_values('Welch-t')
```

pd.set_option("display.max_colwidth", None, 'display.max_rows', None)
df #.sort_values('Sharpe Ratio', ascending=False)

	Sharpe Ratio	Alpha	Appraisal Ratio	Avg Ret	Vol	\
pchsale pchrect	-0.1169	-0.0121	-0.1368	-0.0009	0.0256	,
mom1m(-)	0.3820	0.0568	0.3132	0.0061	0.0543	
bm	0.2233	0.0339	0.2141	0.0029	0.0457	
bm_ia	0.2413	0.0216	0.1611	0.0027	0.0393	
agr(-)	0.2493	0.0480	0.4320	0.0025	0.0341	
pchsale_pchinvt	0.2434	0.0229	0.2392	0.0019	0.0276	
chmom	0.4007	0.0509	0.3114	0.0058	0.0494	
pchsaleinv	0.2446	0.0197	0.2238	0.0018	0.0254	
lev	0.0261	-0.0002	-0.0012	0.0004	0.0488	
absacc(-)	0.0380	0.0212	0.1520	0.0005	0.0414	
ер	0.2831	0.0639	0.4231	0.0037	0.0452	
chcsho(-)	0.5415	0.0725	0.7490	0.0047	0.0298	
invest(-)	0.2479	0.0450	0.3776	0.0025	0.0356	
acc(-)	0.3358	0.0377	0.3500	0.0030	0.0312	
indmom	0.3518	0.0643	0.3708	0.0053	0.0512	
sp	0.2303	0.0329	0.2220	0.0028	0.0428	
pchdepr	0.0617	0.0048	0.0506	0.0005	0.0273	
egr(-)	0.3157	0.0539	0.5072	0.0030	0.0327	
sgrvol	0.1918	0.0082	0.0562	0.0024	0.0440	

1.0	0 4600 0 4500	0 6550		0.0700
moml2m	0.4699 0.1532	0.6550	0.0101	0.0/32
realestate	0.1084 0.0508	0.3445	0.0014	0.0458
mom36m(-)	0.1778 0.0191	0.0953	0.0031	0.0601
cashpr(-)	0.2962 0.0475	0.3843	0.0031	0.0363
divyld	-0.0470 0.0377	0.2455	-0.0008	0.0552
aeavol(-)	0.2160 0.0381	0.3568	0.0020	0.0320
ill(-)	0.3323 0.0504	0.4209	0.0034	0.0350
dy	-0.0473 0.0382	0.2262	-0.0008	0.0569
chatoia	0.2567 0.0292	0.2994	0.0021	0.0282
chinv(-)	0.3601 0.0506	0.4775	0.0033	0.0314
retvol(-)	0 1306 0 1269	0 6067	0 0029	0 0772
mayret(-)	0 1807 0 1144	0 6383	0 0034	0.0646
maxiec()	0.0910 0.0030	0.0303	0.0007	0.0202
pricederay(-)	0.0819 0.0030	0.0302	0.0007	0.0292
chieps	0.4/41 0.08/3	0.5567	0.0040	0.0303
Staci(-)	0.2132 0.0613	0.5020	0.0024	0.0391
ldlovol(-)	-0.0126 0.0514	0.2623	-0.0003	0.0697
mve_ia(-)	0.1372 0.0025	0.0244	0.0012	0.0302
chpmia	0.1598 0.0266	0.2003	0.0018	0.0385
disp(-)	0.3267 0.1025	0.6640	0.0048	0.0508
cfp	0.2466 0.0511	0.3691	0.0029	0.0412
stdacc(-)	0.1414 0.0431	0.3801	0.0014	0.0354
pchsale_pchxsga	-0.0415 -0.0053	-0.0480	-0.0004	0.0320
grltnoa	0.1595 0.0208	0.1793	0.0015	0.0335
sfe	0.2535 0.0763	0.4340	0.0039	0.0532
pchgm_pchsale	0.0106 -0.0035	-0.0337	0.0001	0.0297
cfp ia	-0.1814 -0.0331	-0.2501	-0.0020	0.0386
mom6m	0.3185 0.1085	0.5001	0.0064	0.0682
beta	0.0807 -0.0733	-0.3806	0.0022	0.0906
dolvol	0.1131 0.0017	0.0161	0.0010	0.0315
nincr	0.3410 0.0242	0.2728	0.0026	0.0259
cinvest(-)	-0.4026 -0.0447	-0.3815	-0.0039	0.0339
cash	0.2751 0.0143	0.1021	0.0035	0.0438
chtx	0.2162 0.0211	0.1716	0.0022	0.0358
salecash	0 0170 0 0199	0 1773	0 0002	0 0342
rd mye	0 1412 0 0114	0 0716	0 0019	0.0463
chranalyst	0.0875 0.0021	0.0710	0.0015	0.0255
far5yr	0 0537 -0 0485	-0 2487	0.0010	0.0640
sup	0.0337 0.0403	0.2407	0.0010	0.0317
nahanny in	-0 1942 -0 0262	-0.2112	-0.0020	0.0250
pencapx_ia	-0.1942 -0.0202	-0.2113	-0.0020	0.0339
baapmaad	0.0708 - 0.0005	-0.0425	0.0010	0.0440
Daspieau	-0.0851 -0.1251	-0.5790	-0.0020	0.0004
penquiek	-0.0755 -0.0085	-0.0918	-0.0006	0.0268
rd_sale	-0.0530 -0.0146	-0.0945	-0.000/	0.0446
pctacc(-)	0.11/4 0.0248	0.2364	0.0011	0.0312
secured (-)	0.0364 0.0337	0.2793	0.0004	0.03/6
std_turn	0.0539 -0.0490	-0.2884	0.0009	0.0582
std_dolvol	-0.0176 0.0007	0.0068	-0.0002	0.0315
rsup	0.1644 0.0237	0.1859	0.0018	0.0369
depr	0.0696 -0.0201	-0.1534	0.0008	0.0422
zerotrade(-)	0.1663 -0.0351	-0.1939	0.0031	0.0644
sgr	0.0225 -0.0138	-0.1111	0.0002	0.0372
salerec	0.2028 0.0405	0.3172	0.0022	0.0378
roaq	0.2858 0.0610	0.4358	0.0035	0.0422
turn	0.1420 -0.0412	-0.2184	0.0027	0.0669
ear	0.1909 -0.0019	-0.0185	0.0018	0.0329
quick	0.0603 -0.0241	-0.1670	0.0008	0.0467

gma hire tang grcapx	0.1117 0.0201 -0.1215 -0.0324 0.2328 0.0149 -0.2991 -0.0421	0.1363 0.0014 0.0426 -0.2790 -0.0012 0.0353 0.1259 0.0024 0.0351 -0.4188 -0.0026 0.0298
saleinv	0.1401 0.0364	0.3711 0.0013 0.0312
chempia	0.0698 -0.0084	-0.0768 0.0007 0.0331
lgr	-0.0573 -0.0162	-0.1720 -0.0005 0.0279
	Welch-t Appraisal2002	Ret2002 Drawdown
pchsale_pchrect	-3.1904 -0.6200	-0.0047 -0.8591
mom1m(-)	-2.7253 -0.3205	-0.0017 -0.7606
bm	-2.3167 -0.3007	-0.0019 -0.7651
bm_ia	-2.2583 -0.2118	-0.0012 -0.7011
agr(-)	-2.1174 0.0200	-0.0008 -0.5362
pchsale_pchinvt	-2.1010 -0.1343	-0.0008 -0.4944
chmom	-1.9158 -0.0634	0.0010 -0.6159
pchsaleinv	-1.7332 -0.1297	-0.0003 -0.4843
lev	-1.6920 -0.3338	-0.0035 -0.8698
absacc(-)	-1.6578 -0.1800	-0.0027 -0.7840
ep	-1.4698 0.2254	0.0007 -0.6637
chcsho(-)	-1.4605 0.5437	0.0027 -0.3253
invest(-)	-1.3936 0.1366	0.0001 -0.4268
acc(-)	-1.3486 0.0828	0.0011 -0.3966
indmom	-1.3305 0.2007	0.0020 -0.6892
sp	-1.2746 -0.0372	0.0004 -0.5726
pchdepr	-1.2651 -0.1436	-0.0011 -0.6979
egr(-)	-1.2025 0.3026	0.0013 -0.3384
sgrvol	-1.1672 -0.2804	0.0001 -0.6935
mom12m	-1.1488 0.5282	0.0058 -0.9670
realestate	-1.1485 0.2426	-0.0007 -0.6426
mom36m(-)	-1.0582 -0.06/3	-0.0000 -0.7280
cashpr(-)	-1.0456 0.0969	0.0014 -0.4235
divyld	-1.00/1 -0.1090	-0.0032 -0.9650
aeavol(-)	-0.9899 0.2019	0.0006 -0.5583
1 I I (-)	-0.8358 0.4068	0.0022 -0.6150
ay	-0.7118 -0.0399	
chinu()	-0.6659 0.1788	0.0012 -0.5082
chillo (-)	-0.6656 0.2930	0.0023 -0.2747
retvor(-)	-0.6457 0.5100	0.0009 - 0.7990
maxiet (-)	-0.5210 -0.1441	
chfore	-0 5669 0 5971	0.0002 0.0195
chieps stdof(_)	-0 5562 0 4330	0.0040 0.2909
idiovol(-)	-0.4946 0.3285	-0.0021 -0.9875
m_{VP} ia $(-)$	-0 4777 -0 0749	0.0021 - 0.5605
chomia	-0.4676 0.1088	0.0009 - 0.6303
disp(-)	-0.3850 0.7927	0.0039 -0.5300
cfp	-0 3045 0 2216	0 0024 -0 5708
stdacc(-)	-0.2576 0.3357	0.0011 -0.5056
pchsale pchysga	-0.2270 -0.1208	-0.0007 -0.7740
grltnoa	-0.2164 0.1620	0.0012 -0.5122
sfe	-0.1952 0.3435	0.0034 -0.7417
pchqm pchsale	-0.1935 0.0227	-0.0002 -0.5895
cfp_ia	-0.1337 -0.3944	-0.0022 -0.8613
mom6m	-0.1285 0.5223	0.0060 -0.9885
beta	-0.1225 -0.4818	0.0016 -0.9586

dolvol	-0.1030	0.1331	0.0009	-0.7624	
nincr	-0.0929	0.3654	0.0024	-0.4061	
cinvest(-)	0.0387	-0.3699	-0.0039	-0.9587	
cash	0.0479	0.0796	0.0036	-0.7076	
chtx	0.1783	0.3262	0.0025	-0.4779	
salecash	0.2132	0.2326	0.0005	-0.7463	
rd_mve	0.2541	0.0853	0.0024	-0.7868	
chnanalyst	0.2806	0.1425	0.0010	-0.5443	
fgr5yr	0.3620	-0.0030	0.0020	-0.8761	
sue	0.3800	0.6849	0.0048	-0.4062	
pchcapx_ia	0.4287	-0.0762	-0.0013	-0.8750	
roavol	0.4640	0.0964	0.0019	-0.7812	
baspread	0.4727	-0.5203	-0.0005	-0.9539	
pchquick	0.5811	-0.0879	0.0001	-0.7586	
rd_sale	0.6114	-0.0313	0.0005	-0.8706	
pctacc(-)	0.6117	0.2568	0.0019	-0.3803	
secured(-)	0.6222	0.3922	0.0014	-0.6406	
std_turn	0.6391	-0.2285	0.0024	-0.8064	
std_dolvol	0.7879	0.0782	0.0008	-0.5301	
rsup	0.8444	0.4582	0.0032	-0.5353	
depr	0.8697	0.0616	0.0024	-0.6522	
zerotrade(-)	0.8812	-0.0779	0.0054	-0.8344	
sgr	0.9168	0.0682	0.0018	-0.7062	
salerec	0.9547	0.5194	0.0040	-0.6761	
roaq	0.9856	0.7546	0.0054	-0.4532	
turn	0.9945	-0.0831	0.0054	-0.8291	
ear	1.0453	0.2661	0.0033	-0.5423	
quick	1.2014	0.0018	0.0033	-0.7923	
gma	1.2529	0.4330	0.0039	-0.6364	
hire	1.4328	0.0264	0.0011	-0.8262	
tang	1.4843	0.3043	0.0047	-0.7361	
grcapx	1.5208	-0.1320	-0.0004	-0.8714	
saleinv	1.9087	0.6251	0.0040	-0.4900	
chempia	2.0683	0.3022	0.0038	-0.7319	
lgr	2.2177	0.2295	0.0024	-0.8286	

```
X = pd.concat(rets, join='outer', axis=1).dropna()
X = X/X.std()  # standardize to unit variance
corr = X.corr()
dist = np.sqrt(1 - corr)
```

6.2 Cluster analysis

We use historical backtest returns as input features for cluster analysis, enabling the identification of peer benchmarks for different investment strategies. Strategies that exhibit similar return patterns tend to load on the same "style" factors and should be evaluated against one another.

The correlation between two return series is closely related to their Euclidean distance. When returns are standardized to have unit variance, the squared Euclidean norm between two series x and y can be expressed as:

$$d^2 = \sum_i (x_i - y_i)^2 = \sum_i x_i^2 + \sum_i y_i^2 - 2\sum_i x_i y_i = n + n - 2n\rho$$

since $\sum_i x_i^2 = \sum_i y_i^2 = n$, and $\rho = \sum_i x_i y_i / n$, where ρ represents the correlation between the two series. This

relationship allows correlation to be rewritten as:

$$\rho=1-\frac{d^2}{2n}$$

6.2.1 Hiearchical clustering

Hierarchical clustering builds a tree-like structure by iteratively merging clusters based on their similarity. Different linkage methods determine how clusters are merged:

- Single Linkage: Merges clusters based on the closest points, leading to elongated clusters.
- Complete Linkage: Uses the farthest points between clusters, producing compact, spherical clusters.
- Average Linkage: Merges clusters based on the average distance between all points, balancing between single and complete linkage.
- Ward' s Method: Minimizes within-cluster variance, resulting in clusters of similar size and shape.

```
fig, ax = plt.subplots(figsize=(10, 12))
plt.title("Hierarchical Clustering Dendrogram")
# Create linkage matrix and then plot the dendrogram
# scikit-learn: "Plot Hierarchical Clustering Dendrogram"
counts = np.zeros(model.children_.shape[0])
n_samples = len(model.labels_)
# create the counts of samples under each node
for i, merge in enumerate(model.children_):
    current\_count = 0
    for child_idx in merge:
        if child_idx < n_samples:</pre>
            current_count += 1 # leaf node
        else:
            current_count += counts[child_idx - n_samples]
    counts[i] = current_count
linkage_matrix = np.column_stack([model.children_, model.distances_, counts])\
                   .astype(float)
# Plot the corresponding dendrogram
dendrogram(linkage_matrix, orientation='left', labels=dist.columns, leaf_font_size=10)
plt.tight_layout()
```


Hierarchical Clustering Dendrogram

6.2.2 K-means clustering

K-means is a widely used unsupervised learning algorithm that partitions data into K non-overlapping clusters. The process involves:

- 1. Selecting an initial number of clusters K.
- 2. Randomly assigning initial cluster centroids.
- 3. Iteratively assigning each data point to the nearest centroid.
- 4. Recalculating centroids based on the mean of points in each cluster.
- 5. Repeating until convergence.

K-means minimizes the within-cluster sum of squared distances, making it well-suited for datasets where clusters are roughly spherical and of similar size.

The Elbow Method is commonly used to determine the optimal number of clusters by plotting the within-cluster sum of squares for different values of K. The optimal K is where the graph forms an "elbow," indicating diminishing returns from adding more clusters.

```
# Selecting number of centers with elbow method
inertias = []
n_clusters = list(range(2, 32))
for n_cluster in n_clusters:
    kmeans = KMeans(n_clusters=n_cluster, random_state=0, n_init="auto").fit(X.T)
    inertias.append(kmeans.inertia_)
plt.figure(figsize=(10, 6))
plt.plot(n_clusters, inertias, 'bx-')
plt.slabel('Number of clusters')
plt.ylabel('Inertia')
plt.title('Elbow Method using Inertia')
plt.show()
```


Silhouette Analysis provides an alternative evaluation method by measuring how well-separated clusters are. The silhouette score compares cohesion (similarity within a cluster) to separation (difference from other clusters), with values ranging from -1 to 1. Higher scores indicate better-defined clusters, and the number of clusters maximizing the average silhouette score is considered optimal.

```
# scikit-learn: "Selecting the number of clusters with silhouette analysis on KMeans_
⇔clustering"
scores = \{\}
fig, ax = plt.subplots(ncols=4, nrows=int(np.round(len(n_clusters)/4)), figsize=(10,_
⇒15))
ax = ax.flatten()
for n_cluster, ax1 in zip(n_clusters, ax):
    clusterer = KMeans(n_clusters=n_cluster, n_init='auto', random_state=10)
    cluster_labels = clusterer.fit_predict(X)
    # The silhouette_score gives the average value for all the samples.
    # This gives a perspective into the density and separation of the formed
    # clusters
    silhouette_avg = silhouette_score(X, cluster_labels)
    print("For n_clusters =", n_cluster,
          "The average silhouette_score is :", silhouette_avg)
    scores[n_cluster] = silhouette_avg
    # Compute the silhouette scores for each sample
    sample_silhouette_values = silhouette_samples(X, cluster_labels)
    ax1.set_title(f"{n_cluster} clusters: {silhouette_avg:.4f}")
    ax1.set_xlim([-0.1, .4])
    ax1.set_ylim([0, len(X) + (n_cluster + 1) * 10])
    y_lower = 10
    for i in range(n_cluster):
        # Aggregate the silhouette scores for samples belonging to
        # cluster i, and sort them
        ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
        ith_cluster_silhouette_values.sort()
        size_cluster_i = ith_cluster_silhouette_values.shape[0]
        y_upper = y_lower + size_cluster_i
        color = cm.nipy_spectral(float(i) / n_cluster)
        ax1.fill_betweenx(
            np.arange(y_lower, y_upper),
            0,
            ith_cluster_silhouette_values,
            facecolor=color,
            edgecolor=color,
            alpha=0.7,
        )
        # Label the silhouette plots with their cluster numbers at the middle
        ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
        # Compute the new y_lower for next plot
        y_lower = y_upper + 10 # 10 for the 0 samples
    ax1.set_ylabel("Cluster label")
```

```
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
plt.suptitle("Average silouette scores by number of clusters", fontweight="bold")
plt.tight_layout()
```

plt.show()

```
For n_clusters = 2 The average silhouette_score is : 0.12182520066378914
For n_clusters = 3 The average silhouette_score is : 0.12298455415373394
For n_clusters = 4 The average silhouette_score is : 0.06615920430551211
For n_clusters = 5 The average silhouette_score is : 0.062263203571522374
For n_clusters = 6 The average silhouette_score is : 0.05360073591339586
For n_clusters = 7 The average silhouette_score is : 0.043399891992264766
For n_clusters = 8 The average silhouette_score is : 0.01865524677198136
For n_clusters = 9 The average silhouette_score is : 0.013274893057161832
For n_clusters = 10 The average silhouette_score is : 0.014055548382794032
For n_clusters = 11 The average silhouette_score is : 0.013559353746117705
For n_clusters = 12 The average silhouette_score is : 0.019298192911994215
For n_clusters = 13 The average silhouette_score is : 0.029625503519344714
For n_clusters = 14 The average silhouette_score is : 0.011439750949169072
For n_clusters = 15 The average silhouette_score is : 0.010659851615184082
For n_clusters = 16 The average silhouette_score is : 0.010407061841623768
For n_clusters = 17 The average silhouette_score is : 0.017270693194767258
For n_clusters = 18 The average silhouette_score is : 0.01369810719820829
For n_clusters = 19 The average silhouette_score is : 0.016630208862778856
For n clusters = 20 The average silhouette score is : 0.019144464436508506
For n_clusters = 21 The average silhouette_score is : 0.005561006651677671
For n_clusters = 22 The average silhouette_score is : 0.006354452315559386
For n_clusters = 23 The average silhouette_score is : 0.005722873193904617
For n_clusters = 24 The average silhouette_score is : 0.006108458004688574
For n_clusters = 25 The average silhouette_score is : 0.004737653906771348
For n_clusters = 26 The average silhouette_score is : 0.007702186499322102
For n_clusters = 27 The average silhouette_score is : 0.009876913034750879
For n_clusters = 28 The average silhouette_score is : 0.008628670013359775
For n_clusters = 29 The average silhouette_score is : 0.00908060151674441
For n_clusters = 30 The average silhouette_score is : 0.01149725260958716
For n_clusters = 31 The average silhouette_score is : 0.009230744450581462
```


Series(scores).plot.bar(title='Average Silhouette Score by Number of Clusters')

Heatmap of strategy correlations

A heatmap visualizes the distances between strategy returns (y-axis) and their respective cluster centers (x-axis), with clusters determined using the K-Means algorithm (K=20). The darkest-colored values appear along the jagged diagonal, indicating that strategy returns are closest to the centers of their assigned clusters. This visualization aids in identifying common style factors and risk exposures across different investment strategies.

```
kmeans = KMeans(n_clusters=13, random_state=0, n_init="auto").fit(X.T)
Z = DataFrame(kmeans.transform(X.T), index=X.columns)
Z['distance'] = np.min(Z.iloc[:, :kmeans.n_clusters], axis=1)
Z['cluster'] = np.argmin(Z.iloc[:, :kmeans.n_clusters], axis=1)
Z = Z.sort_values(['cluster', 'distance']) # group by cluster and distance to center
```

```
fig, ax = plt.subplots(figsize=(10, 9))
plt.title('Distance of Factor Returns to Cluster Centers')
plt.imshow(Z.iloc[:, :kmeans.n_clusters], cmap='hot', aspect=1/3)
plt.yticks(range(len(Z)), labels=Z.index, fontsize=8)
plt.xticks(range(kmeans.n_clusters), labels=range(kmeans.n_clusters), fontsize=8)
plt.xlabel('Cluster')
plt.colorbar(label='distance from cluster centers')
plt.tight_layout()
plt.show()
```


References:

Stephen Ross, 1976, "The arbitrage theory of capital asset pricing", Journal of Economic Theory, Volume 13, Issue 3, December 1976, Pages 341-360

Robert C. Merton, 1973, "An Intertemporal Capital Asset Pricing Model", Econometrica, Vol. 41, No. 5 (Sep., 1973), pp. 867-887

Jeremiah Green, John R. M. Hand, X. Frank Zhang, 2017, "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns", The Review of Financial Studies, Volume 30, Issue 12, December 2017, Pages 4389–4436

John H. Cochrane, 2011, "Presidential Address: Discount Rates", The Journal of Finance, Volume 66, Issue 4, August 2011, Pages 1047-1108

Lo, Andrew W. (2004). "The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective". Journal of Portfolio Management. 5. 30: 15–29

Andrew Lo, 2017, "Adaptive Markets: Financial Evolution at the Speed of Thought" .

Andrew Ang, 2014, "Asset Management: A Systematic Approach to Factor Investing"

FRM Part II Exam Book Investment Management Ch. 1-3.

Wharton Research Data Services.

CHAPTER

SEVEN

EVENT STUDY

All strange and terrible events are welcome, but comforts we despise - Cleopatra

Event studies are a fundamental tool in financial research used to assess how specific events impact stock returns, see Mackinlay (1997). These events, such as mergers, earnings announcements, or regulatory changes, can cause deviations in stock prices known as abnormal returns. By comparing stock returns to a market benchmark, event studies help analysts determine whether an event had a statistically significant impact on a company's stock price.

This notebook explores key methodologies used in event studies, including the computation of abnormal returns, cumulative abnormal returns, and buy-and-hold abnormal returns. Additionally, it delves into the announcement effect, which examines how stock prices react immediately around an event, and investigates potential pre- and post-announcement drifts. To account for overlapping event windows and cross-sectional dependencies, we apply statistical corrections based on the work of Kolari et al. (2010, 2018).

We also introduce frequency domain methods, leveraging the Fourier Transform and Convolution Theorem to efficiently compute cross-correlations between time series. Finally, we address the multiple testing problem, ensuring that statistical inferences remain valid when analyzing a large number of events.

```
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from scipy.stats import norm
from statsmodels.stats.multitest import multipletests
from tqdm import tqdm
import warnings
from finds.database import SQL, RedisDB
from finds.structured import BusDay, Benchmarks, Stocks, CRSP, PSTAT
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
if not VERBOSE:
    warnings.simplefilter(action='ignore', category=FutureWarning)
#%matplotlib qt
```

```
# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
keydev = PSTAT(sql, bd, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
bench = Benchmarks(sql, bd, verbose=VERBOSE)
imgdir = paths['images'] / 'events'
```

7.1 Abnormal returns

Event studies analyze how stock returns respond to specific company events, such as mergers or public announcements. These studies examine deviations from expected returns, known as **abnormal returns**, in the days surrounding the news release.

Let the event date be t = 0, and define the stock return for firm *i* at time *t* as $R_{i,t}$. To provide a benchmark, we also compute the returns of a relevant market or sector index, denoted $R_{m,t}$. Then:

- Abnormal returns (AR): The deviation of a stock' s return from the market return: $AR_{i,t} = R_{i,t} R_{m,t}$
- Average abnormal returns (AAR): The mean abnormal return across all firms: $AR_t = \frac{1}{N} \sum_{i=1}^{N} AR_{i,t}$
- Cumulative average abnormal returns (CAR): The sum of average abnormal returns over time: $CAR_T = \sum_t AAR_t$
- Buy-and-hold average abnormal returns (BHAR): The average buy-and-hold abnormal returns across firms: $BHAR_T = \frac{1}{N} \sum_{i}^{N} \left[\prod_{t} (1 + AR_{i,t}) - \prod_{t} (1 + R_{m,t}) \right]$

7.1.1 Announcement effect

The **announcement effect** refers to the immediate stock price movement around a news release. The nature of this reaction varies:

- An efficient reaction occurs when the stock price stabilizes at its new level after the event.
- An under-reaction happens when the price continues trending in the same direction post-announcement.
- An over-reaction is when the price initially spikes but then reverses course.

In historical data, pinpointing the exact announcement time can be challenging. To account for this uncertainty, studies often consider an **announcement window**, typically covering one day before and after the event.

- A pre-announcement drift may indicate information leakage before the official announcement.
- A post-announcement drift may suggest that investors either under- or over-reacted to the news.

When analyzing multiple events, researchers often aggregate returns for stocks with the same announcement date. However, Kolari et al. (2010) caution that even small correlations among abnormal returns can lead to significant over-rejection of the null hypothesis of zero abnormal returns. To correct for this cross-sectional dependence, the unbiased estimate of abnormal return variance is:

$$\sigma^2 = \frac{s^2}{n}(1+(n-1)\hat{r})$$

where:

- \hat{r} is the average sample cross-sectional correlation of residuals,
- s^2 is the (biased) cross-sectional standard deviation of abnormal returns.

In the next subsection, we explore how cross-correlations can be be measured efficiently using the Fourier Transform technique from the field of signal processing.

7.1.2 FinDS eventstudy module

The eventstudy module in the FinDS package provides a comprehensive tool for analyzing announcement effects.

```
from finds.backtesting import EventStudy
eventstudy = EventStudy(user, bench=bench, stocks=crsp, max_date=CRSP_DATE)
```

```
# event window parameters
left, right, post = -1, 1, 21
end = bd.offset(CRSP_DATE, left - post)
beg = 20020101
mindays = 1000
```

• Retrieve event dates and company roles from CapitalIQ Key Developments

```
# sorted list of all eventids and roleids, provided in keydev class
events = sorted(keydev.event.index)
roles = sorted(keydev.role.index)
```

```
# str formatter to pretty print descriptions, provided in keydev class
eventformat = lambda e, r: "{event} ({eventid}) {role} [{roleid}]"\
    .format(event=keydev.event[e], eventid=e, role=keydev.role[r], roleid=r)
```

Helper functions to retrieve size decile of universe stocks

```
class Universe:
    """Helper to lookup prevailing size decile of universe stocks"""
   def __init__(self, beg: int, end: int, stocks: Stocks, annual: bool = False):
        # whether to offset previous month or year end when lookup
        self.offset = stocks.bd.endyr if annual else stocks.bd.endmo
        # populate dictionary, keyed by permno and date, with size decile
        self.decile = dict()
       date_range = stocks.bd.date_range(start=self.offset(beg, -1), end=end,
                                          freq=12 if annual else 'e')
        for date in date_range:
            univ = crsp.get_universe(date)
            for permno in univ.index:
                self.decile[(permno, date)] = univ.loc[permno, 'decile']
   def __getitem__(self, item):
       """Returns size decile, else 0 if not universe stock"""
        permno, date = item
        return self.decile.get((permno, self.offset(date, -1)), 0)
univ = Universe(beg=beg, end=end, stocks=crsp)
```

- Define the event study pipeline:
 - 1. retrieve announcement dates for the desired event and test period
 - 2. filter the universe
 - 3. retrieve announcement window daily stock returns, and compute event study metrics

```
# run event study after screening stock universe
def event_pipeline(eventstudy: EventStudy,
                   beg: int,
                   end: int,
                   eventid: int,
                   roleid: int,
                   left: int,
                   right: int,
                   post: int) -> DataFrame:
    """helper to screen stock universe, and merge keydev events and crsp daily"""
    # Retrieve announcement dates for this event
    df = keydev.get_linked(
        dataset='keydev',
        date_field='announcedate',
        fields=['keydevid',
                'keydeveventtypeid',
                'keydevtoobjectroletypeid'],
        where=(f"announcedate >= {beg} "
               f" and announcedate <= {end}"</pre>
               f" and keydeveventtypeid = {eventid} "
               f" and keydevtoobjectroletypeid = {roleid}")) \
               .drop_duplicates(['permno', 'announcedate'])\
               .set_index(['permno', 'announcedate'], drop=False)
    # Require universe size decile
    df['size'] = [univ[row.permno, row.announcedate] for row in df.itertuples()]
    # Call eventstudy to compute daily abnormal returns, with named label
    rows = eventstudy(label=f"{eventid} {roleid}",
                      df=df[df['size'].qt(0)],
                      left=left,
                      right=right,
                      post=post,
                      date_field='announcedate')
    return df.loc[rows.to_records(index=False).tolist()] # restrict successful rows
```

Examine and show subsample plots for events that exhibited large post-announcement drift

```
events_list = [[93, 1], [232, 1]] # largest drift returns
for i, (eventid, roleid) in enumerate(events_list):
    df = event_pipeline(eventstudy,
                        eventid=eventid,
                        roleid=roleid,
                        beg=beg,
                        end=end,
                        left=left,
                        right=right,
                        post=post)
    halfperiod = np.median(df['announcedate'])
    sample = {'First Half': df['announcedate'].lt(halfperiod).values,
              'Second Half': df['announcedate'].ge(halfperiod).values,
              'Large': df['size'].le(5).values,
              'Small': df['size'].gt(5).values,
              'ALL': [],
    fig, axes = plt.subplots(nrows=2, ncols=2, clear=True, figsize=(12, 6),
```

```
sharex=True, sharey=True)
axes = axes.flatten()
for ifig, (label, rows) in enumerate(sample.items()):
    if ifig >= len(axes):
        plt.show()
        fig, ax = plt.subplots(clear = True, figsize=(10, 5))
    else:
        ax = axes[ifig]
    bhar = eventstudy.fit(model='sbhar', rows=rows)
    eventstudy.plot(model='sbhar',
                    title=eventformat(eventid, roleid) + f" ({label})",
                    drift=True,
                    ax=ax,
                    fontsize=(8 if ifig < len(axes) else 10),</pre>
                    c=f"C{i*5+ifig}")
    plt.tight_layout()
    plt.savefig(imgdir / (label + f"{eventid}_{roleid}.jpg"))
plt.show()
```


Examine and show subsample plots for events that exhibited large announcement window returns

```
events_list = [[80,1], [26,1]] # largest announcement window returns
for i, (eventid, roleid) in enumerate(events_list):
    #eventid, roleid = 50, 1
    #eventid, roleid = 83, 1
    df = event_pipeline(eventstudy,
                        eventid=eventid,
                        roleid=roleid,
                        beg=beg,
                        end=end,
                        left=left,
                        right=right,
                        post=post)
    halfperiod = np.median(df['announcedate'])
    sample = {'FirstHalf': df['announcedate'].lt(halfperiod).values,
              'SecondHalf': df['announcedate'].ge(halfperiod).values,
              'Large': df['size'].le(5).values,
              'Small': df['size'].gt(5).values,
              'ALL': []}
    fig, axes = plt.subplots(nrows=2, ncols=2, clear=True, figsize=(12, 6),
                             sharex=True, sharey=True)
    axes = axes.flatten()
    for ifig, (label, rows) in enumerate(sample.items()):
        if ifig >= len(axes):
            plt.show()
            fig, ax = plt.subplots(clear = True, figsize=(10, 5))
        else:
            ax = axes[ifig]
        bhar = eventstudy.fit(model='sbhar', rows=rows)
        eventstudy.plot(model='sbhar',
                        title=eventformat(eventid, roleid) + f" ({label})",
                        drift=False,
                        ax=ax,
                        c=f"C{i*5+ifig}")
        plt.tight_layout()
        plt.savefig(imgdir / (label + f"{eventid}_{roleid}.jpg"))
```


7.2 Fourier transforms

7.2.1 Cross-sectional Correlations

Kolari et al. (2018) address event windows that **partially overlap in calendar time**. To account for this overlap and cross-sectional correlation effects, they adjust the variance estimate as follows:

$$\tau^2 = \frac{s^2}{n}m(1+\tau(n-1)\rho)$$

where:

- m =length of the event window,
- τ = proportion of overlapping days between event windows,

• ρ = ratio of average covariance between abnormal returns to their variance.

If all events share the same calendar date, such that all event windows fully overlap, then ρ simplifies to the average cross-sectional correlation of residuals during the estimation period.

To estimate ρ , we assume cross-sectional correlations arise mainly from time misalignment. By shifting and aligning event window residuals for each stock pair to maximize their correlation, we approximate ρ as the average of these best-aligned correlations. We leverage the methodology of Fourier transforms and convolutions to effeciently compute all pairs of correlations.

7.2.2 Fast Fourier Transforms

Fourier transforms allow us to express a time series (or any function) as a sum of sinusoids. Given a function over an interval of length (L), we can decompose it into sinusoidal components with periods (L, L/2, L/3,) etc. Each component has:

- A magnitude (scale factor)
- A phase (shift)
- A frequency (inverse of the period)

This means that any function can be represented as a weighted sum of sinusoidal waves. By using complex numbers, we can efficiently store and manipulate these sinusoidal components in Fourier space rather than the original time domain. The **Fast Fourier Transform (FFT)** is an efficient algorithm for computing the **Discrete Fourier Transform (DFT)**. The DFT converts a sequence of time-domain data points into its sinusoidal coefficients, converting it from real space to frequency space. The **Inverse Fast Fourier Transform** reconstructs the original function.

7.2.3 Convolution Theorem

Convolution is a mathematical operation that combines two functions (f and g) to produce a third function (f * g), expressing how one function modifies the other:

$$(f\ast g)(t)=\int_{-\infty}^{\infty}f(s)g(t-s)ds$$

In **one dimension**, convolution acts like a **moving average**, smoothing a time series by weighting neighboring values. In **two dimensions**, it applies filters (e.g., blurring, edge detection) in image processing.

In signal processing, frequency-domain techniques efficiently compute cross-correlations across various time shifts. Instead of directly computing correlations for every possible lag (which is computationally expensive), we leverage the **Convolution Theorem**. A key property of Fourier transforms is that convolution in the time domain corresponds to multiplication in the frequency domain.

$$\mathcal{F}\{f(t)\ast g(t)\}=\mathcal{F}\{f(t)\}\mathcal{F}\{g(t)\}$$

Since direct convolution requires $O(N^2)$ operations, computing it directly is slow. However:

- 1. We can first apply the Fast Fourier Transform (FFT) to convert both functions into frequency space in $O(N \log N)$ time.
- 2. In frequency space, convolution is just element-wise multiplication of Fourier coefficients, which is very fast.
- 3. We then apply the Inverse FFT (IFFT) to obtain the final result in $O(N \log N)$ time.

```
# best alignment and cross-correlation using convolution theorem method
from scipy.fft import rfft, irfft
def fft_align(X):
   """Find best alignment, max cross-correlation and indices of all pairs of columns"
→""
   def _normalize(X: np.ndarray) -> np.ndarray:
        """Helper to demean columns and divide by norm"""
       X = X - np.mean(X, axis=0)
       X = X / np.linalq.norm(X, axis=0)
       return X
   N, M = X.shape
   X = np.pad(_normalize(X), [(0, N), (0,0)]) # normalize and zero pad
   Y = rfft(np.flipud(X), axis=0)
                                             # FFT of all series flipped
   X = rfft(X, axis=0)
                                             # FFT of all original series
   corr, disp, cols = [], [], []
                                             # to accumulate results
   for col in range(M-1): # at each iter: compute column col * all remaining columns
       conv = irfft(X[:, [col]] * Y[:, col+1:], axis=0) # inverse of product of FFT
       corr.extend(np.max(conv, axis=0))
       shift = (N/2) + 1
                                 # displacement location relative to center
       disp.extend(((np.argmax(conv, axis=0) + shift) % N) - shift + 1)
       cols.extend([(col, j) for j in range(col+1, M)])
   return corr, disp, cols
```

```
Z = np.random.uniform(size=(10000, 1))
fft_align(np.hstack((Z[:-1], Z[1:])))
```

```
([0.9998967076018761], [1], [(0, 1)])
```

```
#fft_align(np.hstack(np.hstack((Z[:-5], Z[5:])))[:,2:], Z[:-2])
fft_align(np.hstack((np.hstack((Z[:-5], Z[5:]))[:-2], Z[7:])))
```

```
([0.9997503757740265, 0.9993943885689067, 0.9996440440611477],
[5, 7, 2],
[(0, 1), (0, 2), (1, 2)])
```

7.3 Multiple testing

When testing a huge number of null hypotheses, we are bound to get some very testing small p-values by chance. **Data snooping** occurs when the analyst fits a great number of models to a dataset. When explanatory variables are selected using the data, t-ratios and F-ratios will be too large, thus overstating the importance of variables in the model. **Multiple testing** adjusts the hurdle for significance because some tests will appear significant by chance. The downside of doing this is that some truly significant strategies might be overlooked because they did not pass the more stringent hurdle. This is the classic tension between Type I errors and Type II errors. The Type I error is the false discovery (investing in an unprofitable trading strategy). The Type II error is missing a truly profitable trading strategy.

The **Family-Wise Error Rate** (**FWER**) controls the probability of making **at least one** false discovery. If all *m* null hypotheses are independent and true:

$$FWER(\alpha) = 1 - (1 - \alpha)^m$$

To maintain a stricter significance threshold, the **Bonferroni correction** divides the confidence level by the number of tests:

$$\alpha' = \frac{\alpha}{m}$$

This ensures that across multiple tests, the probability of making even **one** false discovery remains below α . However, it can be overly conservative.

The **false discovery rate (FDR)** controls the proportion of false positives among rejected hypotheses. The **Benjamini-Hochberg (BH) procedure** is a widely used method for FDR control. Instead of adjusting individual significance thresholds like Bonferroni, BH ranks p-values and sets a significance cutoff where false discoveries remain within acceptable limits.

Compute BHAR and CAR of all events

```
restart_event = 0 \# 75, 1
for i, eventid in tqdm(enumerate(events), total=len(events)):
    if eventid <= restart_event: # kludge to resume loop
        continue
    for roleid in roles:
        # retrieve all returns observations of this eventid, roleid
        df = event_pipeline(eventstudy,
                            beg=beg,
                            end=end,
                            eventid=eventid,
                            roleid=roleid,
                            left=left,
                            right=right,
                            post=post)
        if df['announcedate'].nunique() < mindays: # require min number of dates
            continue
        # compute both BHAR and CAR averages, then plot and save
        bhar = eventstudy.fit(model='sbhar')
        car = eventstudy.fit(model='scar')
        #eventstudy.write()
        eventstudy.write_summary()
        #print(eventstudy.label, eventid, roleid)
        fig, axes = plt.subplots(1, 2, clear=True, figsize=(12, 4), num=1)
        eventstudy.plot(model='sbhar', ax=axes[0],
                        title=eventformat(eventid, roleid) + ' BHAR',
                        fontsize=8, vline=[right])
        eventstudy.plot(model='scar', ax=axes[1],
                        title=eventformat(eventid, roleid) + ' CAR',
                        fontsize=8, vline=[right])
        plt.tight_layout()
        plt.savefig(imgdir / f"{eventid}_{roleid}.jpg")
```

```
45%| 52/116 [20:04:50<22:46:35, 1281.17s/it]/home/terence/Dropbox/

-github/data-science-notebooks/finds/recipes/filters.py:28: RuntimeWarning:_

-invalid value encountered in divide

X = X / np.linalg.norm(X, axis=0)

53%| 62/116 [23:27:18<18:41:48, 1246.45s/it]/home/terence/Dropbox/

-github/data-science-notebooks/finds/recipes/filters.py:28: RuntimeWarning:_

-invalid value encountered in divide

X = X / np.linalg.norm(X, axis=0)
```


Summarize BHAR's of all events

Post-Announcement Drift

		beg	end	Λ
event	role			
Shelf Registration Filings	Target	20020102	20241127	
Special/Extraordinary Shareholders Meeting	Target	20040106	20241127	
Name Changes	Target	20020430	20241121	
Changes in Company Bylaws/Rules	Target	20020430	20241127	
Product-Related Announcements	Target	20020102	20241127	
M&A Transaction Closings	Target	20020108	20241125	
Auditor Changes	Target	20020103	20241127	
Executive/Board Changes - Other	Target	20020101	20241127	
Executive Changes - CFO	Target	20020102	20241127	
Business Expansions	Target	20020102	20241127	
Special Calls	Target	20030211	20241127	
Executive Changes - CEO	Target	20020102	20241127	
M&A Transaction Cancellations	Buyer	20020107	20241122	
Client Announcements	Target	20020102	20241127	
Follow-on Equity Offerings	Target	20020102	20241127	

Investor Activian Tanget Communication	Toward	20020402 20241127
Estrationa Colla	Target	20020402 20241127
	Taryet	20020108 20241127
Strategic Alliances	larget	20020102 20241127
Lawsuits & Legal Issues	Target	20020101 20241127
Investor Activism - Activist Communication	Target	20020102 20241126
Corporate Guidance – Lowered	Target	20020102 20241126
Private Placements	Buyer	20020103 20241127
M&A Transaction Announcements	Seller	20020101 20241127
M&A Transaction Closings	Buyer	20020101 20241127
Company Conference Presentations	Target	20041101 20241127
M&A Calls	Target	20031027 20241125
Index Constituent Adds	Target	20020102 20241127
Buyback Transaction Closings	Target	20020103 20241123
MA Rumors and Discussions	Target	20020918 20241127
Charobalder/Analyst Calls	Target	20020310 20241127
	Taryet	20020108 20241127
Labor-related Announcements	larget	20020111 20241121
Business Reorganizations	Target	20020102 20241122
Conferences	Participant	20070125 20241127
M&A Transaction Announcements	Buyer	20020101 20241127
Delayed SEC Filings	Target	20020102 20241127
Earnings Release Date	Target	20020411 20241127
M&A Transaction Closings	Seller	20020101 20241127
M&A Transaction Announcements	Target	20020102 20241126
Discontinued Operations/Downsizings	Target	20020102 20241127
Fixed Income Offerings	Target	20020101 20241127
Corporate Guidance - New/Confirmed	Target	20020101 20241127
Privato Placements	Target	20020101 20211127
Socking Acquisitions (Investments	Target	20020103 20241127
Deard Monting	Target	20020103 20241123
Board Meeting	Target	20020204 20241120
Considering Multiple Strategic Alternatives	larget	20040324 20241122
Announcements of Sales/Trading Statement	Target	20020102 20241119
Debt Financing Related	Target	20020102 20241127
Annual General Meeting	Target	20020122 20241127
Seeking to Sell/Divest	Target	20020110 20241125
End of Lock-Up Period	Target	20020115 20241126
Buyback Tranche Update	Target	20020107 20241127
Announcements of Earnings	Target	20020101 20241127
Analyst/Investor Day	Target	20040204 20241126
Investor Activism - Proxy/Voting Related	Target	20020107 20241126
Delistings	Target	20020102 20241127
Impairments/Write Offs	Target	20020408 20241126
Corporate Guidance - Raised	Target.	20020103 20241126
Index Constituent Drops	Target	20020107 20241126
Buyback - Change in Plan Terms	Target	20020102 20241126
Buyback Transaction Appouncements	Target	20020102 20211120
bayback fransaction Announcements	iaiget	20020102 20241120
		rows dave)
event	role	10w3 days (
Sholf Pogistration Filings	Targot	16919 5666
Special/Extraordinary Sharoholdors Monting	Target	6183 3353
Name Changes	Target	1563 1320
Changes in Company Dulant (Dulas	Target	1000 1025
Changes in Company Bylaws/Rules	larget	2/034 4025
Product-Related Announcements	larget	20989/ 5/6/
M&A Transaction Closings	Target	1508 1234
Auditor Changes	Target	9563 3888
Executive/Board Changes - Other	Target	222258 5766

			(continued from previous page)
Executive Changes - CFO	Target	22715	5544
Business Expansions	Target	58224	5709
Special Calls	Target	16738	4501
Executive Changes - CEO	Target	17079	5269
M&A Transaction Cancellations	Buyer	1508	1258
Client Announcements	Target	212795	5761
Follow-on Equity Offerings	Target	21917	5219
Investor Activism - Target Communication	Target	5248	3059
Earnings Calls	Target	236084	5442
Strategic Alliances	Target	29517	5463
Lawsuits & Legal Issues	Target	41158	5599
Investor Activism - Activist Communication	Target	8556	3875
Corporate Guidance - Lowered	Target	10996	3606
Private Placements	Buyer	11631	4362
M&A Transaction Announcements	Seller	12325	4804
M&A Transaction Closings	Buyer	43177	5699
Company Conference Presentations	Target	339716	4975
M&A Calls	Target	7218	3305
Index Constituent Adds	Target	29372	2248
Buyback Transaction Closings	Target	13012	3913
M&A Rumors and Discussions	Target	21747	4605
Shareholder/Analyst Calls	Target	24420	4417
Labor-related Announcements	Target	3975	2485
Business Reorganizations	Target	4398	2766
Conferences	Participant	296636	3676
M&A Transaction Announcements	Buyer	25352	5501
Delayed SEC Filings	Target	13297	2078
Earnings Release Date	Target	226653	5294
M&A Transaction Closings	Seller	18467	5138
M&A Transaction Announcements	Target	6089	3557
Discontinued Operations/Downsizings	Target	18782	4447
Fixed Income Offerings	Target	28237	5403
Corporate Guidance - New/Confirmed	Target	148835	5649
Private Placements	Target	15216	5057
Seeking Acquisitions/Investments	Target	37787	5239
Board Meeting	Target	6563	2705
Considering Multiple Strategic Alternatives	Target	4017	2491
Announcements of Sales/Trading Statement	Target	12367	3306
Debt Financing Related	Target	41158	5708
Annual General Meeting	Target	71528	5094
Seeking to Sell/Divest	Target	5250	2922
End of Lock-Up Period	Target	7107	3293
Buyback Tranche Update	Target	113233	5073
Announcements of Earnings	Target	343641	5712
Analyst/Investor Day	Target	6664	3353
Investor Activism - Proxy/Voting Related	Target	7449	3165
Delistings	Target	17906	4928
Impairments/Write Offs	Target	23529	3527
Corporate Guidance - Raised	Target	20044	4162
Index Constituent Drops	Target	18202	3039
Buyback - Change in Plan Terms	Target	6897	3412
Buyback Transaction Announcements	Target	20353	4996
		effectiv	ve window \
event	role		
Shelf Registration Filings	Target	681	.0 -0.005224

Special/Extraordinary Shareholders Meeting	Target.	534.0 -0.002029
Name Changes	Target.	454.0 0.012626
Changes in Company Bylaws/Rules	Target.	592.0 -0.000070
Product-Related Announcements	Target	686.0 0.005712
M&A Transaction Closings	Target	430.0 0.010726
Auditor Changes	Target	609.0 -0.003402
Executive/Board Changes - Other	Target	685.0 -0.000533
Executive Changes - CFO	Target	677.0 -0.007618
Business Expansions	Target	688.0 0.002006
Special Calls	Target	597.0 0.014764
Executive Changes - CEO	Target	671.0 -0.005253
M&A Transaction Cancellations	Buver	455.0 -0.000106
Client Announcements	Target	687.0 0.008237
Follow-on Equity Offerings	Target	667.0 -0.030227
Investor Activism - Target Communication	Target	525.0 0.008690
Earnings Calls	Target	654.0 0.000499
Strategic Alliances	Target	679.0 0.010685
Lawsuits & Legal Issues	Target	682.0 -0.000897
Investor Activism - Activist Communication	Target	576.0 0.014757
Corporate Guidance - Lowered	Target	583.0 -0.066909
Private Placements	Buver	645.0 0.000440
M&A Transaction Announcements	Seller	662.0 0.009878
M&A Transaction Closings	Buver	687.0 0.004541
Company Conference Presentations	Target	592.0 0.001272
M&A Calls	Target.	566.0 0.059589
Index Constituent Adds	Target.	517.0 -0.004618
Buyback Transaction Closings	Target.	620.0 0.003593
M&A Rumors and Discussions	Target.	584.0 0.013315
Shareholder/Analyst Calls	Target	585.0 0.001265
Labor-related Announcements	Target.	485.0 0.001723
Business Reorganizations	Target.	519.0 -0.001773
Conferences	Participant	451.0 -0.000775
M&A Transaction Announcements	Buver	682.0 0.010533
Delaved SEC Filings	Target	519.0 -0.017189
Earnings Release Date	Target	632.0 -0.000074
M&A Transaction Closings	Seller	672.0 0.003516
M&A Transaction Announcements	Target	622.0 0.234380
Discontinued Operations/Downsizings	Target	594.0 -0.009840
Fixed Income Offerings	Target	677 0 -0 004932
Corporate Guidance - New/Confirmed	Target	687 0 -0 001445
Private Placements	Target	657 0 0 023461
Seeking Acquisitions/Investments	Target	668 0 -0 000697
Board Meeting	Target	473 0 0 002824
Considering Multiple Strategic Alternatives	Target	479 0 -0 008435
Approvincements of Sales/Trading Statement	Target	588 0 0 004235
Debt Financing Related	Target	684 0 0 004347
Annual General Meeting	Target	620 0 0 001460
Seeking to Sell/Divest	Target	504.0 - 0.002623
End of Lock-Up Period	Target	565 0 -0 060075
Buyback Tranche Undate	Target	646 0 0 000906
Appoundements of Farpings	Target	685 0 0 000446
Analyst / Investor Day	Target	548 0 0 008374
Investor Activism - Provu/Voting Polatod	Target	530.0 - 0.001100
Delistings	Target	625 0 -0 020833
Impairments/Write Offs	Target	523.0 -0.020033
Corporate Cuidance - Paigod	Target	
corporate gurdance - Marsed	Laryer	UJI.U U.UJJOJZ

Index Constituent Drops	Target	507.0	-0.003266	
Buyback – Change in Plan Terms	Target	605.0	0.009150	
Buyback Transaction Announcements	Target	666.0	0.015343	
	_	window_t	post	\
event	role			
Shelf Registration Filings	Target	-2.542320	-0.012755	
Special/Extraordinary Shareholders Meeting	Target	-0.537886	-0.018210	
Name Changes	Target	1.944510	-0.023076	
Changes in Company Bylaws/Rules	Target	-0.024033	-0.010242	
Product-Related Announcements	Target	4.608120	-0.004112	
M&A Transaction Closings	Target	1.184190	-0.019140	
Auditor Changes	Target	-1.173250	-0.009535	
Executive/Board Changes - Other	Target	-0.537347	-0.003171	
Executive Changes - CFO	Target	-3.312440	-0.006563	
Business Expansions	Target	1.663570	-0.003755	
Special Calls	Target	1.100980	-0.014743	
- Executive Changes - CEO	Target	-1.572760	-0.007032	
M&A Transaction Cancellations	Buver	-0.019428	-0.010588	
Client Announcements	Target	7.380600	-0.002300	
Follow-on Equity Offerings	Target	-5.005380	-0.007275	
Investor Activism - Target Communication	Target	2.362150	-0.004881	
Earnings Calls	Target	0 481335	-0 002042	
Strategic Alliances	Target	2 626260	-0 003538	
Lawsuite (Logal Lesues	Target	-0 413061	-0 002723	
Investor Activian - Activist Communication	Target	1 200120	-0.002723	
Corporate Cuidance Levered	Target	4.200130	-0.004003	
Drivete Discomente	Target	-14.007900	-0.002080	
Mch. Two pracements	Buyer	0.272817	-0.002208	
M&A Iransaction Announcements	Seller	2.630630	-0.002869	
M&A Transaction Closings	Buyer	3.186290	-0.001394	
Company Conference Presentations	Target	1.292//0	-0.001116	
M&A Calls	Target	8.955770	-0.002523	
Index Constituent Adds	Target	-1.557500	-0.002675	
Buyback Transaction Closings	Target	1.725140	-0.001955	
M&A Rumors and Discussions	Target	4.876590	-0.001790	
Shareholder/Analyst Calls	Target	0.428922	-0.002059	
Labor-related Announcements	Target	0.546605	-0.002090	
Business Reorganizations	Target	-0.381681	-0.002317	
Conferences	Participant	-0.643617	-0.000928	
M&A Transaction Announcements	Buyer	3.253760	-0.001108	
Delayed SEC Filings	Target	-3.797660	-0.001306	
Earnings Release Date	Target	-0.071140	-0.000190	
M&A Transaction Closings	Seller	1.461850	-0.000303	
M&A Transaction Announcements	Target	18.265800	-0.000214	
Discontinued Operations/Downsizings	Target	-2.844410	-0.000069	
Fixed Income Offerings	Target	-2.922310	0.000168	
Corporate Guidance - New/Confirmed	Target	-0.883251	0.000366	
Private Placements	Target	4.328510	0.002351	
Seeking Acquisitions/Investments	Target	-0.305334	0.001316	
Board Meeting	Target	0.980749	0.002164	
Considering Multiple Strategic Alternatives	Target	-1.135750	0.012629	
Announcements of Sales/Trading Statement	Target	1.329410	0.005084	
Debt Financing Related	Target	2.013270	0.002883	
Annual General Meeting	Target	0.950287	0.004452	
Seeking to Sell/Divest	Target	-0.53181/	0.006912	
End of Lock-Up Period	Target	-9 088620	0 007541	
Look op Lottog			0.00,011	

Anouncements of Farnings Target 0.305990 0.002854 Analyst/Investor Day Target 3.238440 0.006292 Investor Activism - Proxy/Voting Related Target -0.472332 0.011292 Delisiting Proxy/Voting Related Target -0.472332 0.001292 Corporate Guidance - Raised Target -1.122100 0.008273 Corporate Guidance - Raised Target 11.737600 0.008273 Corporate Guidance - Raised Target -0.751127 0.017488 Buyback - Change in Plan Terms Target 3.837660 0.008018 Buyback Transaction Announcements Target 3.837660 0.008389 Product Target -2.753130 Special/Extraordinary Shareholders Meeling Target -1.970180 Name Changes Target -1.970180 Name Changes Target -1.815650 Product-Related Announcements Target -1.607030 M& Transaction Closings Target -1.636510 Additor Changes Cober Target -1.43420 Executive/Roard Changes - Other Target -1.43420 Executive/Roard Changes - Cober Target -1.309520 Business Expansions Target -1.237180 Executive/Changes - COC Target -0.82821 Follow-on Equity Offerings Target -0.808251 Follow-on Equity Offerings Target -0.808251 Follow-on Equity Offerings Target -0.808251 Follow-on Equity Offerings Target -0.74163 Cirategic Alisa Target -0.74163 Scilate Livism - Target Communication Target -0.74163 Follow-on Equity Offerings Target -0.482655 M& Transaction Cancements Sellor -0.472392 M& Transaction Cancements Sellor -0.472392 M& Transaction Cancements Target -0.48066 Company Conference Presentations Target -0.48065 M& Transaction Cancements Sellor -0.472392 M& Transaction Cancements Target -0.417374 Buyback Transaction Closings Target -0.41016 M& Transaction Closings Target -0.41016 M& Transaction Closings Target -0.41016 M& Transaction Closings Target -0.4101774 Buyback Transaction Closings Target -0.41016 M& Transaction Closings Target -0.42036 Compare Guidance - New/Confirmed Target -0.28136 Business Reorganizations Target -0.28136 M& Transaction Announcements	Buvback Tranche Update	Target	0.559217	0.002991
Analyst/Investor DayTarget3.2384400.006232Investor Activism - Proxy/Voting RelatedTarget-0.4723230.011232Investor Activism - Proxy/Voting RelatedTarget-1.8127100.006233Inpairments/Write OffsTarget-1.1221000.008273Corporate Guidance - RaisedTarget11.7376000.008273Index Constituent DropsTarget-0.7511270.107488Buyback - Change in Plan TermsTarget-2.7531300.008389Buyback Transaction AnnouncementsTarget-1.966600Name ChangesTarget-1.8156500.008318Product-Related AnnouncementsTarget-1.607030McA Transaction ClosingsTarget-1.607030McA Transaction ClosingsTarget-1.80501Auditor Changes - OtherTarget-1.237800Executive/Roard Changes - OtherTarget-1.237800Executive/Roard Changes - CEOTarget-1.237800Special CallsTarget-0.008251Evecutive Changes - CEOTarget-0.00251Follow-on Equity OfferingsTarget-0.657731Croporate Guidance - LoweredTarget-0.590799Private PlacementsBuyer-0.397462Investor Activism - Activist CommunicationTarget-0.45673Investor Activism - CarestationsTarget-0.45673McA Transaction ClosingsBuyer-0.30350Client AnnouncementsSeller-0.472392Private PlacementsSeller-0.	Announcements of Earnings	Target	0.305990	0.002854
Targetor Activian - Proxy/Voting Related Delisting - Proxy/Voting Related Target3.871270 0.01593 Impairments/Write Offs - Target1.12210 0.008273 Corporate Guidance - Raised - Target 11.737600 0.008273 Index Constituent Drops - Target - 0.751127 0.017488 Buyback - Change in Plan Terms - Target 3.837660 0.008018 Buyback - Transaction Announcements - Target 3.837660 0.008389 Product Transaction Filing - Target - 2.753130 Special/Extraordinary Shareholders Meeting Name Changes - Drops - Target - 1.966600 Changes in Company Bylaws/Rules - Target - 1.966600 Changes in Company Bylaws/Rules - Target - 1.966600 Additor Changes - Other - Target - 1.607030 Ma& Transaction Closings - Target - 1.607030 Ma& Transaction Closings - Target - 1.433420 Executive/Board Changes - Other - Target - 1.305620 Business Expansions - Target - 1.305620 Business Expansions - Target - 1.20140 M& Target - 0.908251 Follow-on Equity Offerings - Target - 0.908251 Investor Activiam - Target Communication - Target - 0.908251 Investor Activiam - Target Communication - Target - 0.761636 Strategic Allances - Darget - Target - 0.761636 Strategic Allances - Darget - Target - 0.761636 Strategic Allance - Lowered - Target - 0.657731 Corporate Guidance - Lowered - Target - 0.657731 Company Conference Presentations - Target - 0.436285 M&A Transaction Announcements - Target - 0.446066 Company Conference Presentations - Target - 0.436285 M&A Transaction Closings - Target - 0.446064 Company Conferences - Pervections - Target - 0.446064 C	Analyst/Investor Day	Target.	3.238440	0.006292
DelistingsTarget-3.8712700.016593Impairments/Write OffsTarget-1.1221000.006273Corporate Guidance - RaisedTarget-1.711270.017486Buyback - Change in Plan TermsTarget-0.7511270.017486Buyback - Change in Plan TermsTarget7.0372600.008389eventroleTarget-1.970180Special/Extraordinary Shareholders MeetingTarget-1.970180Name ChangesTarget-1.970180Changes In Company Bylaws/RulesTarget-1.686600Changes In Company Bylaws/RulesTarget-1.607030M&A Transaction ClosingsTarget-1.433420Executive/Roard Changes - OtherTarget-1.390520Business ExpansionsTarget-1.330520Special CallsTarget-1.037500Client AnnouncementsTarget-0.08251Follow-on Equity OfferingsTarget-0.08251Follow-on Equity OfferingsTarget-0.801679Farnings CallsTarget-0.6017482Investor Activism - Target CommunicationTarget-0.6017482Investor Activism - Activist CommunicationTarget-0.503731Corporate Guidance - LoweredTarget-0.507482Index Constituent AddsTarget-0.41016Carget - 0.41016Target-0.50731Corporate Guidance - ClosingsTarget-0.463685Index Constituent AddsTarget-0.63731Corporate Guidance - LoweredTarget <t< td=""><td>Investor Activism - Proxy/Voting Related</td><td>Target.</td><td>-0.472323</td><td>0.011292</td></t<>	Investor Activism - Proxy/Voting Related	Target.	-0.472323	0.011292
Impairments/Write OffsTarget-1.1221000.008273Corporate Guidance - RaisedTarget11.7376000.008226Index Constituent DropsTarget-0.7511270.017488Buyback - Change in Plan TermsTarget3.8376600.008389Buyback Transaction AnnouncementsTarget7.0372600.008389Buyback Transaction AnnouncementsTarget-2.753130Special/Extraordinary Shareholders MeetingTarget-1.968600Name ChangesTarget-1.86560Product-Related AnnouncementsTarget-1.86560Product-Related AnnouncementsTarget-1.805610Auditor ChangesTarget-1.305020Business ExpansionsTarget-1.327800Special CallsTarget-1.327800Executive Changes - CEOTarget-1.327800Special CallsTarget-1.327800Executive Changes - CEOTarget-0.892820Follow-on Equity OfferingsTarget-0.802851Follow-on Equity OfferingsTarget-0.802851Follow-on Equity OfferingsTarget-0.657731Investor Activism - Activist CommunicationTarget-0.657731Target OndersonsTarget-0.435673M&A Transaction ClosingsTarget-0.435673M&A Tansaction ClosingsTarget-0.30179Private PlacementsTarget-0.435673Mexor Activism - Activist CommunicationTarget-0.435673M&A Tansaction AnnouncementsTarget<	Delistings	Target	-3.871270	0.016593
Corporate Guidance - Raised Target 11.737600 0.006226 Index Constituent Drops Target -0.751127 0.017488 Buyback - Change in Plan Terms Target 3.837660 0.008018 Buyback Transaction Announcements Target 7.037260 0.008389 Post_t post_t event Target -2.755130 Special/Extraordinary Shareholders Meeting Name Changes 1 Company Bylaws/Rules Target -1.960600 Changes in Company Bylaws/Rules Target -1.815650 Product-Related Announcements Target -1.805510 AddItor Changes CFO Target -1.805510 AddItor Changes - Other Target -1.607030 Business Expansions Target -1.300520 Business Expansions Target -1.20160 Special Calls Target -1.20160 Special Calls Target -1.20160 Special Calls Target -1.20160 Strategic AddItor Changes - Other Target -1.20160 Business Expansions Target -1.201780 Business Expansions Target -1.201780 Special Calls Target -0.908251 Follow-on Equity Offerings Target -0.908251 Follow-on Equity Offerings Target -0.601679 Extrategic Alliances Target -0.761636 Strategic Alliances Target -0.761636 Strategic Alliances Target -0.601679 Extrategic Alliances Target -0.61636 Strategic Alliances Target -0.61636 Strategic Alliances Target -0.44066 Company Conference Presentations Target -0.44066 Company Conference Presentations Target -0.44066 Campany Conference Presentations Target -0.44066 M&A Transaction Closings Target -0.417274 Buyback Transaction Closings Target -0.417274 Buyback Transaction Announcements Target -0.417274 Buyback Transaction Announcements Target -0.417274 Buyback Transaction Announcements Target -0.417274 Buyback Transaction Closings Target -0.417274 Buyback Transaction Closings Target -0.417275 Exercitive Alliance Constituent Ads Target -0.417275 Exercitive Placements Target -0.028792 Discont	Impairments/Write Offs	Target	-1.122100	0.008273
OutputsDisplayTargetTar	Corporate Guidance - Raised	Target	11 737600	0 006226
Number Construction Plan TermsTarget3.837600.008018Buyback Transaction AnnouncementsTarget3.837600.008018Buyback Transaction AnnouncementsTarget7.0372600.008018Special/Extraordinary Shareholders MeetingTarget-2.753130Special/Extraordinary Shareholders MeetingTarget-1.968600ChangesTarget-1.968600Changes in Company Bylaws/RulesTarget-1.68600Product-Related AnnouncementsTarget-1.43420Auditor ChangesOtherTarget-1.43420Executive/Board Changes - OtherTarget-1.390520Executive/Board Changes - OtherTarget-1.257180Executive/Board Changes - CEOTarget-1.20140M&A Transaction CancellationsBuyer-0.902820Investor Activism - Target CommunicationTarget-0.801679Earnings CallsTarget-0.761636Strategic AlliancesTarget-0.677412Investor Activism - Activist CommunicationTarget-0.65731Corporate Guidance - LoweredTarget-0.464066Investor Activism - Activist CommunicationTarget-0.4626573M&A Transaction ClosingsBuyer-0.464066Investor Activism - Activist CommunicationTarget-0.4626573M&A Transaction ClosingsBuyer-0.464066Investor Activism - Activist CommunicationTarget-0.462673M&A Transaction ClosingsTarget-0.462663Investor Activism - Activist	Index Constituent Drops	Target	-0 751127	0 017488
DeryDockDeryDockDeryDockDeryDockDeryDockBuybackTransaction AnnouncementsTarget7.0372600.000339eventroleTarget-2.753130Special/ExtraordinaryShareholdersMarget-1.970180Name ChangesTarget-1.968600ChangesTarget-1.815550Product-Related AnnouncementsTarget-1.607030MAATransaction ClosingsTarget-1.433420Executive/Board ChangesOtherTarget-1.433420Executive/ChangesCDTarget-1.37890Special CallsTarget-1.257180Executive/Changes - CEOTarget-1.037350BusinessExacutive/ChangesCEOFollow-on Equity OfferingsTarget-0.80251Follow-on Equity OfferingsTarget-0.801679Farnings CallsTarget-0.741016Lawsuits & Legal IssuesTarget-0.657731Corporate Guidance - LoweredTarget-0.657731Private PlacementsBuyer-0.46066Compary Conference PresentationsTarget-0.46066Compary Conference PresentationsTarget-0.30639M&A Transaction ClosingsTarget-0.313663LaburezTarget-0.313663LaburezTarget-0.436285Startegic AnnouncementsTarget-0.40666Compary Conference PresentationsTarget-0.436285M&A Transaction ClosingsTarget-0.41074 <td>Buyback - Change in Plan Terms</td> <td>Target</td> <td>3 837660</td> <td>0 008018</td>	Buyback - Change in Plan Terms	Target	3 837660	0 008018
Dependent framework controlpost_teventroleSpecial/Extraordinary Shareholders MeetingTarget -2.753130Special/Extraordinary Shareholders MeetingTarget -1.970180Name ChangesTarget -1.968600Changes in Company Bylaws/RulesTarget -1.815650Product-Related AnnouncementsTarget -1.607030Auditor ChangesTarget -1.43420Executive/Board Changes - OtherTarget -1.43420Executive/Board Changes - OtherTarget -1.390520Business ExpansionsTarget -1.257180Special CallsTarget -1.257180Executive Changes - CEOTarget -0.908251Follow-on Equity OfferingsTarget -0.801679Parnage CallsTarget -0.801679Executive Changes - CEOTarget -0.801679Earnings CallsTarget -0.67731Client AnnouncementsTarget -0.67731Pollow-on Equity OfferingsTarget -0.67731Corporate Guidance - LoweredTarget -0.456733M&A Transaction ClosingsBuyer -0.46066Company Conference PresentationsTarget -0.436285Index Constituent AddsTarget -0.436285La	Buyback Transaction Appouncements	Target	7 037260	0.008389
event role Shelf Registration Filings Target -2.753130 Special/Extraordinary Shareholders Meeting Target -1.906800 Name Changes Target -1.906800 Changes in Company Bylaws/Rules Target -1.607030 M&A Transaction Closings Target -1.607030 Auditor Changes Target -1.433420 Executive Changes - Other Target -1.320520 Business Expansions Target -1.20140 M&A Transaction Cancellations Buyer -1.120140 MAT Transaction Cancellations Buyer -0.801679 Earning Calls Target -0.801679 Earnings Calls Target -0.601679 Earnings Calls Target -0.601679 Earnings Calls Target -0.657731 Corporate Guidance - Lowered Target -0.6569800 M&A Transaction Announcements Sarget -0.464066 Compart Constituent Adds Target -0.456733 MAreget -0.436283 -0.442043		iargee	.00/200	0.000000
eventroleShelf Registration Filingsrarget-2.753130Special/Extraordinary Shareholders MeetingTarget-1.970180Name ChangesTarget-1.815650Product-Related AnnouncementsTarget-1.607030M&A Transaction ClosingsTarget-1.815650Auditor ChangesTarget-1.30520Business ExpansionsTarget-1.327890Special CallsTarget-1.227180Executive Changes - CEOTarget-1.237180Special CallsTarget-0.908251Follow-on Equity OfferingsTarget-0.801679Follow-on Equity OfferingsTarget-0.801679Faraget AlliancesTarget-0.761636Strategic AlliancesTarget-0.601731Investor Activism - Target CommunicationTarget-0.677482Investor Activism - Activist CommunicationTarget-0.659731Corporate Guidance - LoweredTarget-0.436285Index Constituent AddsTarget-0.441016Company Conference PresentationsTarget-0.436285Index Constituent AddsTarget-0.413628Index Constituent AddsTarget-0.436285Index Constituent AddsTarget-0.30374Business ReorganizationsTarget-0.30364Kalanget-0.801770-0.668724Delayed Marcel AnnouncementsTarget-0.41616Company Conference PresentationsTarget-0.416265Index Constituent AddsTarget<			post t	
Shelf Registration FilingsTarget-2.75310Special/Extraordinary Shareholders MeetingTarget-1.970180Name ChangesTarget-1.866600Changes in Company Bylaws/RulesTarget-1.815650Product-Related AnnouncementsTarget-1.606510Auditor ChangesTarget-1.433420Executive/Board Changes - OtherTarget-1.327890Special CallsTarget-1.257180Executive/Changes - CFOTarget-1.207180Business ExpansionsTarget-1.207180Special CallsTarget-0.908251Follow-on Equity OfferingsTarget-0.808251Follow-on Equity OfferingsTarget-0.761636Strategic AlliancesTarget-0.761636Strategic AlliancesTarget-0.7741016Lawsuits & Legal IssuesTarget-0.569709Private PlacementsBuyer-0.464066Company Conference PresentationsSeller-0.47329M&A Transaction ClosingsTarget-0.455673M&A CallsTarget-0.301379Index Constituent AddsTarget-0.301363Labor-related AnnouncementsSeller-0.403028Shareholder/Analyst CallsTarget-0.301379Private PlacementsTarget-0.301371M&A Transaction ClosingsTarget-0.301370Conference PresentationsTarget-0.301363Labor-related AnnouncementsTarget-0.301370M&A CallsTarget-0.30	event	role	1	
Special/Extraordinary Shareholders MeetingTarget-1.97080Name ChangesTarget-1.815650Changes in Company Bylaws/RulesTarget-1.815650Product-Related AnnouncementsTarget-1.607030M&A Transaction ClosingsTarget-1.433420Executive/Board Changes - OtherTarget-1.430500Executive/Changes - CEOTarget-1.307500Business ExpansionsTarget-1.27180Special CallsTarget-1.27180Executive/Changes - CEOTarget-1.087350Executive/Changes - CEOTarget-0.892820Investor ActivismTarget-0.892820Investor Activism - Target CommunicationTarget-0.892820Investor Activism - Target CommunicationTarget-0.667731Corporate Guidance - LoweredTarget-0.657731Corporate Guidance - LoweredTarget-0.465733Corporate Guidance - LoweredTarget-0.4464066Company Conference PresentationsTarget-0.45673M&A Transaction ClosingsTarget-0.46104M&A Tansaction ClosingsTarget-0.30363Index Constituent AddsTarget-0.30363Labor-related AnnouncementsTarget-0.30363Labor-related AnnouncementsTarget-0.30370M&A Transaction ClosingsTarget-0.30170ConferenceParticipant-0.28922M&A Transaction AnnouncementsTarget-0.30363Labor-related AnnouncementsTarge	Shelf Registration Filings	Target	-2.753130	
Name ChangesTarget-1.968600Changes in Company Bylaws/RulesTarget-1.815650Product-Related AnnouncementsTarget-1.607030M&A Transaction ClosingsTarget-1.433420Executive/Board Changes - OtherTarget-1.430500Executive/Board Changes - OtherTarget-1.307890Special CallsTarget-1.257180Executive/Board Changes - CEOTarget-1.257180Business ExpansionsTarget-1.037350Client AnnouncementsTarget-0.908251Follow-on Equity OfferingsTarget-0.801679Investor Activism - Target CommunicationTarget-0.761636Strategic AlliancesTarget-0.677482Investor Activism - Activist CommunicationTarget-0.569800M&A Transaction ClosingsBuyer-0.44066Company Conference PresentationsTarget-0.436285Index Constituent AddsTarget-0.306394Buyback Transaction ClosingsTarget-0.306394Buyback Transaction AnnouncementsTarget-0.306394Buyback Transaction AnnouncementsTarget-0.306394Buyback Transaction ClosingsTarget-0.280724Index Constituent AddsTarget-0.280724Buyback Transaction ClosingsTarget-0.306394Buyback Transaction ClosingsTarget-0.306394Buyback Transaction AnnouncementsTarget-0.280724Delayed SEC FilingsTarget-0.280724Delayed SE	Special/Extraordinary Shareholders Meeting	Target	-1.970180	
Changes in Company Bylaws/RulesTarget-1.815650Product-Related AnnouncementsTarget-1.607030M&A Transaction ClosingsTarget-1.506510Auditor ChangesTarget-1.433420Executive/Board Changes - OtherTarget-1.430500Executive/Changes - CFOTarget-1.390520Pusiness ExpansionsTarget-1.257180Special CallsTarget-1.257180Executive/Changes - CEOTarget-1.00140M&A Transaction CancellationsBuyer-0.908251Follow-on Equity OfferingsTarget-0.892820Investor Activism - Target CommunicationTarget-0.81679Earnings CallsTarget-0.741016Lawsuits & Legal IssuesTarget-0.657731Corporate Guidance - LoweredTarget-0.45073M&A Transaction ClosingsBuyer-0.45673M&A Transaction ClosingsBuyer-0.43628Index Constituent AddsTarget-0.43628Index Constituent AddsTarget-0.301770Company Conference PresentationsTarget-0.301770M&A Tansaction ClosingsTarget-0.301770Shareholder/Analyst CallsTarget-0.28724Pulyack Transaction AnnouncementsTarget-0.286724Pulyack Transaction ClosingsTarget-0.286724Pulyack Transaction AnnouncementsTarget-0.286724Pulyack Stepelated AnnouncementsTarget-0.286724Pulayed SEC FilingsTarget-0.28	Name Changes	Target	-1.968600	
Product-Related AnnouncementsTarget-1.607030M&A Transaction ClosingsTarget-1.607030Auditor ChangesTarget-1.433420Executive/Board Changes - OtherTarget-1.30520Business ExpansionsTarget-1.327890Special CallsTarget-1.257180Executive Changes - CEOTarget-1.10140M&A Transaction CancellationsBuyer-1.037350Client AnnouncementsTarget-0.892820Investor Activism - Target CommunicationTarget-0.801679Earnings CallsTarget-0.677482Investor Activism - Activist CommunicationTarget-0.657731Corporate Guidance - LoweredTarget-0.569800M&A Transaction ClosingsBuyer-0.446066Compary Conference PresentationsTarget-0.432825Index Constituent AddsTarget-0.436285Index Constituent AddsTarget-0.306334Buyback Transaction ClosingsTarget-0.306334Buyback Transaction ClosingsTarget-0.306334Buyback Transaction ClosingsTarget-0.306334Buyback Transaction AnnouncementsTarget-0.306334Buyback Transaction AnnouncementsTarget-0.306334Buyback Transaction AnnouncementsTarget-0.306334Buyback Transaction ClosingsTarget-0.306334Buyback Transaction AnnouncementsTarget-0.306334Buyback Transaction AnnouncementsBuyer-0.46066Compor	Changes in Company Bylaws/Rules	Target	-1.815650	
M&A Transaction ClosingsTarget-1.506510Auditor ChangesTarget-1.433420Executive/Board Changes - OtherTarget-1.390520Executive Changes - CFOTarget-1.390520Business ExpansionsTarget-1.227890Special CallsTarget-1.227890Executive Changes - CEOTarget-1.20140M&A Transaction CancellationsBuyer-0.082251Client AnnouncementsTarget-0.802251Follow-on Equity OfferingsTarget-0.801679Earnings CallsTarget-0.761636Strategic AlliancesTarget-0.677482Investor Activism - Activist CommunicationTarget-0.590799Private FlacementsBuyer-0.569800M&A Transaction ClosingsBuyer-0.656800M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.417274Buyback Transaction ClosingsTarget-0.411274Buyback Transaction ClosingsTarget-0.306394Business ReorganizationsTarget-0.306394Business ReorganizationsTarget-0.281036M&A Transaction ClosingsTarget-0.281036M&A Transaction ClosingsTarget-0.281036M&A Tansaction ClosingsTarget-0.281036Jabor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.281036M&A Transaction AnnouncementsBuyer-0.281036M&A Tran	Product-Related Announcements	Target	-1.607030	
Auditor ChangesTarget-1.433420Executive/Board Changes - OtherTarget-1.410500Executive Changes - CFOTarget-1.327890Special CallsTarget-1.327890Executive Changes - CEOTarget-1.227180Executive Changes - CEOTarget-1.20140M&A Transaction CancellationsBuyer-1.037350Client AnnouncementsTarget-0.802251Follow-on Equity OfferingsTarget-0.80220Investor Activism - Target CommunicationTarget-0.741016Lawsuits & Legal IssuesTarget-0.741016Lawsuits & Legal IssuesTarget-0.569800M&A Transaction ClosingsBuyer-0.569800M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.4172392M&A CallsTarget-0.418285Index Constituent AddsTarget-0.43285Labor-related AnnouncementsTarget-0.313663Labor-related AnnouncementsTarget-0.306394Buyback Transaction ClosingsTarget-0.306394Business ReorganizationsTarget-0.281036M&A Transaction ClosingsTarget-0.28174Buyback Transaction AnnouncementsTarget-0.281036M&A Transaction ClosingsTarget-0.306394Business ReorganizationsTarget-0.281036M&A Transaction AnnouncementsTarget-0.281036M&A Transaction ClosingsTarget-0.281036 <tr< td=""><td>M&A Transaction Closings</td><td>Target</td><td>-1.506510</td><td></td></tr<>	M&A Transaction Closings	Target	-1.506510	
Executive/Board Changes - OtherTarget-1.410500Executive Changes - CFOTarget-1.330520Business ExpansionsTarget-1.327800Special CallsTarget-1.257180Executive Changes - CEOTarget-1.120140M&A Transaction CancellationsBuyer-0.0908251Follow-on Equity OfferingsTarget-0.802820Investor Activism - Target CommunicationTarget-0.761636Strategic AlliancesTarget-0.761636Strategic AlliancesTarget-0.677482Investor Activism - Activist CommunicationTarget-0.569800M&A Transaction AnnouncementsSeler-0.472392M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.477392M&A Constituent AddsTarget-0.41014M&A Rumors and DiscussionsTarget-0.41024Mark Aransaction AnnouncementsTarget-0.41024M&A CallsTarget-0.41014M&A Rumors and DiscussionsTarget-0.41024M&A Transaction AnnouncementsTarget-0.313663Labor-related AnnouncementsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsTarget-0.069015M&A Transaction ClosingsTarget-0.08910M&A Rumors and DiscussionsTarget-0.281036Labor-related AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.069015 <td>Auditor Changes</td> <td>Target</td> <td>-1.433420</td> <td></td>	Auditor Changes	Target	-1.433420	
Executive Changes - CFOTarget-1.390520Business ExpansionsTarget-1.327890Special CallsTarget-1.327890Executive Changes - CEOTarget-1.120140M&A Transaction CancellationsBuyer-1.037350Client AnnouncementsTarget-0.892820Investor Activism - Target CommunicationTarget-0.801679Earnings CallsTarget-0.761636Strategic AlliancesTarget-0.677482Investor Activism - Activist CommunicationTarget-0.6777482Investor Activism - Activist CommunicationTarget-0.590799Private PlacementsBuyer-0.569800M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.472392M&A CallsTarget-0.40002Shareholder/Analyst CallsTarget-0.301770Shareholder/Analyst CallsTarget-0.301770ConferencesParticipant-0.268724Business ReorganizationsTarget-0.268724Delayed SE FilingsTarget-0.06960M&A Transaction ClosingsSeller-0.028103M&A Transaction AnnouncementsBuyer-0.66960M&A Transaction AnnouncementsBuyer-0.268724Delayed SE FilingsTarget-0.06960M&A Transaction AnnouncementsTarget-0.06960M&A Transaction ClosingsSeller-0.028792Discontinued Operations/DownsizingsTarget-0.01367	Executive/Board Changes - Other	Target.	-1.410500	
Business ExpansionsTarget1.32780Special CallsTarget1.257180Executive Changes - CEOTarget1.257180Executive Changes - CEOTarget1.037350Client AnnouncementsTarget-0.908251Follow-on Equity OfferingsTarget-0.801679Earnings CallsTarget-0.801679Earnings CallsTarget-0.761636Strategic AlliancesTarget-0.677742Investor Activism - Activist CommunicationTarget-0.657731Corporate Guidance - LoweredTarget-0.569800M&A Transaction AnnouncementsSeller-0.472392M&A Transaction AnnouncementsSeller-0.45673M&A Canstine AddsTarget-0.464066Company Conference PresentationsTarget-0.436285Index Constituent AddsTarget-0.436285Index Constituent AddsTarget-0.3013663Labor-related AnnouncementsTarget-0.301700Shareholder/Analyst CallsTarget-0.301700ConferencesParticipant-0.281036M&A Transaction ClosingsTarget-0.069660M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.069660M&A Transaction ClosingsTarget-0.069660M&A Transaction AnnouncementsBuyer-0.281036Labor-related AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.069660M&A Transaction Closings<	Executive Changes - CFO	Target	-1.390520	
Superial CallsTarget-1.257180Special CallsTarget-1.227180Executive Changes - CEOTarget-1.037350Client AnnouncementsBuyer-0.008251Follow-on Equity OfferingsTarget-0.808251Follow-on Equity OfferingsTarget-0.801679Earnings CallsTarget-0.761636Strategic AlliancesTarget-0.77482Investor Activism - Activist CommunicationTarget-0.677482Investor Activism - Activist CommunicationTarget-0.590799Private PlacementsBuyer-0.569800M&A Transaction AnnouncementsSeller-0.472392M&A Transaction ClosingsBuyer-0.464066Compary Conference PresentationsTarget-0.41014M&A CallsTarget-0.41614M&A Rumors and DiscussionsTarget-0.41624Mach Transaction ClosingsTarget-0.436285Index Constituent AddsTarget-0.41614M&A Rumors and DiscussionsTarget-0.41016Labor-related AnnouncementsTarget-0.313663Labor-related AnnouncementsBuyer-0.286724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069015M&A Transaction ClosingsSeller-0.069724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.010337Fixed Income OfferingsTarget-0.010337Fixed Income OfferingsTa	Business Expansions	Target	-1 327890	
Executive Changes - CEO Target -1.120140 M&A Transaction Cancellations Buyer -1.037350 Client Announcements Target -0.908251 Follow-on Equity Offerings Target -0.892820 Investor Activism - Target Communication Target -0.801679 Earnings Calls Target Communication Target -0.701636 Strategic Alliances Target -0.77482 Investor Activism - Activist Communication Target -0.657731 Corporate Guidance - Lowered Target -0.590799 Private Placements Buyer -0.464066 Company Conference Presentations Target -0.4172392 M&A Transaction Closings Buyer -0.464066 Company Conference Presentations Target -0.455673 M&A Calls Target -0.417274 Buyback Transaction Closings Target -0.417274 Buyback Transaction Closings Target -0.416104 M&A Rumors and Discussions Target -0.416104 M&A Rumors and Discussions Target -0.306394 Business Reorganizations Target -0.306394 Business Reorganizations Target -0.306394 Business Reorganizations Target -0.28036 M&A Transaction Announcements Buyer -0.268724 Delayed SEC Filings Target -0.113672 Earnings Release Date Target -0.069600 M&A Transaction Closings Target -0.10337 Fixed Income Offerings Target -0.010337 Fixed Income Offerings Target -0.01337 Fixed Income Offerings Target -0.01337 Fixed Income Offerings Target -0.133957 Frivate Placements Target 0.32387 Seeking Acquisitions/Investments Target 0.3366793	Special Calls	Target	-1 257180	
DetectionInfigerInfigerM&A Transaction CancellationsBuyer-1.037350Client AnnouncementsTarget-0.908251Follow-on Equity OfferingsTarget-0.892820Investor Activism - Target CommunicationTarget-0.801679Earnings CallsTarget-0.761636Strategic AlliancesTarget-0.7741016Lawsuits & Legal IssuesTarget-0.657731Corporate Guidance - LoweredTarget-0.569800M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.455673M&A CallsTarget-0.4436285Index Constituent AddsTarget-0.416104M&A Rumors and DiscussionsTarget-0.306394Business ReorganizationsTarget-0.306394Business ReorganizationsTarget-0.286724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069015M&A Transaction ClosingsTarget-0.06960M&A Transaction AnnouncementsBuyer-0.286724Delayed SEC FilingsTarget-0.010337Fixed Income OfferingsTarget-0.010337Fixed Income OfferingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget-0.23887Seeking Acquisitions/InvestmentsTarget0.223887	Executive Changes - CEO	Target	-1 120140	
Name Transaction ConcentrationsDay of the first of 1000 and 10000 and 100000 and 100000 and 100000 and 10000000 and 1000000 a	MAL Transaction Cancellations	Buyer	-1 037350	
Criteria AnnouncementsTarget0.30231Follow-on Equity OfferingsTarget-0.892820Investor Activism - Target CommunicationTarget-0.801679Earnings CallsTarget-0.761636Strategic AlliancesTarget-0.677482Lawsuits & Legal IssuesTarget-0.657731Corporate Guidance - LoweredTarget-0.590799Private PlacementsBuyer-0.464066Company Conference PresentationsTarget-0.455673M&A Transaction ClosingsBuyer-0.4464066Company Conference PresentationsTarget-0.436285Index Constituent AddsTarget-0.417274Buyback Transaction ClosingsTarget-0.313663Labor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069015M&A Transaction ClosingsSeller-0.069015M&A Transaction ClosingsSeller-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget-0.01337Fixed Income OfferingsTarget-0.23887Seeking Acquisitions/InvestmentsTarget-0.23887	Client Appeurgements	Targot	_0 908251	
Forlow of Equity of FiringsFarget0.801679Earnings CallsTarget-0.761636Strategic AlliancesTarget-0.741016Lawsuits & Legal IssuesTarget-0.677482Investor Activism - Activist CommunicationTarget-0.57731Corporate Guidance - LoweredTarget-0.569800M&A Transaction AnnouncementsSeller-0.464066Company Conference PresentationsTarget-0.464066Company Conference PresentationsTarget-0.417274Buyback Transaction ClosingsTarget-0.416104M&A Rumors and DiscussionsTarget-0.416104M&A Rumors and DiscussionsTarget-0.3013663Labor-related AnnouncementsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.028792M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget-0.133657Fixed Income OfferingsTarget-0.133957Fixed Income OfferingsTarget-0.223887Seeking Acquisitions/InvestmentsTarget-0.238673	Follow-on Equity Offorings	Target	_0 802820	
Intestor ActivismTarget-0.761636Strategic AlliancesTarget-0.741016Lawsuits & Legal IssuesTarget-0.677482Investor Activism - Activist CommunicationTarget-0.657731Corporate Guidance - LoweredTarget-0.569800M&A Transaction AnnouncementsSeller-0.472392M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.415673M&A CallsTarget-0.416104M&A Rumors and DiscussionsTarget-0.416104M&A Rumors and DiscussionsTarget-0.306394Business ReorganizationsTarget-0.301770ConferencesParticipant-0.288724Delayed SEC FilingsTarget-0.069600M&A Transaction ClosingsSeller-0.069600M&A Transaction AnnouncementsBuyer-0.288724Delayed SEC FilingsTarget-0.01337Fixed Income OfferingsTarget-0.008915M&A Transaction AnnouncementsTarget-0.010337Fixed Income OfferingsTarget-0.010337Fixed Income OfferingsTarget-0.010337Fixed Income OfferingsTarget-0.133957Fixed Income OfferingsTarget-0.22887Seeking Acquisitions/InvestmentsTarget-0.23873	Investor Activism - Target Communication	Target	-0.801679	
Farmings callsFarget-0.701030Strategic AlliancesTarget-0.741016Lawsuits & Legal IssuesTarget-0.6777482Investor Activism - Activist CommunicationTarget-0.657731Corporate Guidance - LoweredTarget-0.590799Private PlacementsBuyer-0.464066Company Conference PresentationsTarget-0.472392M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.417274Buyback Transaction ClosingsTarget-0.410104M&A CallsTarget-0.416104M&A Rumors and DiscussionsTarget-0.306394Shareholder/Analyst CallsTarget-0.3013663Labor-related AnnouncementsTarget-0.281036M&A Transaction AnnouncementsBuyer-0.66960M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.009015M&A Transaction ClosingsSeller-0.009015M&A Transaction ClosingsTarget-0.01037Fixed Income OfferingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.133957Private PlacementsTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Earpinge Calle	Target	-0.801079	
Strategic AlliancesTarget-0.741016Lawsuits & Legal IssuesTarget-0.677482Investor Activism - Activist CommunicationTarget-0.657731Corporate Guidance - LoweredTarget-0.590799Private PlacementsBuyer-0.569800M&A Transaction AnnouncementsSeller-0.472392M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.455673M&A CallsTarget-0.41274Index Constituent AddsTarget-0.416104M&A Rumors and DiscussionsTarget-0.306394Business ReorganizationsTarget-0.306394Business ReorganizationsTarget-0.280724Delayed SEC FilingsTarget-0.069660M&A Transaction ClosingsSeller-0.069660M&A Transaction AnnouncementsTarget-0.069660M&A Transaction ClosingsSeller-0.06960M&A Transaction ClosingsSeller-0.028724Delayed SEC FilingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Strategic Alliances	Target	-0.701030	
Lawshits & Legal TisslesTarget-0.67731Investor Activism - Activist CommunicationTarget-0.657731Corporate Guidance - LoweredTarget-0.590799Private PlacementsBuyer-0.569800M&A Transaction AnnouncementsSeller-0.472392M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.455673M&A CallsTarget-0.416285Index Constituent AddsTarget-0.416104M&A Rumors and DiscussionsTarget-0.409002Shareholder/Analyst CallsTarget-0.306394Labor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.268724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.028792Discontinued Operations/DownsizingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.133957Private PlacementsTarget0.133957Private PlacementsTarget0.22887Seeking Acquisitions/InvestmentsTarget0.326793	Journate & Logal Jacuas	Target	-0.741010	
Investor Activist CommunicationTarget-0.637/31Corporate Guidance - LoweredTarget-0.590799Private PlacementsBuyer-0.569800M&A Transaction AnnouncementsSeller-0.472392M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.436285Index Constituent AddsTarget-0.417274Buyback Transaction ClosingsTarget-0.409002Shareholder/Analyst CallsTarget-0.306394Labor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.280724ConferencesParticipant-0.280724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069015M&A Transaction ClosingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.133957Private PlacementsTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.223887	Lawsuits & Legal issues	Target	-0.077402	
Corporate Guidance - LoweredTarget-0.590799Private PlacementsBuyer-0.450799M&A Transaction AnnouncementsSeller-0.472392M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.455673M&A CallsTarget-0.436285Index Constituent AddsTarget-0.417274Buyback Transaction ClosingsTarget-0.41004M&A Rumors and DiscussionsTarget-0.306394Shareholder/Analyst CallsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.06960M&A Transaction ClosingsSeller-0.06960M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.133957Private PlacementsTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Composite Cuidence Levened	Taryet	-0.037731	
Private PlacementsBuyer-0.369800M&A Transaction AnnouncementsSeller-0.472392M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.436285Index Constituent AddsTarget-0.417274Buyback Transaction ClosingsTarget-0.416104M&A Rumors and DiscussionsTarget-0.306394Shareholder/Analyst CallsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.009015Farnings Release DateTarget-0.028192Discontinued Operations/DownsizingsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget-0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Corporate Guidance - Lowered	larget	-0.390799	
MAA Transaction AnnouncementsSeller-0.472392M&A Transaction ClosingsBuyer-0.464066Company Conference PresentationsTarget-0.455673M&A CallsTarget-0.436285Index Constituent AddsTarget-0.416104M&A Rumors and DiscussionsTarget-0.409002Shareholder/Analyst CallsTarget-0.306394Labor-related AnnouncementsTarget-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.069015Farnings Release DateTarget-0.069015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.028792Discontinued OfferingsTarget-0.010337Fixed Income OfferingsTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Mch. Thereaction Appendix	Buyer	-0.369600	
MAA Transaction closingsBuyer-0.464066Company Conference PresentationsTarget-0.455673M&A CallsTarget-0.436285Index Constituent AddsTarget-0.417274Buyback Transaction ClosingsTarget-0.409002Shareholder/Analyst CallsTarget-0.306394Labor-related AnnouncementsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.009015M&A Transaction ClosingsSeller-0.009015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	MaA fransaction Announcements	Seller	-0.472392	
Company Conference PresentationsTarget-0.435673M&A CallsTarget-0.436285Index Constituent AddsTarget-0.417274Buyback Transaction ClosingsTarget-0.416104M&A Rumors and DiscussionsTarget-0.30633Shareholder/Analyst CallsTarget-0.306394Labor-related AnnouncementsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.009060M&A Transaction ClosingsSeller-0.069060M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget-0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Maa Iransaction closings	Биуег	-0.464066	
MAA Callslarget-0.436285Index Constituent AddsTarget-0.417274Buyback Transaction ClosingsTarget-0.416104M&A Rumors and DiscussionsTarget-0.409002Shareholder/Analyst CallsTarget-0.313663Labor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.069660M&A Transaction ClosingsSeller-0.069015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Company conference Presentations	Target	-0.433673	
Index Constituent AddsTarget-0.417274Buyback Transaction ClosingsTarget-0.416104M&A Rumors and DiscussionsTarget-0.409002Shareholder/Analyst CallsTarget-0.313663Labor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.0103672Earnings Release DateTarget-0.069015M&A Transaction ClosingsSeller-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	M&A Calls	larget	-0.436285	
Buyback Transaction ClosingsTarget-0.416104M&A Rumors and DiscussionsTarget-0.409002Shareholder/Analyst CallsTarget-0.313663Labor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069660M&A Transaction ClosingsSeller-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Index Constituent Adds	larget	-0.41/2/4	
M&A Rumors and Discussionslarget-0.409002Shareholder/Analyst CallsTarget-0.313663Labor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.069660M&A Transaction ClosingsSeller-0.069015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Buyback Transaction Closings	larget	-0.416104	
Shareholder/Analyst CallsTarget-0.313663Labor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069660M&A Transaction ClosingsSeller-0.069015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	M&A Rumors and Discussions	larget	-0.409002	
Labor-related AnnouncementsTarget-0.306394Business ReorganizationsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069660M&A Transaction ClosingsSeller-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Shareholder/Analyst Calls	larget	-0.313663	
Business ReorganizationsTarget-0.301770ConferencesParticipant-0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069660M&A Transaction ClosingsSeller-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Labor-related Announcements	Target	-0.306394	
ConferencesParticipant -0.281036M&A Transaction AnnouncementsBuyer-0.268724Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069660M&A Transaction ClosingsSeller-0.069015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Business Reorganizations	Target	-0.301//0	
M&A Transaction AnnouncementsBuyer-0.268/24Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069660M&A Transaction ClosingsSeller-0.069015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Conterences	Participant	-0.281036	
Delayed SEC FilingsTarget-0.113672Earnings Release DateTarget-0.069660M&A Transaction ClosingsSeller-0.069015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	M&A Transaction Announcements	Buyer	-0.268724	
Earnings Release DateTarget-0.069660M&A Transaction ClosingsSeller-0.069015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Delayed SEC Filings	Target	-0.113672	
M&A Transaction ClosingsSeller-0.069015M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Earnings Release Date	Target	-0.069660	
M&A Transaction AnnouncementsTarget-0.028792Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	M&A Transaction Closings	Seller	-0.069015	
Discontinued Operations/DownsizingsTarget-0.010337Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	M&A Transaction Announcements	Target	-0.028792	
Fixed Income OfferingsTarget0.047205Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Discontinued Operations/Downsizings	Target	-0.010337	
Corporate Guidance - New/ConfirmedTarget0.133957Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Fixed Income Offerings	Target	0.047205	
Private PlacementsTarget0.223887Seeking Acquisitions/InvestmentsTarget0.366793	Corporate Guidance - New/Confirmed	Target	0.133957	
Seeking Acquisitions/Investments Target 0.366793	Private Placements	Target	0.223887	
	Seeking Acquisitions/Investments	Target	0.366793	

		(continued from previous page)
Board Meeting	Target	0.375795
Considering Multiple Strategic Alternatives	Target	0.556299
Announcements of Sales/Trading Statement	Target	0.662073
Debt Financing Related	Target	0.696258
Annual General Meeting	Target	0.760826
Seeking to Sell/Divest	Target	0.809188
End of Lock-Up Period	Target	1.033670
Buyback Tranche Update	Target	1.077510
Announcements of Earnings	Target	1.128810
Analyst/Investor Day	Target	1.208400
Investor Activism - Proxy/Voting Related	Target	1.211770
Delistings	Target	1.223670
Impairments/Write Offs	Target	1.460700
Corporate Guidance - Raised	Target	1.547110
Index Constituent Drops	Target	1.557680
Buyback - Change in Plan Terms	Target	1.846240
Buyback Transaction Announcements	Target	2.327460

```
# Expected p-values (with continuity correction)
pvals = norm.cdf(-df['post_t'].abs()) * 2
fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 9))
ax.plot(sorted(pvals))
ax.plot([0, len(pvals)-1], [0.5/len(pvals), (len(pvals)-0.5)/len(pvals)], 'r--')
ax.set_title('Distribution of p-values')
ax.legend(['actual', 'expected'])
plt.tight_layout()
```


	rejections	min	p-value
uncorrected	4		0.0059

7.3.1 Bonferroni correction

The best-known FWER test is called the Bonferroni test which adjusts for the multiple tests. Given the chance that one test could randomly show up as significant, the Bonferroni requires the confidence level to increase. Instead of 5%, you take the 5% and divide by the number of tests, that is, 5%/10 = 0.5%. Again equivalently, you need to be 99.5% confident with 10 tests that you are not making a single false discovery. In terms of the t-statistic, the Bonferroni requires a statistic of at least 2.8 for 10 tests. For 1,000 tests, the statistic must exceed 4.1.

It sets the threshold for rejecting each hypothesis to α/m , by applying the union bound inequality:

$$\operatorname{FWER}(\alpha) = \Pr(\cup_{j=1}^m A_j) \leq \sum_{j=1}^m \Pr(A_j) \leq m \times \frac{\alpha}{m} = \alpha$$

where A_j denotes the probability of rejecting the *j*-th hypothesis. The Bonferroni correction can be quite conservative, in the sense that the true FWER is often quite a bit lower than the nominal (or target) FWER;

	rejections	min p-value
uncorrected	4	0.0059
bonferroni	0	0.3542

7.3.2 Holm's step-down procedure

Holm' s method, also known as Holm' s step-down procedure or the Holm-Bonferroni method, is an alternative to the Bonferroni procedure. Holm' s method method controls the FWER, but it is less conservative than Bonferroni, in the sense that it will reject more null hypotheses, typically resulting in fewer Type II errors and hence greater power. Holm' s method makes no independence assumptions about the hypothesis tests, and is uniformly more powerful than the Bonferroni method –it will always reject at least as many null hypotheses as Bonferroni–and so it should always be preferred. It is worth noting that in Holm' s procedure, the threshold that we use to reject each null hypothesis actually depends on the values of all the p-values.

The Holm method begins by sorting the tests from the lowest p-value (most significant) to the highest (least significant), and comparing a threshold computed with the Holm function. In contrast to the Bonferroni, which has a single threshold for all tests, the other tests will have a different hurdle under Holm. Starting from the first test, we sequentially compare the p-values with their hurdles. When we first come across the test such that its p-value fails to meet the hurdle, we reject this test and all others with higher p-values.

rejections min p-value uncorrected 4 0.0059

bonferroni	0	0.3542
holm	0	0.3542

7.3.3 Benjamin-Hochberg procedure

The false discovery rate approach allows an expected proportional error rate. As such, it is less stringent than both the Bonferroni and the Holm test. FDR control is much milder –and more powerful –than FWER control, in the sense that it allows us to reject many more null hypotheses, with a cost of substantially more false positives.

Similar to the Holm test, Benjamin-Hochberg also relies on the distribution of test statistics. However, in contrast to the Holm test that begins with the most significant test, the Benjamin-Hochberg approach starts with the least significant. We sort the tests from the lowest p-value (most significant) to the highest (least significant). Starting from the last test, we sequentially compare the p-values with their Benjamin-Hochberg thresholds. When we first come across the test such that its p-value falls below its threshold, we declare this test significant and all tests that have a lower p-value.

The multipletests function can be used to carry out the Benjamini–Hochberg procedure. The q-values output by the Benjamini–Hochberg procedure can be interpreted as the smallest FDR threshold at which we would reject a particular null hypothesis. For instance, a q-value of 0.1 indicates that we can reject the corresponding null hypothesis at an FDR of 10% or greater, but that we cannot reject the null hypothesis at an FDR below 10%.

	rejections	min p-value
uncorrected	4	0.0059
bonferroni	0	0.3542
holm	0	0.3542
fdr_bh	0	0.3542

```
# Plot uncorrected and corrected p-values from Benjamini-Hochberg method
fig, ax = plt.subplots(figsize=(10, 9))
ax.scatter(pvals, fdr_bh_corrected, color='red')
ax.set_ylim(bottom=0, top=1)
ax.set_title(f"Benjamini-Hochberg method to control the FDR at alpha={alpha}")
ax.set_xlabel('uncorrected p-values')
ax.set_ylabel('Benjamini-Hochberg corrected p-values')
plt.tight_layout()
```


References

Kolari, James W. and Pynnonen, Seppo, 2010, "Event Study Testing with Cross-sectional Correlation of Abnormal Returns". The Review of Financial Studies, 23(11), 3996-4025

Kolari, James W., Paper, Bernd, and Pynnonen, Seppo, 2018, "Event Study Testing with Cross-sectional Correlation Due to Partially Overlapping Event Windows", working paper

MacKinlay, A. Craig "Event Studies in Economics and Finance", Journal of Economic Literature, March 1997.

MIT License. Copyright 2021-2025 Terence Lim

ECONOMIC INDICATORS

What we learn from history is that people don't learn from history - Warren Buffett

Economic data is fundamental to financial analysis, policymaking, and investment strategies. However, many economic indicators are subject to revisions, meaning initial estimates may change over time as more accurate data becomes available. Understanding these revisions is crucial for interpreting past economic conditions, refining forecasting models, and making informed decisions. We explore retrieving data from online sources such as the Federal Reserve Economic Data (FRED), its archival counterpart (ALFRED), and key derived datasets such as FRED-MD and FRED-QD. Additionally, we examine the impact of data revisions on critical economic indicators like Total Nonfarm Payrolls (PAYEMS), and methods for detecting outliers in historical data.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import textwrap
from finds.readers import Alfred, fred_md, fred_qd
from finds.recipes import is_outlier
from datetime import datetime
from pprint import pprint
from secret import credentials
VERBOSE = 0
# %matplotlib qt
```

8.1 FRED

Federal Reserve Economic Data (FRED) is a widely used online database maintained by the Federal Reserve Bank of St. Louis, providing access to hundreds of thousands of economic data series from national and international sources. Users can retrieve data via the website, an Excel add-in, or API calls.

8.2 Retrieving data from websites

Economic data can be retrieved from the web through several methods:

- 1. **Downloading structured files** –Many websites provide data in formats like CSV, Excel, or JSON, making it easy to import into analytical tools.
- 2. Web scraping –Extracting information directly from web pages by identifying specific HTML tags or text patterns.
- 3. Using APIs –Some platforms, including FRED, offer APIs that allow developers to automate data retrieval via structured queries.

8.2.1 Download structured files

Many economic data providers allow users to download pre-structured files containing historical and current data. These files often include metadata, timestamps, and adjustment information.

```
# Pandas has several built-in readers for csv, xml, json, excel and even html files
G
df = pd.read_csv(url, header=0)
df
```

	sasdate	RPI	W875RX1	DPCERA3M086SBEA	C.	MRMTSPLx	\backslash
0	Transform:	5.000	5.0	5.000	5.00	0000e+00	
1	1/1/1959	2583.560	2426.0	15.188	2.76	6768e+05	
2	2/1/1959	2593.596	2434.8	15.346	2.78	7140e+05	
3	3/1/1959	2610.396	2452.7	15.491	2.77	7753e+05	
4	4/1/1959	2627.446	2470.0	15.435	2.83	3627e+05	
••							
788	8/1/2024	20007.209	16322.1	121.052	1.53	0317e+06	
789	9/1/2024	20044.142	16333.7	121.690	1.54	1305e+06	
790	10/1/2024	20128.752	16397.9	121.948	1.53	9382e+06	
791	11/1/2024	20161.687	16432.8	122.519	1.54	4190e+06	
792	12/1/2024	20184.060	16457.8	123.013	5	NaN	
	RETAIL	x INDPRO	IPFPNSS	S IPFINAL IP	CONGD	••••	
0	5.0000	0 5.0000	5.0000	5.0000 5	.0000		
1	18235.7739	2 21.9616	23.3868	3 22.2620 31	.6664		
2	18369.5630	8 22.3917	23.7024	4 22.4549 31	.8987		
3	18523.0576	2 22.7142	23.8459	9 22.5651 31	.8987		
4	18534.4660	0 23.1981	24.1903	3 22.8957 32	.4019		
••	• •		••		• • •	•••	

788	710038.00000	103.0135	100.9825	100.9803	102.	2118	
789	716388.00000	102.5969	100.3826	100.0630	101.	9696	
790	720393.00000	102.0854	99.5434	98.9267	101.	3127	
791	725925.00000	102.2549	99.8216	99.4970	101.	7893	
792	729191.00000	103.1942	100.5351	100.1302	102.	2582	
	DNDGRG3M086SBB	EA DSERRG3	M086SBEA	CES060000	8000	CES200000	/ 8000
0	6.00	00	6.000		6.00		6.00
1	18.294		10.152	2.13		2.45	
2	18.302		10.167	2.14		2.46	
3	18.289		10.185	2.15		2.45	
4	18.300		10.221	2.16		2.47	
	• •						
788	119.653		128.291	31.26		35.81	
789	119.220		128.682	31.44		36.00	
790	119.064		129.169	29.169 31.55		36.22	
791	119.112		129.375	31.61		36.21	
792	119.689		129.760	31.73		36.44	
	CES300000008	UMCSENTx	DTCOLNVH	TNM DTCI	HFNM	INVEST	VIXCLSx
0	6.00	2.0	6.	.00	6.00	6.0000	1.0000
1	2.04	NaN	6476.	.00 1229	8.00	84.2043	NaN
2	2.05	NaN	6476.	.00 1229	8.00	83.5280	NaN
3	2.07	NaN	6508.	.00 1234	9.00	81.6405	NaN
4	2.08	NaN	6620.	.00 1248	84.00	81.8099	NaN
••	• • •				• • •		• • •
788	27.97	67.9	551667.	.22 93306	6.90	5327.6461	19.6750
789	28.11	70.1	553347.	.06 93428	3.59	5368.5818	17.6597
790	28.14	70.5	554377.	.25 93729	9.96	5407.3304	19.9478
791	28.29	71.8	555000.	.61 93889	9.31	5382.4019	15.9822
792	28.34	74.0	ľ	JaN	NaN	5370.6184	15.6997
[793	rows x 127 col	Lumns]					
-		-					

8.2.2 Web scraping

Web scraping involves extracting data from unstructured web pages by identifying patterns in the HTML structure. This method is useful when structured data files are unavailable, but it requires compliance with website policies.

```
# URL that displays the most popular series in the FRED economic data web site
url = f"https://fred.stlouisfed.org/tags/series?ob=pv&pageID=1"
```

```
# use requests package to retrieve the web page
import requests
data = requests.get(url)
data  # a response code of 200 indicates the request has succeeded
```

<Response [200]>

soup = BeautifulSoup(data.content, 'lxml')

```
s="series-title pager-series-title-qtm" href="/series/T10Y2Y" id="titleLink" style=
-- "font-size:1.2em; padding-bottom: 2px">10-Year Treasury Constant Maturity Minus_
⇔2-Year Treasury Constant Maturity</a></h3>
</div>
<div class="display-results-popularity-bar d-none d-sm-block col-sm-2">
<span aria-label="popularity 100% popular" class="popularity-bar-span-parent" data-</pre>
otarget="popularity-bar-span-T10Y2Y" tabindex="0" title="100% popular">
<span aria-hidden="true" class="popularity_bar" style="padding-top: 3px; padding-</pre>
Geft:60px;"> </span> <span aria-hidden="true" class="popularity_bar_background".</pre>
sid="popularity-bar-span-T10Y2Y"> </span></span>
</div>
<div class="series-meta series-group-meta">
<span class="attributes">Percent, Not Seasonally Adjusted</span>
<br class="clear"/>
</div>
<div class="series-meta">
<input aria-labelledby="unitLinkT10Y2Y" class="pager-item-checkbox pager-check-</pre>
⇔series-gtm" name="sids[0]" type="checkbox" v
```

```
# identify all the tags whose class starts with 'series-title'
tags = soup.findAll(name='a', attrs={'class': 'series-title'})
tags[0] # show first tag found
```

10-Year Treasury Constant Maturity Minus 2-Year Treasury Constant Maturity

'T10Y2Y'

8.2.3 Using APIs

APIs (Application Programming Interfaces) enable direct communication with data servers, allowing for real-time data retrieval. Many economic research institutions, including the St Louis Fed, offer APIs to access macroeconomic data programmatically.

```
# an API call is simply a URL string containing your parameters for the request
url = "{root}?series_id={series_id}&file_type={file_type}&api_key={api_key}".format(
    root="https://api.stlouisfed.org/fred/series", # base url of the API call
    series_id=details[0], # mnemonic of the data series to_
    "etrieve
    file_type='json', # request data be returned in json_
    "format
    api_key=credentials['fred']['api_key']) # private api key (obtain from_
    "FRED for free)
```

```
# make the API call to retrieve the data
data = requests.get(url)
data.content
```

```
# use the json package to convert byte-string data content
import json
v = json.loads(data.content)
v
```

```
{'realtime_start': '2025-02-28',
  'realtime_end': '2025-02-28',
  'seriess': [{'id': 'T10Y2Y',
    'realtime_start': '2025-02-28',
    'realtime_end': '2025-02-28',
    'title': '10-Year Treasury Constant Maturity Minus 2-Year Treasury Constant_
    Maturity',
    'observation_start': '1976-06-01',
    'observation_end': '2025-02-28',
    'frequency': 'Daily',
    'frequency': 'Daily',
    'frequency_short': 'D',
    'units': 'Percent',
    'units_short': '%',
```

```
'seasonal_adjustment': 'Not Seasonally Adjusted',
'seasonal_adjustment_short': 'NSA',
'last_updated': '2025-02-28 16:02:07-06',
'popularity': 100,
'notes': 'Starting with the update on June 21, 2019, the Treasury bond data_
Gued in calculating interest rate spreads is obtained directly from the U.S._
Gued in calculating interest rate spreads is obtained directly from the U.S._
Gued in calculating interest rate spreads is obtained directly from the U.S._
Gued in calculating interest rate spreads is obtained directly from the U.S._
Gued interest-rates/Pages/TextView.aspx?data=yield).\r\nSeries is calculated as the
Gued between 10-Year Treasury Constant Maturity (BC_10YEAR) and 2-Year_
Gued between 10-Year Treasury Constant Maturity (BC_10YEAR) and 2-Year_
Gued between 10-Year Treasury Constant Maturity (BC_10YEAR) and 2-Year_
Gued between 10-Year Treasury Constant Maturity (BC_10YEAR) and 2-Year_
Gued between 10-Year Treasury Constant Maturity (BC_10YEAR) and 2-Year_
Gued between 10-Year Treasury Constant Maturity (BC_10YEAR) and 2-Year_
Gued between 10-Year Treasury Constant Maturity (BC_10YEAR) and 2-Year_
Gued between 10-Year Treasury Constant Maturity (BC_10YEAR) and 2-Year_
Gued between 10-Year Treasury Constant Maturity (BC_2YEAR). Both underlying series are published at_
Gued between 10-Year Treasury Constant Constant Year Treasury Constant Maturity (BC_2YEAR). Both underlying series are published at_
Gued between 10-Year Treasury Constant Constant Year Treasury Constant Constant Year Treasury Year Year Year Treasury Year Treasury Year Tr
```

```
# Pandas can create a DataFrame directly from a dict data structure
df = DataFrame(v['seriess'])
df
```

```
id realtime_start realtime_end \
0 T10Y2Y 2025-02-28 2025-02-28
                                             title observation_start \
0 10-Year Treasury Constant Maturity Minus 2-Yea...
                                                        1976-06-01
 observation_end frequency frequency_short
                                           units units_short \
0
      2025-02-28
                    Daily
                                       D Percent
                                                           8
      seasonal_adjustment seasonal_adjustment_short
                                                             last_updated \
                                              NSA 2025-02-28 16:02:07-06
0 Not Seasonally Adjusted
  popularity
                                                        notes
0
      100 Starting with the update on June 21, 2019, the...
```

8.2.4 ALFRED (Archival FRED)

ALFRED extends FRED's functionality by preserving historical versions of economic data. This allows researchers to track how data revisions impact economic narratives over time.

```
today = int(datetime.today().strftime('%Y%m%d'))
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
```

8.2.5 Popular FRED series

FRED organizes its data into **categories**, **frequencies**, **and seasonal adjustments**. Some of the most frequently accessed series include employment figures, inflation metrics, and GDP growth rates. A current list of the most popular FRED series can be found here.

```
# scrape FRED most popular page
popular = {}
titles = Alfred.popular(1)
for title in titles:
```

```
series = alf.request_series(title) # requests 'series' FRED api
if not series.empty:
    popular[title] = series.iloc[-1][['title', 'popularity']]
print(f"Most Popular Series in FRED, retrieved {today}")
DataFrame.from_dict(popular, orient='index')
```

Most Popular Series in FRED, retrieved 20250302

	populaticy
T10Y2Y 10-Year Treasury Constant Maturity Minus 2-Yea	100
MORTGAGE30US 30-Year Fixed Rate Mortgage Average in the Uni	99
FEDFUNDS Federal Funds Effective Rate	98
M2SL M2	93
RRPONTSYD Overnight Reverse Repurchase Agreements: Treas	95
CPIAUCSL Consumer Price Index for All Urban Consumers:	95
UNRATE Unemployment Rate	95
WALCL Assets: Total Assets: Total Assets (Less Elimi	94
T10Y3M 10-Year Treasury Constant Maturity Minus 3-Mon	94
GDP Gross Domestic Product	93
GDPC1 Real Gross Domestic Product	92
DGS10 Market Yield on U.S. Treasury Securities at 10	92
BAMLH0A0HYM2 ICE BofA US High Yield Index Option-Adjusted S	92
MSPUS Median Sales Price of Houses Sold for the Unit	90
CSUSHPINSA S&P CoreLogic Case-Shiller U.S. National Home	88
T10YIE 10-Year Breakeven Inflation Rate	89
FPCPITOTLZGUSA Inflation, consumer prices for the United States	85
M1SL M1	84

Text(0.5, 0.98, 'FRED Most Popular series (retrieved 20250302)')

8.2.6 FRED series categories

One of the most closely watched FRED series is Total Nonfarm Payroll Employment (PAYEMS), a key labor market indicator. This series belongs to broader employment-related categories.

```
# Retrieve grandparent, parent and siblings of series
series_id, freq = 'PAYEMS', 'M'
category = alf.categories(series_id).iloc[0]
grand_category = alf.get_category(category['parent_id'])
parent_category = alf.get_category(category['id'])
category.to_frame().T
```

id name parent_id PAYEMS 32305 Total Nonfarm 11

```
print(f"Super category {grand_category['id']}: {grand_category['name']}")
if 'notes' in grand_category:
    print(textwrap.fill(grand_category['notes']))
```

Super category 11: Current Employment Statistics (Establishment Survey) The establishment survey provides data on employment, hours, and earnings by industry. Numerous conceptual and methodological differences between the current population (household) and establishment surveys result in important distinctions in the employment estimates derived from the surveys. Among these are: The household survey includes agricultural workers, the self- employed, unpaid family workers, and private household workers among the employed. These groups are excluded from the establishment survey. The household survey includes people on unpaid leave among the employed. The establishment survey does not. The household survey is limited to workers 16 years of age and older. The establishment survey is not limited by age. The household survey has no duplication of individuals, because individuals are counted only once, even if they hold more than one job. In the establishment survey, employees working at more than one job and thus appearing on more than one payroll are counted separately for each appearance. For more information, visit http://www.bls.gov/news.release/empsit.tn.htm.

```
print("Parent categories:")
for child in grand_category['children']:
    node = alf.get_category(child['id'])
    if node:
        print(f" {node['id']}: {node['name']} "
            f" (children={len(node['children'])}, series={len(node['series'])})")
```

Parent categories: 32305: Total Nonfarm (children=0, series=5) 32306: Total Private (children=0, series=27) 32307: Goods-Producing (children=0, series=27) 32326: Service-Providing (children=0, series=1) 32308: Private Service-Providing (children=0, series=27) 32309: Mining and Logging (children=0, series=39) 32310: Construction (children=0, series=41) 32311: Manufacturing (children=0, series=31)

```
32312: Durable Goods (children=0, series=63)
32313: Nondurable Goods (children=0, series=55)
32314: Trade, Transportation, and Utilities (children=0, series=27)
32315: Wholesale Trade (children=0, series=33)
32316: Retail Trade (children=0, series=55)
32317: Transportation and Warehousing (children=0, series=47)
32318: Utilities (children=0, series=27)
32319: Information (children=0, series=39)
32320: Financial Activities (children=0, series=51)
32321: Professional and Business Services (children=0, series=55)
32322: Education and Health Services (children=0, series=51)
32323: Leisure and Hospitality (children=0, series=41)
32324: Other Services (children=0, series=33)
32325: Government (children=0, series=23)
```

```
print("Sibling series:")
for child in parent_category['series']:
    if child['id'] == series_id:
        node = child
    print(f" {child['id']}: {child['title']} {child['seasonal_adjustment']}"
        f" (popularity={child['popularity']})")
```

```
Sibling series:
CES000000010: Women Employees, Total Nonfarm Seasonally Adjusted (popularity=4)
CES000000039: Women Employees-To-All Employees Ratio: Total Nonfarm Seasonally_
Adjusted (popularity=16)
CEU000000010: Women Employees, Total Nonfarm Not Seasonally Adjusted_
(popularity=1)
PAYEMS: All Employees, Total Nonfarm Seasonally Adjusted (popularity=83)
PAYNSA: All Employees, Total Nonfarm Not Seasonally Adjusted (popularity=47)
```

PAYEMS: All Employees, Total Nonfarm Seasonally Adjusted (1939-01-01-2025-01-01)

All Employees: Total Nonfarm, commonly known as Total Nonfarm Payroll, is a measure of the number of U.S. workers in the economy that excludes proprietors, private household employees, unpaid volunteers, farm employees, and the unincorporated self-employed. This measure accounts for approximately 80 percent of the workers who contribute to Gross Domestic Product (GDP). This measure provides useful insights into the current economic situation because it can represent the number of jobs added or lost in an economy. Increases in employment might indicate that businesses are hiring which might also suggest that businesses are growing. Additionally, those who are newly employed have increased their personal incomes, which means (all else constant) their disposable incomes have also increased, thus fostering further economic expansion. Generally, the U.S. labor force and levels of employment and unemployment are subject to fluctuations due to seasonal changes in weather, major holidays, and the opening and

```
closing of schools. The Bureau of Labor Statistics (BLS) adjusts the
data to offset the seasonal effects to show non-seasonal changes: for
example, women's participation in the labor force; or a general
decline in the number of employees, a possible indication of a
downturn in the economy. To closely examine seasonal and non-seasonal
changes, the BLS releases two monthly statistical measures: the
seasonally adjusted All Employees: Total Nonfarm (PAYEMS) and All
Employees: Total Nonfarm (PAYNSA), which is not seasonally adjusted.
The series comes from the 'Current Employment Statistics
(Establishment Survey).' The source code is: CES0000000001
```

8.3 Revisions and vintage dates

Economic data revisions occur as new information becomes available, improving the accuracy of initial estimates. The Bureau of Labor Statistics (BLS), for instance, releases an initial estimate of Total Nonfarm Payroll Employment (PAYEMS) on the first Friday of each month. However, this figure is a very rough estimate, which is then revised in subsequent months as more firm-level data is collected.

These revisions can be significant, sometimes altering economic assessments. ALFRED, the archival FRED tool, allows users to compare initial estimates with later revisions. For the monthly values of PAYEMS in 2023, we examine the total amount of changes at each subsequent revision.

```
start, end = 20230101, 20231231
data = {}
print(f"{alf.header(series_id)} (retrieved {today}):")
latest = alf(series_id, start=start, end=end, freq=freq, realtime=True)
latest
```

All Employees, Total Nonfarm (retrieved 20250302):

	PAYEMS	realtime_start	realtime_end
date			
20230131	154780	20250207	99991231
20230228	155086	20250207	99991231
20230331	155171	20250207	99991231
20230430	155387	20250207	99991231
20230531	155614	20250207	99991231
20230630	155871	20250207	99991231
20230731	156019	20250207	99991231
20230831	156176	20250207	99991231
20230930	156334	20250207	99991231
20231031	156520	20250207	99991231
20231130	156661	20250207	99991231
20231231	156930	20250207	99991231

```
print("First Release:")
data[0] = alf(series_id, release=1, start=start, end=end, freq=freq, realtime=True)
data[0]
```

First Release:

	PAYEMS	realtime_start	realtime_end
date			
20230131	155073	20230203	20230309
20230228	155350	20230310	20230406
20230331	155569	20230407	20230504
20230430	155673	20230505	20230601
20230531	156105	20230602	20230706
20230630	156204	20230707	20230803
20230731	156342	20230804	20230831
20230831	156419	20230901	20231005
20230930	156874	20231006	20231102
20231031	156923	20231103	20231207
20231130	157087	20231208	20240104
20231231	157232	20240105	20240201

```
print("Second Release:")
```

data[1] = alf(series_id, release=2, start=start, end=end, freq=freq, realtime=True)
data[1]

```
Second Release:
```

	PAYEMS	realtime_start	realtime_end
date			
20230131	155039	20230310	20230406
20230228	155333	20230407	20230504
20230331	155420	20230505	20230601
20230430	155766	20230602	20230706
20230531	155995	20230707	20230803
20230630	156155	20230804	20230831
20230731	156232	20230901	20231005
20230831	156538	20231006	20231102
20230930	156773	20231103	20231207
20231031	156888	20231208	20240104
20231130	157016	20240105	20240201
20231231	157347	20240202	20240307

```
print("Third Release:")
data[2] = alf(series_id, release=3, start=start, end=end, freq=freq, realtime=True)
data[2]
```

```
Third Release:
```

	PAYEMS	realtime_start	realtime_end
date			
20230131	155007	20230407	20240201
20230228	155255	20230505	20240201
20230331	155472	20230602	20240201
20230430	155689	20230707	20240201
20230531	155970	20230804	20240201
20230630	156075	20230901	20240201
20230731	156311	20231006	20240201
20230831	156476	20231103	20240201
20230930	156738	20231208	20240201

20231031	156843	20240105	20240201
20231130	157014	20240202	20250206
20231231	157304	20240308	20250206

```
print("Fourth Release:")
data[3] = alf(series_id, release=4, start=start, end=end, freq=freq, realtime=True)
data[3]
```

Fourth Release:

	PAYEMS	realtime_start	realtime_end
date			
20230131	154773	20240202	20250206
20230228	155060	20240202	20250206
20230331	155206	20240202	20250206
20230430	155484	20240202	20250206
20230531	155787	20240202	20250206
20230630	156027	20240202	20250206
20230731	156211	20240202	20250206
20230831	156421	20240202	20250206
20230930	156667	20240202	20250206
20231031	156832	20240202	20250206
20231130	156661	20250207	99991231
20231231	156930	20250207	99991231

		Total	revisions	('000)
Revision	1			-349
Revision	2			-348
Revision	3			-2095

```
#df = pd.concat([data[i][series_id].rename(f"Revision {i}")
# for i in range(1, len(data))], axis=1)
#labels = pd.concat([data[i]['realtime_start'].rename(f"Revision {i}")
# for i in range(1, len(data))], axis=1).fillna(0).astype(int)
fig, ax = plt.subplots(figsize=(12, 6))
plot_groupbar(df, labels=labels, ax=ax)
plt.legend()
plt.ylabel(f'Change in {series_id}')
plt.title(f'Revisions and vintage dates of {series_id}')
plt.tight_layout()
plt.show()
```


8.3.1 FRED-MD and FRED-QD

FRED-MD (Monthly Database) and FRED-QD (Quarterly Database) are curated datasets that streamline access to macroeconomic indicators. These datasets mimic the coverage of macroeconomic datasets used in the research literature and are updated in real-time, relieving users from the task of incorporating data changes and revisions. Historical monthly snap-shots of the datasets are also available.

8.3.2 Release dates

The timing of data releases is crucial for market participants and policymakers.

```
md_df, md_transform = fred_md()
end = md_df.index[-1]
out = \{\}
for i, title in enumerate(md_df.columns):
    out[title] = alf(series_id=title,
                     release=1,
                     start=end, # within 4 days of monthend
                     end=end,
                     realtime=True)
    if title.startswith('S&P'): # stock market data available same day close
        out[title] = Series({end: end}, name='realtime_start').to_frame()
    elif title in alf.splice_: # these series were renamed or spliced
        if isinstance(Alfred.splice_[title], str): # if renamed
            out[title] = alf(series_id=Alfred.splice_[title],
                             release=1,
                                          # within 4 days of monthend
                             start=end-4,
                             end=end.
                             realtime=True)
              # if FRED-MD series was spliced
        else:
            out[title] = pd.concat([alf(series_id=sub,
                                        reglease=1,
                                         start=end-4, # within 4 days of monthend
```

```
end=end,
realtime=True)
for sub in Alfred.splice_[title][1:]])
```

FRED-MD vintage: monthly/current.csv

```
# date convention of Consumer Sentiment
df = alf('UMCSENT', release=1, realtime=True)
out['UMCSENT'] = df[df['realtime_start'] > end - 4].iloc[:1]
```

```
# weekly averages of Claims
df = alf('ICNSA', release=1, realtime=True)
out['CLAIMS'] = df[df['realtime_start'] > end - 4].iloc[:1]
```

```
fig, ax = plt.subplots(clear=True, num=1, figsize=(13, 5))
ax.plot(pd.to_datetime(release, errors='coerce'))
ax.axvline(release[~release.isnull()].index[-1], c='r')
ax.set_title(f"Current ({end}) FRED-MD series, retrieved {today}")
ax.set_ylabel('First Release Date')
ax.set_xticks(np.arange(len(release)))
ax.set_xticklabels(release.index, rotation=90, fontsize='xx-small')
plt.tight_layout()
```



```
# Check if recently released data available to update latest FRED-MD

md_missing = md_df.iloc[-1]
md_missing = md_missing[md_missing.isnull()]
print("Recent values available to update missing in current FRED-MD")
for series_id in md_missing.index:
    print(alf.splice(series_id).iloc[-3:])
```

Recent values available to update missing in current FRED-MD date 20241031 1538666.0 20241130 1544822.0 20241231 1555153.0 Name: CMRMTSPL, dtype: float64 date 20241031 7839 20241130 8156 20241231 7600 Name: HWI, dtype: int64 date 20241130 1.145345 20241231 1.103689 20250131 NaN Name: HWIURATIO, dtype: float64 date 20241031 248120.0 20241130 248160.0 20241231 248851.0 Name: ACOGNO, dtype: float64 date 20241031 2585582.0 20241130 2588757.0 20241231 2584314.0 Name: BUSINV, dtype: float64 date 20241031 1.37 20241130 1.37 20241231 1.35 Name: ISRATIO, dtype: float64 date 3736897.53 20241031 3745366.76 20241130 3763355.59 20241231 Name: NONREVSL, dtype: float64 date 20241130 149.697308 20241231 149.793644 20250131 NaN Name: CONSPI, dtype: float64 date 20241231 37.90 20250131 37.66 20250228 37.53 Name: S&P PE ratio, dtype: float64 date 20241031 554951.25 20241130 556075.09 20241231 558854.68 Name: DTCOLNVHFNM, dtype: float64 date 938525.34 20241031 20241130 941204.79 20241231 946489.00 Name: DTCTHFNM, dtype: float64

```
(W875RX1, Real personal income excluding current transfer receipts)
                 20250131
\hookrightarrow
(ACOGNO, Manufacturers' New Orders: Consumer Goods)
                 20250204
\hookrightarrow
(HWI, Help Wanted Index for United States)
\hookrightarrow
                 20250204
(NONREVSL, Nonrevolving Consumer Credit Owned and Securitized)
\hookrightarrow
                 20250207
(CONSPI, Nonrevolving consumer credit to Personal Income)
                 20250207
\hookrightarrow
(BUSINV, Total Business Inventories)
                 20250214
4
(ISRATIO, Total Business: Inventories to Sales Ratio)
                 20250214
(CMRMTSPL, Real Manufacturing and Trade Industries Sales)
                 20250228
\hookrightarrow
(DTCOLNVHFNM, Consumer Motor Vehicle Loans Owned by Finance Companies, Level)
                 20250228
(DTCTHFNM, Total Consumer Loans and Leases Owned and Securitized by Finance_
⇔Companies, Level) 20250228
(COMPAPFF, 3-Month Commercial Paper Minus FEDFUNDS)
                                                                                           None
dtype: object
```

8.4 Outliers

- 1. Interquartile Range (IQR) Approach Filters data within median ± 10 times the interquartile range to minimize extreme values.
- 2. **Tukey's Rule** Proposed by John Tukey, this method classifies data points as "outliers" if they fall beyond 1.5 times the interquartile range (IQR) of the first or third quartile, that is outside of [Q1 1.5(Q3-Q1), Q3 + 1.5(Q3-Q1)], and as "**far out**" if beyond 3 times the IQR.

```
payems = alf('PAYEMS', freq=freq, realtime=True, diff=1, log=1).dropna().iloc[:,0]
payems
```

date 19390228 0.005898 19390331 0.005962 19390430 -0.006162 19390531 0.006789 19390630 0.006678 ... 20240930 0.001517 20241031 0.000278 20241130 0.001647 20241231 0.001934

```
20250131 0.000899
Name: PAYEMS, Length: 1032, dtype: float64
```

Outliers fraction detected by tukey: 0.0969 Outliers fraction detected by farout: 0.0329 Outliers fraction detected by iq10: 0.0029

date 19450930 -0.049622 20200430 -0.145794 20200630 0.034217 Name: PAYEMS, dtype: float64

Box-and-whiskers plot

A box plot shows the quartiles of the data while the whiskers extend to show the rest of the distribution, except for points that are determined to be "outliers", which are more than some multiple of the inter-quartile range (IQR) beyond the first and third quartiles.

```
import seaborn as sns
fig, ax = plt.subplots(figsize=(12, 6))
sns.boxplot(payems, ax=ax, orient='h', whis=3) # whiskers at 3xIQR
```

```
<Axes: xlabel='PAYEMS'>
```


Referenes:

https://fred.stlouisfed.org/

https://www.stlouisfed.org/research/economists/mccracken/fred-databases

McCracken, M. W., & Ng, S. (2016). FRED-MD: A Monthly Database for Macroeconomic Research. Journal of Business & Economic Statistics, 34(4), 574–589.

McCracken, M.W., Ng, S., 2020. FRED-QD: A Quarterly Database for Macroeconomic Research, Federal Reserve Bank of St. Louis Working Paper 2020-005

Katrina Stierholz, 2018, Economic Data Revisions: What They Are and Where to Find Them https://journals.ala.org/ index.php/dttp/article/view/6383/8404

CHAPTER

LINEAR REGRESSION DIAGONOSTICS

In economics, the majority is always wrong - John Kenneth Galbraith

For a linear regression model to produce reliable and interpretable results, it must satisfy certain assumptions. Diagnosing potential issues such as heteroskedasticity, multicollinearity, omitted variables, and influential data points is important for model validity. We explore key diagnostic tests for linear regression, including methods for detecting violations of assumptions, evaluating the impact of outliers, and assessing model fit through residual plots. Additionally, we discuss techniques for robust standard errors when assumptions are violated, such as heteroskedasticity- and autocorrelation-consistent (HAC) estimators.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import patsy
import statsmodels.formula.api as smf
from statsmodels.stats.outliers_influence import variance_inflation_factor
from finds.readers import Alfred
from finds.utils import plot_fitted, plot_leverage, plot_scale, plot_qq
from secret import credentials
VERBOSE = 0
# matplotlib qt
```

alf = Alfred(api_key=credentials['fred']['api_key'])

For this analysis, we retrieve monthly Consumer Price Index (CPI) data as the dependent (endogenous) variable and Producer Price Index (PPI) data as the independent (exogenous) variable. The model uses the monthly differences of the logarithms of both series to account for changes over time.

```
Description
CPIAUCSL Consumer Price Index for All Urban Consumers: ...
WPSFD4131 Producer Price Index by Commodity: Final Deman...
```

9.1 Model assumptions

A valid linear regression model must satisfy the following assumptions:

- 1. Linearity: The expected value of y_i follows a linear function of the independent variables: $E[y_i] = b_0 + b_1 x_{i1} + ... + b_k x_{ik}$
- 2. Exogeneity: The explanatory variables $\{x_{i1}, ..., x_{ik}\}$ are non-stochastic and not correlated with the error term.
- 3. Homoscedasticity: The variance of the dependent variable remains constant: $Var(y_i) = \sigma^2$
- 4. **Independence**: The observations $\{y_i\}$ are independent of each other.
- 5. Normality: The error terms follow a normal distribution.

When assumptions 1-4 hold, the least squares estimator:

- Provides an **unbiased** estimate of the regression coefficients: $b = (X'X)^{-1}X'y$
- Has a variance-covariance matrix: $\label{eq:var} \$Var(b) = \sigma^2 (X'X)^{-1}\$$
- The standard error for each coefficient b_i is:

```
se(b_j) = \sigma_{\sqrt{(X'X)_{[j+1,j+1]}^{-1}}}
```

When all five assumptions hold, the least squares estimator follows a normal distribution, enabling valid statistical inference.

	OLS Regres	sion Results			_
Dep. Variable:	CPIAUCSL	R-squared:		0.45	3
Model:	OLS	Adj. R-squared	1:	0.45	1
Method:	Least Squares	F-statistic:		167.	5
Date:	Sun, 02 Mar 2025	Prob (F-statis	stic):	4.43e-7	9
Time:	22:25:01	Log-Likelihood	d:	2815.	2
No. Observations:	610	AIC:		-5622	
Df Residuals:	606	BIC:		-5605	
Df Model:	3				
Covariance Type:	nonrobust				
	coef std e	rr t	P> t	[0.025	0.
⇔975]					
⇔===					

					(continued from previo	ous page)
Intercept ⇔001	0.0009	0.000	6.276	0.000	0.001	0.
CPIAUCSL.shift(1) ⇔663	0.5821	0.043	1 14.199	0.000	0.502	0.
CPIAUCSL.shift(2) ⇔032	-0.0479	0.042	1 -1.174	0.241	-0.128	0.
WPSFD4131.shift(1)	0.2011	0.03	5.609	0.000	0.131	0.
Omnibus:		116.912	Durbin-Wats	on:	2.051	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	584.706	
Skew:		-0.752	Prob(JB):		1.08e-127	
Kurtosis:		7.555	Cond. No.		522.	
Notes: [1] Standard Errors ⇔specified.	assume tha	t the cova	ariance matr:	ix of the er	crors is correct.	ly

9.1.1 Heteroskedasity and HAC robust errors

If the variance of residuals is not constant (heteroskedasticity), the usual Ordinary Least Squares (OLS) standard error formula, $\sigma^2(X'X)^{-1}$, no longer holds. While OLS coefficient estimates remain consistent, their standard errors may be misestimated. A more general form of the variance-covariance matrix is:

$$(X'X)^{-1}(X'\Omega X)(X'X)^{-1}$$

where different choices of Ω provide robust standard error estimators.

- White's (1980) heteroskedasticity-consistent estimator (also known as the sandwich estimator) uses the diagonal of squared residuals.
- Alternative estimators account for leverage effects in the design matrix.

If error terms exhibit **serial correlation**, standard heteroskedasticity-robust errors may still be misleading. **Newey and West (1987)** introduced the **Heteroskedasticity and Autocorrelation Consistent (HAC)** estimator, which applies a weighting scheme to correct for autocorrelation. The truncation parameter for lag selection is often chosen as:

$$m = 0.75T^{1/3}$$

where autocorrelation coefficients are weighted as follows:

$$1+2\sum_{j=1}^{m-1}\frac{m-j}{m}\hat{\rho_j}$$

robust = model.get_robustcov_results(cov_type='HAC', use_t=None, maxlags=0)
print(robust.summary())

	OLS Regress	ion Results	
Dep. Variable:	CPTAUCSI	B-squared:	0.453
Model:	OLS	Adj. R-squared:	0.451
Method:	Least Squares	F-statistic:	108.8

					(continued from prev	vious page)
Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Sun, 02 M 2	ar 2025 2:25:01 610 606 3 HAC	Prob (F-stat Log-Likeliho AIC: BIC:	istic): od:	2.25e-5 2815. -5622 -5605	6 2 ·
	coef	std er	r t	P> t	[0.025	0.
⇔						
Intercept ⇔001	0.0009	0.00	0 5.779	0.000	0.001	0.
CPIAUCSL.shift(1) ⇔727	0.5821	0.07	4 7.903	0.000	0.437	0.
CPIAUCSL.shift(2)	-0.0479	0.05	3 -0.902	0.367	-0.152	0.
WPSFD4131.shift(1) →309	0.2011	0.05	5 3.652	0.000	0.093	0.
		======================================	Duuloin Water			1
Omnibus: Prob(Omnibus):		110.912	Jarquo-Bora	(TR) •	2.05	1
Skew.		-0.752	Prob(JB) ·	(UD).	1 080-12	7
Kurtosis:		7 555	Cond No		522	/
			===================			-
Notes: [1] Standard Errors ⇔0 lags and withou	are hetero t small sam	scedastic ple corre	ity and autoc ction	orrelation 1	cobust (HAC) u	sing_

9.1.2 Multicollinearity and variance inflation factors

Multicollinearity arises when explanatory variables are highly correlated, leading to unstable coefficient estimates. The **Variance Inflation Factor (VIF)** quantifies the degree of multicollinearity by measuring how much a predictor's variance is inflated due to correlation with other predictors:

$$\text{VIF}_{i} = \frac{1}{1 - R_{i}^{2}}$$

where R_i^2 is obtained by regressing X_i on all other predictors.

A VIF > 5 or 10 suggests that the variable is highly collinear with other explanatory variables, potentially leading to large standard errors and unreliable estimates.

Variance Inflation Factors

VIF CPIAUCSL.shift(1) 3.414717

```
CPIAUCSL.shift(2) 3.404137
WPSFD4131.shift(1) 2.285974
```

9.1.3 Omitted variables

Leaving out an important variable from the regression model can lead to biased estimates. The consequences are:

- 1. **Bias in Included Variables**: If the omitted variable is correlated with included variables, their regression coefficients will capture some of its effect, leading to inconsistent estimates.
- 2. Inflated Residual Variance: The estimated residuals will include both true shocks and the effects of the omitted variable, reducing model accuracy.

Conversely, including an extraneous (irrelevant) variable does not introduce bias but increases standard errors, making it harder to detect significant effects.

9.2 Residual diagnostics

Residual plots help evaluate model fit, identify outliers and detect potential specification issues. An ideal model would have residuals that are not systematically related to any of the included explanatory variables. Standardized residuals may alternatively be used so that the magnitude of deviation is more apparent.

9.2.1 Residuals vs fitted plot

This plot assesses whether residuals exhibit nonlinear patterns. Ideally, residuals should be randomly scattered around zero, with no discernible trend. A systematic pattern suggests model misspecification or omitted variables.

Residual Outliers

```
date 2022-07-31 2008-10-31 2008-11-30 outliers -0.009815 -0.011066 -0.015599
```


9.2.2 Normal QQ plot

A **quantile-quantile** (**Q-Q**) **plot** compares residuals to a normal distribution. If residuals are normally distributed, data points should align along a 45-degree reference line. **Outliers** may appear as deviations from this line, indicating potential issues such as a heavy-tailed distribution.

```
fig, ax = plt.subplots(clear=True, figsize=(8,7))
plot_qq(model.resid, ax=ax)
```

```
residuals standardized
date
2008-11-30 -0.015599 -6.511279
```

2008-10-31 2022-07-31 2006-09-30	-0.011066 -0.009815 -0.008903	-4.619178 -4.097059 -3.716483
2005-10-31	-0.007321	-3.056102
2013-03-31	-0.007108	-2.967065
2008-08-31	-0.007003	-2.923170
1980-07-31	-0.006997	-2.920733
2005-09-30	0.009362	3.907884

9.2.3 Scale-location plot

This plot checks for homoscedasticity (constant variance). Residuals should be evenly spread across predictor values. A funnel-shaped pattern suggests heteroskedasticity, requiring robust standard errors.

```
fig, ax = plt.subplots(clear=True, figsize=(8,7))
plot_scale(model.fittedvalues, model.resid, ax=ax)
```

```
array([579, 414, 415])
```


Scale-Location

9.2.4 Leverage and influential points

Certain data points can disproportionately affect regression estimates. The projection matrix from the least squares estimator, also called the **hat matrix**, $H = X(X^TX)^{-1}X^T$ identifies **leverage points**, where the diagonal element h_{ii} measures the influence of the *i*-th observation.

A point may have **high leverage** but not necessarily influence the regression results significantly. **Cook's Distance** measures influence based on both residual magnitude and leverage:

$$D_i = \frac{1}{p} t_i^2 \frac{h_{ii}}{1-h_{ii}}$$

where:

- p is the number of regression parameters.
- $t_i = \frac{\hat{\epsilon}_i}{\hat{\sigma}(1-h_{ii})}$ is the *studentized residual*, which accounts for non-constant variance.

•
$$\hat{\sigma} = \sqrt{\sum_{j=1}^{n} \hat{\epsilon}_j^2/n}.$$

 $D_i > 1$ \$ suggests an influential point that may need further investigation. The **Residuals vs Leverage plot** helps visualize these influential points.

```
Empty DataFrame
Columns: [influential, cook's D, leverage]
Index: []
```


Residuals vs Leverage

References:

White, Halbert (1980). "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity". Econometrica. 48 (4): 817–838.

Newey, Whitney K., and Kenneth D. West. 1987. "A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix." Econometrica 55: 703–8.

https://library.virginia.edu/data/articles/diagnostic-plots

FRM Part I Exam Book Quantitative Analysis Ch 9

CHAPTER

TIME SERIES ANALYSIS

The only thing we know about the future is that it will be different - Peter Drucker

Time series analysis is a fundamental statistical technique used to analyze data points collected over time. A time series can exhibit multiple components, such as long-term trends, cyclical fluctuations, seasonal variations, and irregular random movements. Understanding these components enables analysts to build accurate predictive models. We explore key concepts in time series analysis, including trend patterns, seasonality, stationarity, autocorrelation, and various statistical models such as autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) models. We also examine forecasting methods and statistical tests used to assess time series properties.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.tsa.ar_model import AutoReg, ar_select_order
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf, acf
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.stattools import grangercausalitytests, adfuller
from statsmodels.tsa.api import VAR
import statsmodels.formula.api as smf
from sklearn.metrics import mean_squared_error
from finds.readers import Alfred
from secret import credentials
VERBOSE = 0
# %matplotlib qt
```

We retrieve the Industrial Production (IP) total index monthly time series from FRED.

'Industrial Production: Total Index'

10.1 Seasonality

A time series can be broken down into three key components:

- Trend –Represents long-term movements in the data.
- Seasonality -Captures predictable and recurring changes within a specific time frame.
- Cyclical Encompasses longer-term cycles that are influenced by broader economic or structural factors.

If a time series Y_t exhibits seasonality, its mean can differ across periods, repeating every s periods (e.g., quarterly with s = 4 or monthly with s = 12). Deterministic seasonal effects can be effectively modeled using dummy variables.

10.2 Stationarity

A time series is considered covariance-stationary if it meets three key conditions:

- 1. The mean remains constant over time, i.e., $E[Y_t] = m$ for all t.
- 2. The variance is finite and does not change over time, i.e., $V[Y_t] = \gamma_0 < \infty$.
- 3. The autocovariance depends only on the time lag h and not on t, i.e., $Cov[Y_t, Y_{t-h}] = \gamma_h$.

Covariance stationarity depends on the first two moments of a time series. Stationarity is crucial for modeling and forecasting because stationary series exhibit stable statistical properties. The **Augmented Dickey-Fuller (ADF) test** helps determine whether a time series has a unit root, with the null hypothesis stating that a unit root is present. If the p-value is below a critical threshold, the null hypothesis can be rejected, indicating stationarity.

```
Test Statistic p-value Lags Used Obs Used critical(1%) \
I(1) -7.266 0.0 23 1248 -3.436
critical(5%) critical(10%)
I(1) -2.864 -2.568
```


10.3 Autocorrelation

Autocorrelation measures the relationship between time series observations at different points in time. The autocorrelation function (ACF) at lag h is given by:

 $p_h = \frac{\gamma_h}{\gamma_0}$ where \gamma_h is the autocovariance at lag h, and \gamma_0 \$ is the variance.

The **partial autocorrelation function (PACF)** isolates the direct relationship between observations separated by lag h, removing the influence of intermediate lags (i.e., $Y_{t-1}, Y_{t-2}, ..., Y_{t-h+1}$).

```
values = df.diff().dropna().values.squeeze()
fig, axes = plt.subplots(1, 2, clear=True, figsize=(10,5))
plot_acf(values, lags=35, ax=axes[0])
plot_pacf(values, lags=35, ax=axes[1], method='ywm')
plt.suptitle(alf.header(result.observed.name) + date_title)
plt.tight_layout()
```


10.4 Time Series Models

10.4.1 Autoregressive (AR) models

Autoregressive (AR) models describe a time series in terms of its past values. An AR(1) process follows: $Y_t = \delta + \phi Y_{t-1} + \epsilon_t where \delta is the intercept, \phi is the autoregressive coefficient, and \epsilon_t \ is white noise.$

For a higher-order AR(p) model: $\$Y_t = \mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \epsilon_t \$$

The PACF for an AR process is nonzero only for the first p lags, while the ACF gradually decays ($\rho(h) = \phi^{|h|}$)

10.4.2 Moving average (MA) models**

A moving average model expresses Y_t as a function of past shocks:

 $\$Y_t = \mu + \theta_1 \epsilon_{t-1} + \epsilon_t AnMA(q) model extends this to include \neq lags of \epsilon: Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q} \$$

The ACF of an MA process is zero for lags greater than q, while the PACF has a more complex structure.

10.4.3 ARMA models

An **ARMA(p, q)** model combines AR and MA components. For example, a simple ARMA(1,1) evolves according to: $Y_t = \mu + \phi Y_{t-1} + \theta \epsilon_{t-1} + \epsilon_t$

- The mean of this process is $\mu = \delta/(1-\phi)$
- The variance is $\gamma_0 = \sigma^2 (1 + 2\phi\theta + \theta^2)/(1 \phi^2)$

An ARMA(1,1) process is covariance-stationary if $|\phi| \ll 1$. The MA coefficient plays no role in determining whether the process is covariance-stationary, because any MA is covariance-stationary as the MA component only affects a single lag of the shock. The AR component, however, affects all lagged shocks and so if ϕ_1 is too large, then the time series is not covariance-stationary.

10.4.4 Lag lengths

Determining the appropriate lag lengths for the AR and MA components (i.e., p and q, respectively) is a key challenge when building an ARMA model. The first step in model building is to inspect the sample autocorrelation and sample PACFs.

The **Box-Pierce** test statistic is the sum of the squared autocorrelations scaled by the sample size T: $Q_{BP} = T \sum_{i=1}^{h} (\frac{T+1}{T-1}) \hat{\rho}_i^2$

When the null is true, Q_{BP} is asymptotically distributed as a χ_h^2 variable.

The Ljung-Box statistic is a modified version of the Box-Pierce statistic that works better in smaller samples, and is defined as: $Q_{LB} = T \sum_{i=1}^{h} (\frac{T+2}{T-i}) \hat{\rho}_i^2$

10.4.5 Seasonal component

Seasonal components can be added to the short-term components of an ARMA(p,q) model, by using lags only at the seasonal frequency. A seasonal ARMA combines these two components into a single specification:

$$ARMA(p,q) \times (p_s,q_s)_f$$

where p and q are the orders of the short-run lag polynomials, p_s and q_s represent seasonal lag orders, and f denotes the seasonal horizon (e.g., every 3 or 12 months with monthly observations).

10.4.6 Unit Roots

Random walks are most important source of **non-stationarity** in economic time series. A simple random walk process evolves according to:

$$Y_t = Y_{t-1} + \epsilon_t$$

Unit roots generalize random walks by adding short-run stationary dynamics to the long-run random walk.

Spurious relationships can occur when non-stationary series are regressed against each other; this produces produces a coefficient estimate that is large and seemingly statistically different from zero when using conventional statistical distributions to obtain the critical values.

Differencing removes unit roots and prevents such misleading results. If Y_t has a unit root (i.e. has **integration order** equal to 1), then the difference: $\Delta Y_t = Y_t - Y_{t-1}$ does not.

10.4.7 SARIMAX model

The Seasonal AutoRegressive Integrated Moving Average with eXogenous Regressors (SARIMAX) model is denoted:

 $\label{eq:product} \$(p,d,q) \times (P,D,Q)_s \$$ where:

- (p, d, q) are the orders of AR, differencing, and MA components.
- (P, D, Q, s) are the seasonal counterparts and periodicity.

```
split_date = df.index[-12]  # train/test split date
# df_train = df.loc[:split_date].dropna()
```

```
# Fit a SARIMA(1,1,3) with seasonal order (0, 0, 0, 12)
pdq = (1, 1, 1)  #(12, 1, 0)
seasonal_pdqs = (0, 0, 0, 12)
arima = SARIMAX(df, order=pdq, seasonal_order=seasonal_pdqs, trend='c').fit()
fig = arima.plot_diagnostics(figsize=(10, 6), lags=36)
plt.tight_layout()
arima.summary()
```

```
RUNNING THE L-BFGS-B CODE
          * * *
Machine precision = 2.220D-16
N =
             4
                    M =
                                 10
            0 variables are exactly at the bounds
At XO
At iterate
          0 f= -2.09476D+00
                                  |proj g|= 3.46166D-01
At iterate 5 f= -2.09484D+00
                                  |proj q|= 2.67321D-02
At iterate 10 f= -2.09486D+00
                                  |proj g|= 1.29274D-01
          * * *
```

```
Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped
Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F
   = final function value
          * * *
      Tit
            Tnf Tnint Skip Nact Projg
  Ν
                                               F
       14 18 1 0 0 8.413D-04 -2.095D+00
   4
 F = -2.0948681083990448
CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH
```

This problem is unconstrained.

Dep. Variable	e:	IPB50001N	J N	o. Observ	ations:	1273	
Model:	SA	RIMAX(1,	1, 1) Log Likelil		nood	2666.767	
Date:	Mo	n, 03 Mar 2	2025 A	IC		-5325.534	
Time:		10:54:09	В	IC	-5304.941		
Sample:		01-31-1919) HOIC		-5317.79		
•	- 01-31-2025						
Covariance Type: opg							
	coef	std err	z	P > z	[0.025	0.975]	
intercept	0.0027	0.001	2.396	0.017	0.000	0.005	
ar.L1	-0.1167	0.223	-0.524	0.600	-0.553	0.320	
ma.L1	0.2195	0.222	0.987	0.323	-0.216	0.655	
sigma2	0.0009	2.21e-05	39.946	0.000	0.001	0.001	
Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): 563.24							
Prob(Q):			7 Prob(JB):			0.00	
Heteroskedasticity (H):			.31 Skew:			-0.20	
Prob(H) (two-sided):			00 Kur	Kurtosis: 6.23			

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

10.5 Forecasting

```
series_id, start = 'INDPRO', 0
df_all = alf(series_id, log=1, diff=1, start=start).dropna()
df_all.index = pd.to_datetime(df_all.index, format='%Y%m%d')
df_all.index.freq = freq
df_train = df_all[df_all.index <= split_date]
df_test = df_all[df_all.index > split_date]
```

10.5.1 AR lag order selection

The most natural measure of fit is the sample variance of the estimated residuals, also known as the Mean Squared Error (MSE) of the model. Unfortunately, choosing a model to minimize MSE also selects a specification that is far too large. The solution to this overfitting problem is to add a penalty to the MSE that increases each time a new parameter is added, employing criteria like **Akaike Information Criterion (AIC)** and **Bayesian Information Criterion (BIC)**.

- AIC is calculated by $T \ln \hat{\sigma}^2 + 2k$, where T is the sample size and k is the number of parameters.
- BIC alters the penalty and is computed by $T \ln \hat{\sigma}^2 2 + k \ln T$

Unlike the AIC, the BIC has a cost per parameter that slowly increases with T. Hence BIC always selects a model that is no larger than the model selected by the AIC (assuming $\ln T > 2$), and is a consistent model selection criterion (i.e., the true model is selected as $T \to \infty$).

```
lags = ar_select_order(df_train, maxlag=36, ic='bic', old_names=False).ar_lags
print('(BIC) lags= ', len(lags), ':', lags)
```

(BIC) lags= 1 : [1]

```
# Train final model on train split
model = AutoReg(df_train, lags=lags, old_names=False).fit()
print(model.summary())
```

AutoReg Model Results								
Dep. Variable: Model: Method: Date: Time: Sample:	Ca Mor	IN AutoRe onditional n, 03 Mar 10:5 03-31- - 02-29-	DPRO g(1) MLE 2025 4:10 1919 2024	No. (Log] S.D. AIC BIC HQIC	Dbservations: Likelihood of innovations		1261 3366.312 0.017 -6726.625 -6711.208 -6720.831	
	coef	std err		Z	P> z	[0.025	0.975]	
const INDPRO.L1	0.0013 0.4859	0.000 0.025	1: Roo	2.705 9.794 ots	0.007 0.000	0.000 0.438	0.002 0.534	
	Real	Real Imagin		ry Modulus			Frequency	
AR.1	2.0581	2.0581 +0.00		 DOj 	2.0581		0.0000	

10.5.2 One-step forecast

One-step forecast predicts Y_{T+1} using all available data up to time T, including the entire prior history of Y $(Y_T, Y_{T-1}, ...)$, as well as all values of any other variables that occurred at time T or earlier.

```
# Observations to predict are from the oos test split
test = AutoReg(df_all, lags=lags, old_names=False)
```

```
# Use model params from train split, start predictions from last train row
df_pred = test.predict(model.params, start=df_test.index[0])
mse = mean_squared_error(df_test, df_pred)
#var = np.mean(np.square(df_test - df_train.mean()))
print(f"ST Forecast({len(df_pred)}): rmse={np.sqrt(mse)}")
```

ST Forecast(11): rmse=0.006247508053669628

```
fig, ax = plt.subplots(clear=True, num=1, figsize=(10, 6))
df_pred.plot(ax=ax, c='C1', ls='-', marker='o', label='Predicted')
df_test.plot(ax=ax, c='C0', ls=':', marker='*', label='Actual')
ax.legend()
ax.set_title(series_id + " (one-step forecasts)")
ax.set_xlabel('')
plt.tight_layout()
```


10.5.3 Multi-step forecast

Multi-step forecasts recursively predict values at future horizons, starting with $E_T[Y_{T+1}]$. The forecast a thorizon hdepends on forecasts from earlier steps (E_T[Y_{T+1}], ..., E_T [Y_{T+h} - 1]). When these quantities appear in the forecast for period T + h, they are replaced by the forecasts computed for horizons 1, 2, ..., h - 1.

Long-term Forecasts: rmse=0.006085

10.5.4 Granger causality

Granger causality tests whether past values of one time series help predict another.

```
# Granger Causality: INDPRO vs CPI
variables = ['INDPRO', 'CPIAUCSL']
start = 19620101
for series_id, exog_id in zip(variables, list(reversed(variables))):
    df = pd.concat([alf(s, start=start, log=1)
                    for s in [series_id, exog_id]], axis=1)
    df.index = pd.DatetimeIndex(df.index.astype(str))
    df.index.freq = freq
    data = df.diff().dropna()
    print(f"Null Hypothesis: {exog_id} granger-causes {series_id}")
    res = grangercausalitytests(data, maxlag=3)
    print()
    dmf = (f'{series_id} ~ {series_id}.shift(1) '
           f' + {exog_id}.shift(1) '
           f' + {exog_id}.shift(2) '
           f' + {exog_id}.shift(3) ')
    model = smf.ols(formula=dmf, data=data).fit()
    robust = model.get_robustcov_results(cov_type='HAC', use_t=None, maxlags=0)
    print(robust.summary())
```

```
Null Hypothesis: CPIAUCSL granger-causes INDPRO
Granger Causality
number of lags (no zero) 1
```

ssr based F test: ssr based chi2 test likelihood ratio te parameter F test:	F=0.4 : chi2=0.4 st: chi2=0.4 F=0.4	1754 , p 1773 , p 1772 , p 1754 , p	=0.4907 , =0.4896 , =0.4897 , =0.4907 ,	df_denom=752, df=1 df=1 df_denom=752,	df_num=1 df_num=1	
Granger Causality number of lags (no ssr based F test: ssr based chi2 test likelihood ratio te parameter F test:	zero) 2 F=7.1 : chi2=14 st: chi2=14 F=7.1	.786 , p .4530 , p .3162 , p .786 , p	=0.0008 , =0.0007 , =0.0008 , =0.0008 ,	df_denom=749, df=2 df=2 df_denom=749,	df_num=2 df_num=2	
Granger Causality number of lags (no ssr based F test: ssr based chi2 test likelihood ratio te parameter F test:	zero) 3 F=5.4 : chi2=16 st: chi2=16 F=5.4	1544 , p 5167 , p 3381 , p 1544 , p	=0.0010 , =0.0009 , =0.0010 , =0.0010 ,	df_denom=746, df=3 df_3 df_denom=746,	df_num=3 df_num=3	
	OLS	8 Regress	ion Results			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least S Mon, 03 Ma 1(INDPRO R-squared: OLS Adj. R-squared: Least Squares F-statistic: Mon, 03 Mar 2025 Prob (F-statistic): 10:54:12 Log-Likelihood: 753 AIC: 748 BIC: 4 HAC			0.090 0.085 2.729 0.0283 2472.9 -4936. -4913.	
	coef	std err	t	P> t	[0.025	0.
Generation of the second seco	0.0019	0.001	1.993	0.047	2.94e-05	0.
INDPRO.shift(1)	0.2553	0.141	1.817	0.070	-0.020	0.
⇔531 CPIAUCSL.shift(1)	0.4106	0.208	1.973	0.049	0.002	0.
→819 CPIAUCSL.shift(2)	-0.4210	0.193	-2.178	0.030	-0.800	-0.
cPIAUCSL.shift(3) →099	-0.1652	0.134	-1.228	0.220	-0.429	0.
Omnibus: Prob(Omnibus): Skew: Kurtosis:		721.664 0.000 -3.763 64.462	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.981 120296.612 0.00 565.	
Notes: [1] Standard Errors →0 lags and withou	are heteros t small samp	scedastic	ity and aut	ocorrelation	robust (HAC)	using_

Null Hypothesis: INDPRO granger-causes CPIAUCSL

Granger Causality number of lags (no zero) 1 ssr based F test: F=0.0450 , p=0.8321 , df_denom=752, df_num=1 ssr based chi2 test: chi2=0.0452 , p=0.8317 , df=1 $\,$ likelihood ratio test: chi2=0.0452 , p=0.8317 , df=1 $\,$ parameter F test: F=0.0450 , p=0.8321 , df_denom=752, df_num=1 Granger Causality number of lags (no zero) 2 ssr based F test: F=0.0150 , p=0.9851 , df_denom=749, df_num=2 ssr based chi2 test: chi2=0.0301 , p=0.9850 , df=2 likelihood ratio test: chi2=0.0301 , p=0.9850 , df=2 parameter F test: F=0.0150 , p=0.9851 , df_denom=749, df_num=2 Granger Causality number of lags (no zero) 3 ssr based F test: $F{=}0.0926$, $p{=}0.9641$, df_denom=746, df_num=3 ssr based chi2 test: chi2=0.2804 , p=0.9637 , df=3 $\,$ likelihood ratio test: chi2=0.2803 , p=0.9637 , df=3 $\,$ parameter F test: F=0.0926 , p=0.9641 , df_denom=746, df_num=3 OLS Regression Results _____ Dep. Variable: CPIAUCSL R-squared: 0.386 OLS Adj. R-squared: Least Squares F-statistic: Model: 0.383 51.93 Method: Mon, 03 Mar 2025 Prob (F-statistic): 10:54:12 Log-Likelihood: 1.28e-38 Date: 3452.5 Time: No. Observations: 753 AIC: -6895. Df Residuals: 748 BIC: -6872. Df Model: 4 Covariance Type: HAC coef std err t P>|t| [0.025 0. <u>9751</u> _____ <u>___</u> 0.0012 0.000 6.847 0.000 Intercept 0.001 0. 4002CPIAUCSL.shift(1) 0.6210 0.046 13.623 0.000 0.532 0. **→**711 INDPRO.shift(1) -0.0021 0.014 -0.147 0.883 -0.030 0. **⇔**025 INDPRO.shift(2) 0.0005 0.017 0.032 0.975 -0.032 0. <u> →</u>033 INDPRO.shift(3) 0.0061 0.009 0.676 0.499 -0.012 0. $\hookrightarrow 024$ _____ Omnibus: 88.983 Durbin-Watson: 2.119 0.000 Jarque-Bera (JB): 0.030 Prob(JB): 750.324 Prob(Omnibus): Skew: 1.17e-163 7.890 Cond. No. Kurtosis: 319. _____

Notes:
```
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using \rightarrow 0 lags and without small sample correction
```

10.5.5 Impulse response function

Impulse response functions (IRF) analyze how shocks propagate through a system, often in **Vector Autoregression** (VAR) models.

```
# Vector Autoregression: Impulse Response Function
model = VAR(data)
results = model.fit(maxlags=3)
print(results.summary())
irf = results.irf(12)
#irf.plot(orth=False)
irf.plot_cum_effects(orth=False, figsize=(10, 6))
   Summary of Regression Results
  _____
  Model:
                        VAR
  Method:
                        OLS
            Mon, 03, Mar, 2025
  Date:
  Time:
                    10:54:12
  _____
                        _____

        No. of Equations:
        2.00000
        BIC:

        Nobs:
        753.000
        HQIC:

                                             -21.3411
                                             -21.3939
                                          4.94710e-10
                    5944.36 FPE:
  Log likelihood:
  AIC:
                   -21.4270 Det(Omega_mle): 4.85639e-10
    _____
  Results for equation CPIAUCSL
  coefficient std. error t-stat
                                                      prob
  _____
  const0.0009090.0001396.5280.000L1.CPIAUCSL0.5442750.03638314.9600.000L1.INDPRO0.0043820.0098610.4440.657L2.CPIAUCSL0.0161810.0415120.3900.697L2.INDPRO-0.0018980.010116-0.1880.851
             0.016181
-0.001898
                           0.036710
  L3.CPIAUCSL
              0.147062
                                          4.006
                                                      0.000
               0.002953
                           0.009745
  L3. INDPRO
                                          0.303
                                                      0.762
  _____
  Results for equation INDPRO
  _____
             coefficient std. error t-stat
                                                      prob
  _____
               0.001899
                           0.000517
                                          3.673
  const
                                                      0.000
  L1.CPIAUCSL
               0.404130
                           0.135092
                                          2.992
                                                      0.003
                           0.036614
               0.270682
                                          7.393
                                                      0.000
  L1.INDPRO
  L2.CPIAUCSL
                           0.154135
               -0.402895
                                          -2.614
                                                      0.009
                           0.037563
  L2.INDPRO
               -0.066262
                                          -1.764
                                                      0.078
  L3.CPIAUCSL
               -0.182529
                           0.136306
                                          -1.339
                                                      0.181
               0.083606
                           0.036182
                                          2.311
  L3. INDPRO
                                                      0.021
  _____
```

Correlation	matrix of	residuals
	CPIAUCSL	INDPRO
CPIAUCSL	1.000000	0.101927
INDPRO	0.101927	1.000000

References:

FRM Part I Exam Book Quantitative Analysis Ch 10-11

CHAPTER

ELEVEN

APPROXIMATE FACTOR MODELS

It is better to be vaguely right than precisely wrong - Carveth Read

Approximate factor models provide a simplified yet effective way to represent time series data by identifying common factors that explain variation across observed variables. A critical step in time series analysis is ensuring stationarity, typically assessed using tests like the Augmented Dickey-Fuller (ADF) test. Transformations such as differencing and logarithmic scaling are often applied to remove non-stationary components. Principal Component Analysis (PCA) is commonly used for factor extraction, and the optimal number of components can be selected using criteria like the Bayesian Information Criterion (BIC). To handle missing data, imputation methods such as the Expectation-Maximization (EM) algorithm are used.

alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)

```
## Retrieve recession periods from FRED
vspans = alf.date_spans('USREC')
DataFrame(vspans, columns=['Start', 'End'])
```

StartEnd01854-12-311854-12-3111857-06-301858-12-3121860-10-311861-06-3031865-04-301867-12-3141869-06-301870-12-3151873-10-311879-03-3161882-03-311885-05-3171887-03-311888-04-3081890-07-311891-05-3191893-01-311894-06-30

10	1895-12-31	1897-06-30
11	1899-06-30	1900-12-31
12	1902-09-30	1904-08-31
13	1907-05-31	1908-06-30
14	1910-01-31	1912-01-31
15	1913-01-31	1914-12-31
16	1918-08-31	1919-03-31
17	1920-01-31	1921-07-31
18	1923-05-31	1924-07-31
19	1926-10-31	1927-11-30
20	1929-08-31	1933-03-31
21	1937-05-31	1938-06-30
22	1945-02-28	1945-10-31
23	1948-11-30	1949-10-31
24	1953-07-31	1954-05-31
25	1957-08-31	1958-04-30
26	1960-04-30	1961-02-28
27	1969-12-31	1970-11-30
28	1973-11-30	1975-03-31
29	1980-01-31	1980-07-31
30	1981-07-31	1982-11-30
31	1990-07-31	1991-03-31
32	2001-03-31	2001-11-30
33	2007-12-31	2009-06-30
34	2020-02-29	2020-04-30

11.1 Integration order

11.1.1 Augmented Dickey-Fuller test

The **Augmented Dickey-Fuller** (**ADF**) **test** is one of the most widely used methods for detecting unit roots in a time series. It operates by performing an ordinary least squares (OLS) regression, where the first difference of the series is regressed on its lagged level, along with deterministic components and lagged differences. The general form of the ADF regression is:

$$\Delta Y_t = \gamma Y_{t-1} + (\delta_0 + \delta_1 t) + \lambda_1 \Delta Y_{t-1} + \ldots + \lambda_p \Delta Y_{t-p}$$

If $\gamma = 0$, then Y_t follows a **random walk** and is non-stationary, implying the presence of a unit root. The alternative hypothesis, $\gamma < 0$, suggests that Y_t is **covariance-stationary**. This is a one-sided test, as positive values of γ would indicate an autoregressive coefficient greater than one, leading to instability.

When the test fails to reject the null hypothesis of a unit root, differencing is required to transform the series into a stationary form. Best practice involves repeatedly applying the ADF test to the differenced data until stationarity is achieved.

```
qd_df, qd_codes = fred_qd() # 202004
md_df, md_codes = fred_md() # 201505
qd_date = max(qd_df.index)
md_date = max(md_df.index)
```

```
FRED-QD vintage: quarterly/current.csv
FRED-MD vintage: monthly/current.csv
```

11.1.2 Transformations

The FRED-MD and FRED-QD datasets include transformation codes that indicate appropriate preprocessing steps, such as applying logarithmic transformations or differencing, to ensure stationarity. The number of differences required depends on the presence of unit roots.

tcodes

Number of series by suggested tcode transformations (20250131):

	diff	log	pct_change	fred-qd	fred-md
tcode					
1	0	0	0	22	11
2	1	0	0	32	19
3	2	0	0	0	0
4	0	1	0	0	10
5	1	1	0	140	52
6	2	1	0	49	33
7	1	0	1	1	1

```
# For each series, compare fitted integration order with tcode
out = \{\}
stationary_out = {}
for label, df, transforms in [['md', md_df, md_codes['transform']],
                              ['qd', qd_df, qd_codes['transform']]]:
    stationary = dict()
    for series_id, tcode in transforms.items():
        # apply transformation if series tcode is valid
        if tcode in range(1, 8):
            # take logs of series if specified by tcode
            s = np.log(df[series_id]) if tcode in [4, 5, 6] else df[series_id]
            # estimate integration order
            order = integration_order(s.dropna(), pvalue=0.05)
            # expected order specified by tcode
            expected_order = 2 if tcode == 7 else ((tcode - 1) % 3)
            # accumulate results for this series
            stationary[series_id] = {'tcode': tcode,
                                      'I(p)': order,
                                      'different': order - expected_order,
                                      'title': alf.header(series_id) }
             print(series_id, tcode, expected_order, order)
    # collect results for display
    stationary = DataFrame.from_dict(stationary, orient='index')
```

Series by tcode, transformations and estimated order of integration: Integration order by transformation

	diff	log	pct_change	fred-qd	I(0)	I(1)	I(2)	fred-md	I(0)	I(1)	\
tcode											
1	0	0	0	22	17	5	0	11	11	0	
2	1	0	0	32	11	19	2	19	4	15	
3	2	0	0	0	0	0	0	0	0	0	
4	0	1	0	0	0	0	0	10	7	3	
5	1	1	0	140	30	107	3	52	14	38	
6	2	1	0	49	0	29	20	33	0	30	
7	1	0	1	1	0	1	0	1	0	1	
	I(2)										
tcode											
1	0										
2	0										
3	0										
4	0										
5	0										
6	3										
7	0										

print('FRED-MD Series with unit root after transformation')
stationary_out['md']

FRED-MD Series with unit root after transformation

```
tcode I(p) different \PERMITMW41HOUSTMW41HOUSTNE41U1HOUSTNE41VERMITMWNew Privately-Owned Housing Units Authorized i...HOUSTNMNew Privately-Owned Housing Units Started: Tot...HOUSTNENew Privately-Owned Housing Units Started: Tot...
```

```
print('FRED-QD Series with unit root after transformation')
stationary_out['qd']
```

FRED-QD Series with unit root after transformation

	tcode	I(p)	different	\backslash		
GS1TB3M	1	1	1			
NWPI	1	1	1			
TLBSNNBBDI	1	1	1			
TLBSNNCBBDI	1	1	1			
HWI	1	1	1			
GFDEBTN	2	2	1			
S&P div yield	2	2	1			
CES200000008	5	2	1			
TLBSHNO	5	2	1			
OPHMFG	5	2	1			
						title
GS1TB3M					*** GS1TB	3M ***
NWPI					*** NW	PI ***
TLBSNNBBDI				*	** TLBSNNBB	DI ***
TLBSNNCBBDI				* *	* TLBSNNCBB	DI ***
HWI			Help Want	ed Index	for United	States
GFDEBTN			Feder	al Debt:	Total Publi	c Debt
S&P div yield	S	P's Co	omposite Co	mmon Stoc	k: Dividend	Yield
CES200000008	Average	e Houri	ly Earnings	of Produ	ction and N	ons
TLBSHNO	Househo	olds an	nd Nonprofi	t Organiz	ations; Tot	al
OPHMFG	Manufac	cturing	g Sector: L	abor Prod	uctivity (O	utp

11.2 Factor selection

Bai and Ng (2002) provide a systematic approach for extracting and determining the optimal number of factors in an approximate factor model of time series, and imputing missing or outlier observations in the dataset.

11.2.1 Principal component analysis (PCA)

Principal component analysis finds a low-dimensional representation of a data set that contains as much as possible of the variation of its p features. Each principal component is a linear combination of the original features, capturing the most significant patterns in the data.

The first principal component is the normalized linear combination of features:

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \ldots + \phi_{p1}X_p$$

which maximizes variance. Subsequent principal components, such as Z_2 and Z_3 , are determined iteratively, ensuring that each is uncorrelated with the previously computed components while explaining the next highest level of variance.

11.2.2 BIC criterion

Determining the appropriate number of factors is a crucial step in approximate factor modeling. The **Bayesian Information Criterion (BIC)** selects the optimal number of components by balancing model fit and complexity. Lower BIC values indicate a better trade-off between variance explanation and model parsimony.

11.2.3 Data imputation

When dealing with missing data in time series, the **Expectation-Maximization (EM) algorithm** can be employed to estimate missing values from factors iteratively. After each imputation iteration, factors are recovered as projections from PCA, ensuring that the underlying structure of the data is captured.

```
# Verify BaiNg implemention on original FRED-MD and FRED-QD
qd_df, qd_codes = fred_qd('assets/FRED-QD_2020m04.csv', url='')
md_df, md_codes = fred_md('assets/FRED-MD_2015m5.csv', url='')
for freq, df, transforms in [['monthly', md_df, md_codes['transform']],
                             ['quarterly', qd_df, qd_codes['transform']]]:
    # Apply tcode transformations
    transformed = []
    for col in df.columns:
        transformed.append(alf.transform(df[col],
                                          tcode=transforms[col],
                                          freq=freq[0]))
    data = pd.concat(transformed, axis=1).iloc[2:]
    cols = list(data.columns)
    sample = data.index[((np.count_nonzero(np.isnan(data), axis=1)==0)
                         (data.index <= 20141231))</pre>
                        & (data.index >= 19600301)]
    # set missing and outliers to NaN
    x = data.loc[sample]
                             # default fence 'iq10' is 10 times IQ
    x = remove_outliers(x)
    # compute factors EM and auto select number of components, r
    Z = approximate_factors(x, p=2, verbose=VERBOSE)
    r = select_baing(Z, p=2)
    # show marginal R2's of series to each component
    mR2 = mrsq(Z, r).to_numpy()
    print(f"FRED-{freq[0].upper()}D {freq} series:")
    print(DataFrame({'selected': r,
                     'variance explained': np.sum(np.mean(mR2[:, :r], axis=0)),
                     'start': min(sample),
                     'end': max(sample),
                     'obs': Z.shape[0],
                     'series': Z.shape[1]},
                    index=[f'factors']))
    for k in range(r):
        args = np.argsort(-mR2[:, k])
        print(f"Factor:{1+k} Variance Explained={np.mean(mR2[:,k]):.4f}")
        print(DataFrame.from_dict({mR2[arg, k].round(4):
                                   {'series': cols[arg],
                                     'description': alf.header(cols[arg]) }
                                   for arg in args[:10]},
                                  orient='index'))
```

```
FRED-QD vintage: assets/FRED-QD_2020m04.csv
FRED-MD vintage: assets/FRED-MD_2015m5.csv
FRED-MD monthly series:
        selected variance explained start
                                               end obs series
                          0.485832 19600331 20141231 658
factors
        8
                                                             134
Factor:1 Variance Explained=0.1613
         series
                                               description
0.7424
         USGOOD
                             All Employees, Goods-Producing
        PAYEMS
0.7235
                              All Employees, Total Nonfarm
        MANEMP
0.7002
                              All Employees, Manufacturing
0.6565
         NAPM
                                              *** NAPM ***
0.6540 IPMANSICS Industrial Production: Manufacturing (SIC)
0.6513 DMANEMP
                              All Employees, Durable Goods
0.6314
         INDPRO
                        Industrial Production: Total Index
0.6037 NAPMNOI
                                           *** NAPMNOI ***
0.6026 NAPMPI
                                            *** NAPMPI ***
         CUMFNS Capacity Utilization: Manufacturing (SIC)
0.5601
Factor:2 Variance Explained=0.0703
         series
                                                    description
0.6259 T10YFFM 10-Year Treasury Constant Maturity Minus Feder...
        AAAFFM Moody's Seasoned Aaa Corporate Bond Minus Fede...
0.6164
        BAAFFM Moody's Seasoned Baa Corporate Bond Minus Fede...
0.5856
0.5832
        T5YFFM 5-Year Treasury Constant Maturity Minus Federa...
0.4785 TB6SMFFM 6-Month Treasury Bill Minus Federal Funds Rate
0.4779 TB3SMFFM
                  3-Month Treasury Bill Minus Federal Funds Rate
0.4322 T1YFFM 1-Year Treasury Constant Maturity Minus Federa...
0.2367 COMPAPFF
                 3-Month Commercial Paper Minus FEDFUNDS
0.2258 BUSINV
                                      Total Business Inventories
0.1896 NAPMPRI
                                                 *** NAPMPRI ***
Factor:3 Variance Explained=0.0652
               series
                                                           description
         CUSR0000SAC Consumer Price Index for All Urban Consumers: ...
0.7192
0.7066 DNDGRG3M086SBEA Personal consumption expenditures: Nondurable ...
       CPIAUCSL Consumer Price Index for All Urban Consumers: ...
0.6700
        CUSR0000SA0L5 Consumer Price Index for All Urban Consumers: ...
0.6392
0.6115 CUUR0000SA0L2 Consumer Price Index for All Urban Consumers: ...
0.5923
                PCEPI Personal Consumption Expenditures: Chain-type ...
0.5907
             CPITRNSL Consumer Price Index for All Urban Consumers: ...
0.5482
            CPIULFSL Consumer Price Index for All Urban Consumers: ...
0.4863
              PPIFCG Producer Price Index by Commodity for Finished...
0.4779
               PPIITM Producer Price Index by Commodity Intermediate...
Factor:4 Variance Explained=0.0547
      series
                                                  description
        GS1 Market Yield on U.S. Treasury Securities at 1-...
0.4294
         GS5 Market Yield on U.S. Treasury Securities at 5-...
0.4228
         AAA
0.4123
                     Moody's Seasoned Aaa Corporate Bond Yield
0.3995 TB6MS 6-Month Treasury Bill Secondary Market Rate, D...
       GS10 Market Yield on U.S. Treasury Securities at 10...
0.3893
0.3621
         BAA
                     Moody's Seasoned Baa Corporate Bond Yield
0.3179 TB3MS 3-Month Treasury Bill Secondary Market Rate, D...
0.3139 CP3M 3-Month AA Financial Commercial Paper Rates
0.2681 HOUST New Privately-Owned Housing Units Started: Tot...
0.2562 HOUSTW New Privately-Owned Housing Units Started: Tot...
Factor:5 Variance Explained=0.0425
                                                    description
        series
0.2481 PERMITW New Privately-Owned Housing Units Authorized i...
0.2374 PERMIT New Privately-Owned Housing Units Authorized i...
```

```
0.2316 HOUSTW New Privately-Owned Housing Units Started: Tot...
         GS5 Market Yield on U.S. Treasury Securities at 5-...
0.2225
0.2221
            GS1 Market Yield on U.S. Treasury Securities at 1-...
        HOUST New Privately-Owned Housing Units Started: Tot...
0.2146
0.2028
          GS10 Market Yield on U.S. Treasury Securities at 10...
0.1951 PERMITMW New Privately-Owned Housing Units Authorized i...
0.1949 T1YFFM 1-Year Treasury Constant Maturity Minus Federa...
0.1932
         TB6MS 6-Month Treasury Bill Secondary Market Rate, D...
Factor:6 Variance Explained=0.0365
        series
                                                     description
0.2186 IPCONGD
                            Industrial Production: Consumer Goods
0.1793 ISRATIO
                       Total Business: Inventories to Sales Ratio
0.1736 NAPMEI
                                                   *** NAPMET ***
0.1628 IPDCONGD Industrial Production: Durable Consumer Goods:...
0.1577
                            Industrial Production: Final Products
       IPFINAL
0.1545 TB6SMFFM
                    6-Month Treasury Bill Minus Federal Funds Rate
0.1425
           NAPM
                                                     *** NAPM ***
                                                   *** NAPMII ***
0.1416
        NAPMII
0.1414
       ACOGNO
                        Manufacturers' New Orders: Consumer Goods
0.1373 IPFPNSS Industrial Production: Final Products and Noni...
Factor:7 Variance Explained=0.0292
              series
                                                          description
0.5165
             S&P 500
                             S&P's Common Stock Price Index: Composite
0.5159 S&P: indust
                          S&P's Common Stock Price Index: Industrials
0.4002 S&P div yield
                        S&P's Composite Common Stock: Dividend Yield
      S&P PE ratio S&P's Composite Common Stock: Price-Earnings R...
0.2764
0.2564
            UMCSENT
                            University of Michigan: Consumer Sentiment
0.1030
                                 Industrial Production: Consumer Goods
            IPCONGD
0.1019
             EXCAUS Canadian Dollars to U.S. Dollar Spot Exchange ...
0.0728
             IPFINAL
                                Industrial Production: Final Products
            IPDCONGD Industrial Production: Durable Consumer Goods:...
0.0644
0.0565
            IPFPNSS Industrial Production: Final Products and Noni...
Factor:8 Variance Explained=0.0262
             series
                                                          description
            TWEXMMTH Nominal Major Currencies U.S. Dollar Index (Go...
0.5375
0.2309
             EXSZUS Swiss Francs to U.S. Dollar Spot Exchange Rate
             EXUSUK U.S. Dollars to U.K. Pound Sterling Spot Excha...
0.2111
0.1497
             EXJPUS Japanese Yen to U.S. Dollar Spot Exchange Rate
                                      All Employees, Service-Providing
0.1332
             SRVPRD
0.1199 CES060000008 Average Hourly Earnings of Production and Nons...
                             Manufacturers' New Orders: Consumer Goods
0.1156
            ACOGNO
0.1128 CES300000008 Average Hourly Earnings of Production and Nons...
0.1104
             USGOVT
                                            All Employees, Government
0.1010
             USTRADE
                                           All Employees, Retail Trade
FRED-QD quarterly series:
        selected variance explained
                                        start
                                                   end obs series
factors
              7
                             0.4981 19600331 20191231 240
                                                             248
Factor:1 Variance Explained=0.2014
                                                      description
         series
0.8382
         USPRIV
                                      All Employees, Total Private
0.8184
         USGOOD
                                    All Employees, Goods-Producing
0.8165
         OUTMS Manufacturing Sector: Real Sectoral Output for...
0.8124 IPMANSICS
                  Industrial Production: Manufacturing (SIC)
                                      All Employees, Total Nonfarm
0.8120
       PAYEMS
0.8057
          INDPRO
                                Industrial Production: Total Index
0.7758
         MANEMP
                                      All Employees, Manufacturing
```

```
HOANBS Nonfarm Business Sector: Hours Worked for All ...
0.7717
       DMANEMP
0.7667
                                      All Employees, Durable Goods
0.7651
          UNRATE
                                                  Unemployment Rate
Factor:2 Variance Explained=0.0824
              series
                                                            description
0.4995
              AAAFFM Moody's Seasoned Aaa Corporate Bond Minus Fede...
0.4761
              T5YFFM 5-Year Treasury Constant Maturity Minus Federa...
0.4622
             PERMIT New Privately-Owned Housing Units Authorized i...
0.4404
             BUSINV
                                             Total Business Inventories
              HOUST New Privately-Owned Housing Units Started: Tot...
0.4231
0.4055
            PERMITS New Privately-Owned Housing Units Authorized i...
0.3925 S&P div yield
                           S&P's Composite Common Stock: Dividend Yield
0.3849
                                      Capacity Utilization: Total Index
                 TCU
0.3674
           CPF3MTB3M 3-Month Commercial Paper Minus 3-Month Treasur...
                                                       *** GS10TB3M ***
0.3633
            GS10TB3M
Factor:3 Variance Explained=0.0727
                series
                                                              description
0.7569
         CUSR0000SA0L2 Consumer Price Index for All Urban Consumers: ...
           CUSR0000SAC Consumer Price Index for All Urban Consumers: ...
0.7405
0.7368 DGDSRG3Q086SBEA Personal consumption expenditures: Goods (chai...
0.7212
               PCECTPI Personal Consumption Expenditures: Chain-type ...
0.7065
              CPITRNSL Consumer Price Index for All Urban Consumers: ...
0.6963 DNDGRG3Q086SBEA Personal consumption expenditures: Nondurable ...
0.6798
       CUSR0000SA0L5 Consumer Price Index for All Urban Consumers: ...
              CPIAUCSL Consumer Price Index for All Urban Consumers: ...
0.6712
               WPSID61 Producer Price Index by Commodity: Intermediat...
0.6472
              CPIULFSL Consumer Price Index for All Urban Consumers: ...
0.6352
Factor:4 Variance Explained=0.0467
              series
                                                           description
0.4044
               TMESL
                        Institutional Money Market Funds (DISCONTINUED)
0.3457 CES9093000001
                                        All Employees, Local Government
0.3259 CES9092000001
                                        All Employees, State Government
0.2484 EXUSEU
                                U.S. Dollars to Euro Spot Exchange Rate
                                             All Employees, Government
0.2482
             USGOVT
0.2364
            GFDEBTN
                                        Federal Debt: Total Public Debt
0.2251
            REVOLSL
                      Revolving Consumer Credit Owned and Securitized
0.2202
             USSERV
                                          All Employees, Other Services
0.2128
             COMPRMS Manufacturing Sector: Real Hourly Compensation ...
                                                          *** NWPT ***
               NWPI
0.2126
Factor:5 Variance Explained=0.0375
            series
                                                          description
0.3664
            OPHMFG Manufacturing Sector: Labor Productivity (Outp...
0.3093
              НWТ
                                  Help Wanted Index for United States
0.2989
             NWPI
                                                         *** NWPI ***
0.2961
           AWHMAN Average Weekly Hours of Production and Nonsupe...
0.2703
          OPHPBS Business Sector: Labor Productivity (Output pe...
0.2358
           OPHNFB Nonfarm Business Sector: Labor Productivity (0...
                                                     *** UNRATELT ***
0.2307
         UNRATELT
          UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payment...
0.2189
0.2131
            ULCMFG Manufacturing Sector: Unit Labor Costs for All...
0.1989 TLBSNNCBBDI
                                                  *** TLBSNNCBBDI ***
Factor:6 Variance Explained=0.0303
                series
                                                             description
0.2669
                CONSPT
                          Nonrevolving consumer credit to Personal Income
0.2388
                 ULCBS Business Sector: Unit Labor Costs for All Workers
0.2379
                ULCNFB Nonfarm Business Sector: Unit Labor Costs for ...
```

```
CONSUMER
0.2173
                                    Consumer Loans, All Commercial Banks
0.2016
               EXUSEU
                                 U.S. Dollars to Euro Spot Exchange Rate
0.1979
               AHETPI Average Hourly Earnings of Production and Nons...
0.1865
             NONREVSL Nonrevolving Consumer Credit Owned and Securit...
              TOTALSL
0.1613
                            Total Consumer Credit Owned and Securitized
0.1453 B020RE1Q156NBEA Shares of gross domestic product: Exports of g...
             UMCSENT
0.1361
                             University of Michigan: Consumer Sentiment
Factor:7 Variance Explained=0.0270
                                                        description
            series
0.2663 USEPUINDXM Economic Policy Uncertainty Index for United S...
0.1954
        TNWBSHNO Households and Nonprofit Organizations; Net Wo...
0.1889
          TABSHNO Households and Nonprofit Organizations; Total ...
        S&P 500
0.1872
                           S&P's Common Stock Price Index: Composite
0.1856 S&P: indust
                         S&P's Common Stock Price Index: Industrials
       TFAABSHNO Households and Nonprofit Organizations; Total ...
0.1808
0.1756
       NASDAQCOM
                                              NASDAQ Composite Index
       GS10TB3M
0.1623
                                                   *** GS10TB3M ***
0.1394
           OPHPBS Business Sector: Labor Productivity (Output pe...
```

X = approximate_factors(X, kmax=r, p=0, verbose=VERBOSE)

FRED-MD vintage: monthly/current.csv

Recover factors as the projections from PCA

```
# Extract factors from PCA projections on imputed data
y = StandardScaler().fit_transform(X)
pca = PCA(n_components=r).fit(y)
factors = DataFrame(pca.transform(y), index=data.index, columns=range(1, 1+r))
```


Factor Estimates Jan-1959:Jan-2025

References:

Bai, Jushan and Ng, Serena, 2002, Determining the Number of Factors in Approximate Factor Models, Econometrica

70:1, 191-2211

McCracken, Michael W., and Serena Ng, 2016. FRED-MD: A monthly database for macroeconomic research, Journal of Business & Economic Statistics, 34(4), 574-589.

Michael W. McCracken, Serena Ng, 2020, FRED-QD: A Quarterly Database for Macroeconomic Research.

CHAPTER

TWELVE

STATE SPACE MODELS

If you want to understand today, you have to search yesterday - Pearl Buck

State space models provide a powerful framework for modeling time series data, particularly when the observed data are generated by an underlying system of **hidden states**.

A fundamental example of a state space model is the **Hidden Markov Model** (**HMM**), which represents a system where an unobserved sequence of states follows a **Markov process**, and each state emits observations according to some probability distribution.

The **Gaussian Mixture Model (GMM)** is a probabilistic method that represents data as a combination of multiple Gaussian distributions, allowing for the estimation of the likelihood of an unknown state.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import seaborn as sns
from hmmlearn import hmm
from sklearn.preprocessing import StandardScaler
from sklearn.mixture import GaussianMixture
from finds.readers import fred_qd, fred_md, Alfred
from finds.recipes import approximate_factors, remove_outliers
from secret import paths, credentials
VERBOSE = 0
# %matplotlib qt
```

```
# Load and pre-process time series from FRED
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
vspans = alf.date_spans('USREC') # to indicate recession periods in the plots
```

```
data = remove_outliers(data)
data = approximate_factors(data, kmax=r, p=0, verbose=VERBOSE)
FRED-MD vintage: monthly/current.csv
```

```
# standardize inputs
X = StandardScaler().fit_transform(data.values)
```

12.1 Hidden Markov Model

A Hidden Markov Model (HMM) is a type of multivariate time series model where the system is governed by a set of **unobserved (hidden) states** that follow a Markov process. The model is characterized by three key components:

- 1. **Transition probabilities**: The likelihood of moving from one state to another (or remaining in the same state), represented by a **transition matrix** A.
- 2. Emission probabilities: The probability of observing a certain value given a hidden state, denoted as θ .
- 3. Initial state distribution: A probability vector π that defines the starting state of the system.

Thus, an HMM is fully specified by the parameter set $\lambda = (A, \theta, \pi)$. The observed sequence X is generated by an unobserved state sequence Z, making inference about Z a central problem in HMM applications.

To work with HMMs in Python, we use the hmmlearn package, which provides efficient algorithms for solving the three fundamental HMM tasks:

- Evaluation: Computing the likelihood of an observation sequence given the model, $P(X|\lambda)$. This is solved using the Forward-Backward algorithm, implemented via the .score() method.
- **Decoding**: Determining the most probable sequence of hidden states Z given the observations X. This is accomplished using the **Viterbi algorithm**, accessed through the .predict() method.
- Training: Estimating the model parameters $\lambda = (A, \theta, \pi)$ by maximizing the likelihood of the observed data. This is done using the **Baum-Welch algorithm**, a specific case of the **Expectation-Maximization (EM) algorithm**, via the .fit() method.

The GaussianHMM model in hmmlearn assumes a Gaussian distribution for emissions. The covariance_type parameter controls the structure of the covariance matrix, with the following options (ordered by increasing complexity):

- "spherical": A single variance value is used for all features within each state.
- "diag": Each state has a diagonal covariance matrix, allowing feature-specific variances.
- "tied": A single full covariance matrix is shared across all states.
- "full": Each state has its own full covariance matrix, providing the most flexibility.

To select the optimal model, an **information criterion** such as the **Bayesian Information Criterion** (**BIC**) can be used to balance model complexity and goodness of fit.

```
def hmm_summary(markov, X, lengths, matrix=False):
    """Helper to return summary statistics from fitting Hidden Markov Model
Args:
    markov: Fitted GaussianHMM
    X: Input data of shape (nsamples, nfeatures)
```

```
lengths: Lengths of the individual sequences in X, sum is nsamples
    matrix: Whether to return the transition and stationary matrices
Returns:
  Dictionary of results in {'aic', 'bic', 'parameters', 'NLL'}
.. .. ..
logL = markov.score(X, lengths)
T = np.sum(lengths)  # n_samples
n = markov.n_features # number of features ~ dim of covariance matrix
m = markov.n_components # number of states
k = dict(diag=m*n,
                   # parms in mean and cov matrix
         full=m*n*(n-1)/2,
         tied=n^{*}(n-1)/2,
         spherical=m) [markov.covariance_type] + markov.n_features
p = m^{*}2 + (k * m) - 1 \# number of indepedent parameters of the model
results = { 'aic': -2 * \log L + (2 * p),
           'bic': -2 \times \log L + (p \times np.log(T)),
           'parameters': p,
           'NLL' : -logL}
if matrix: # whether to return the transition and stationary matrix
   matrix = DataFrame(markov.transmat_) \
        .rename_axis(columns='Transition Matrix:')
   matrix['Stationary'] = markov.get_stationary_distribution()
   results.update({'matrix': matrix})  # return matrix as DataFrame
return results
```

```
# Compare covariance types in Gaussian HMM models
out = []
for covariance_type in ["full", "diag", "tied", "spherical"]:
    for n_components in range(1, 8):
        if VERBOSE:
           print('========', covariance_type, n_components, "=======")
        markov = hmm.GaussianHMM(n_components=n_components,
                                 covariance type=covariance type,
                                 verbose=VERBOSE,
                                 tol=1e-6,
                                 random_state=0,
                                 n_{iter=500}
                    .fit(X, [X.shape[0]])
        result = hmm_summary(markov, data, [X.shape[0]])
        #print(n_components, Series(results, name=covariance_type).to_frame().T)
        result.update({'cov_type': covariance_type,
                       'n_components': n_components})
        out.append(Series(result))
results = pd.concat(out, axis=1).T.convert_dtypes()
```

```
Model is not converging. Current: -48374.028067592284 is not greater than -48374.

+02806594439. Delta is -1.6478952602483332e-06

Model is not converging. Current: -125173.83118863673 is not greater than -125173.

+83118797389. Delta is -6.628397386521101e-07

Model is not converging. Current: -123662.93419332648 is not greater than -123662.

+93417683932. Delta is -1.648715988267213e-05
```

```
# Show best bic's
best_bic = []
for covariance_type in ["full", "diag", "tied", "spherical"]:
    result = results[results['cov_type'] == covariance_type]
    argmin = np.argmin(result['bic'])
    best_bic.append(result.iloc[[argmin]])
best_bic = pd.concat(best_bic, axis=0)
best_type = best_bic.iloc[np.argmin(best_bic['bic'])]['cov_type']
print(f"HMM best bic type: {best_type}")
best_bic.round(0)
```

HMM best bic type: spherical

	aic	bic	parameters	NLL	cov_type	n_components
0	212991056.0	213028448.0	8001	106487527.0	full	1
12	16508012.0	16532906.0	5327	8248679.0	diag	6
14	212991056.0	213028448.0	8001	106487527.0	tied	1
23	14544672.0	14546518.0	395	7271941.0	spherical	3

HMM transition and stationary probabilities, and average INDPRO value by state

 0
 1
 2
 Stationary
 INDPRO

 0
 0.6485
 0.1775
 0.1740
 0.1720
 -0.0020

 1
 0.0677
 0.8595
 0.0728
 0.4482
 0.0053

 2
 0.0793
 0.0854
 0.8352
 0.3798
 -0.0002

Plot predicted states

```
def plot_states(modelname, labels, num=1, series_id='INDPRO', freq='M'):
    """helper to plot predicted states 'IPMANSICS'"""
```

```
(continued from previous page)
```

```
# n_components markers
   n_components = len(np.unique(labels))
   markers = ["o", "s", "d", "X", "P", "8", "H", "*", "x", "+"][:n_components]
   fig, (bx, ax) = plt.subplots(nrows=2, ncols=1, figsize=(10, 6))
   # plot series, with states colored
   df = alf(series_id, freq=freq)
   df.index = pd.DatetimeIndex(df.index.astype(str), freq='infer')
   df = df[(df.index >= min(labels.index)) & (df.index <= max(labels.index))]</pre>
   for i, marker in zip(range(n_components), markers):
       df.loc[labels == i].plot(ax=ax, style=marker, markersize=2, color=f"C{i}",...
\rightarrowrot=0)
   ax.set_xlabel(f"{series_id}: {alf.header(series_id)}")
   ax.set_xlim(left=min(df.index), right=max(df.index))
   for a,b in vspans: # shade economic recession periods
       if (b > min(df.index)) & (a < max(df.index)):
           ax.axvspan(max(a, min(df.index)), min(b, max(df.index)),
                      alpha=0.3, color='grey')
   ax.legend([f"state {i}" for i in range(n_components)], fontsize=8)
   ax.set_yscale('log')
   s = np.zeros((n_components, len(labels)))
   for i, j in enumerate(labels.values.flatten()):
       s[j][i] = j + 1
   sns.heatmap(s, vmin=0, vmax=n_components, ax=bx, cbar=False, xticklabels=False,
               cmap=["lightgrey"] + [f"C{i}" for i in range(n_components)])
   bx.set_xlabel('predicted state')
   date_str = f" ({str(df.index[0])[:7]} to {str(df.index[-1])[:7]})"
   fig.suptitle(f"{modelname.upper()} Predicted States" + date_str)
   plt.tight_layout()
```

plot_states('HMM', pred_markov, num=1, freq=freq)

12.1.1 Markov Chains

Markov Chains are a fundamental class of state space models where the future state of a system depends only on the current state and not on past states. Key concepts in Markov Chains include:

- Geometric Runs: The probability distribution of the time until a particular state recurs, which often follows a geometric distribution.
- Irreducibility: A property of a Markov Chain where it is possible to reach any state from any other state, ensuring long-run stability in the system.

The Graphviz python package can be used to visualize the states and transition probabilities of a Hidden Markov Model (HMM), providing a representation of how states evolve over time.

```
# Visualize HMM transitions and states
from sklearn.preprocessing import minmax_scale
colors = minmax_scale(indpro).flatten()
import graphviz
def fillcolor(r, g, b):
    def scale(x):
        return int((1 - x) * 256 * .5 + 64)
    return f"#{scale(r):02x}{scale(g):02x}{scale(b):02x}"
```

matrix

Transition Matrix:	0	1	2	Stationary
0	0.648460	0.177506	0.174035	0.171962
1	0.067656	0.859514	0.072830	0.448240
2	0.079320	0.085432	0.835248	0.379799

dot

```
# dot.format = 'png'
# dot.view(filename='digraph') # Visualize the graph
```

<graphviz.graphs.Digraph at 0x7f3131652c10>

12.2 Gaussian Mixture Model

A **Gaussian Mixture Model (GMM)** is a probabilistic model that assumes that the data is generated from a mixture of multiple Gaussian distributions. Each component in the mixture represents a different subpopulation within the data. The following are tje parameters that need to be estimated:

- 1. Mixing Coefficients (Weights) π_k –These represent the proportion of each Gaussian component in the overall mixture and must sum to 1.
- 2. Mean Vectors μ_k –The center of each Gaussian component in the feature space, indicating where each cluster is located.
- 3. Covariance Matrices Σ_k –These define the shape and spread of each Gaussian distribution, determining how data points are dispersed around the mean.

These parameters are typically estimated using the **Expectation-Maximization** (EM) algorithm, by iteratively optimizing the likelihood of the observed data.

12.2.1 Persistance

Persistence in an HMM refers to the likelihood that the system remains in the same hidden state over time rather than transitioning to a different state. It is determined by the self-transition probabilities on the diagonal of the transition matrix.

In GMMs, persistence refers to the likelihood of a data point belonging to the same Gaussian component across different observations. Since GMMs do not model temporal dependencies like HMMs, persistence is inferred from the posterior probability of a point belonging a particular cluster.

Compare HMM with GMM:

Hidden Markov	Gaussian Mixture
0.820253	0.732911
0.171962	0.152971
0.448240	0.424779
0.379799	0.422250
	Hidden Markov 0.820253 0.171962 0.448240 0.379799

CHAPTER

THIRTEEN

TERM STRUCTURE OF INTEREST RATES

The best thing about the future is that it comes one day at a time - Abraham Lincoln

The term structure of interest rates describes how interest rates and bond yields vary across different maturities, typically illustrated using a yield curve. We examine basic concepts such as spot rates, forward rates, par rates, and yield-tomaturity, along with techniques for modeling the term structure, including yield curve construction, splines, and bootstrapping. To gain intuitive insights into the dynamics of interest rate movements, we also apply low-rank approximation methods such as Principal Component Analysis (PCA) and Singular Value Decomposition (SVD).

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import re
from typing import List, Dict
from datetime import datetime
import numpy as np
import numpy.linalg as la
from scipy.interpolate import CubicSpline
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from finds.readers import Alfred
from secret import credentials, paths
VERBOSE = 0
# %matplotlib qt
```

alf = Alfred(api_key=credentials['fred']['api_key'], convert_date=0, verbose=VERBOSE)

13.1 Interest Rates

The frequency at which interest is compounded determines how an interest rate is measured. For example, an annual compounding rate assumes interest is compounded once per year, while a semi-annual compounding rate assumes two compounding periods per year.

The Annualized Percentage Yield (APY) or effective annual yield accounts for the effects of compounding. The conversion formula is:

$$APY = \left(1 + \frac{R_m}{m}\right)^m - 1$$

where m represents the number of compounding periods per year.

To convert an interest rate R_m with compounding frequency m to an equivalent **continuously compounded rate** r, we use the formula:

$$e^{rt} = \left(1 + \frac{R_m}{m}\right)^{mt}$$

The **spot rate** for a given maturity is the zero-coupon rate applicable to that period. It is directly related to the discount factor:

Discount factor =
$$\left(1 + \frac{R_m}{m}\right)^{-t}$$

The **forward rate** is the implied future interest rate derived from observed spot rates. Longer-term spot rates can be determined by compounding forward rates.

A bond's **yield to maturity (YTM)** is the single discount rate that equates the bond's present value of cash flows to its market price.

The **par rate** is the coupon rate at which a bond is issued at par value. A bond priced at par has a yield to maturity equal to its coupon rate.

The **term structure of interest rates** represents the relationship between yields and maturities. When plotted, it forms a **yield curve**. An upward-sloping curve indicates that forward rates are higher than spot and par rates, while a downward-sloping curve suggests the opposite.

Swap rates represent fixed interest rates exchanged for floating rates in an interest rate swap and are considered par rates.

```
# retrieve Constant Maturity Treasuries, excluding inflation-indexed and discontinued
cat = alf.get_category(115)  # Fed H.15 Selected Interest Rates
print('Retrieved category:', cat['id'], cat['name'])
```

Retrieved category: 115 Treasury Constant Maturity

```
treas = DataFrame.from_dict(
    {s['id']: [s['observation_start'], s['frequency'], s['title'].split(',')[0][44:]]
    for s in cat['series'] if 'Inflation' not in s['title'] and
    'DISCONT' not in s['title'] and s['frequency'] in ['Daily', 'Monthly']},
    columns = ['start', 'freq', 'title'],
    orient='index').sort_values(['freq', 'start'])
print("Constant Maturity Treasuries in FRED")
pd.set_option('display.max_colwidth', None)
treas
```

Constant Maturity Treasuries in FRED

freq start title DGS1 1962-01-02 Daily 1-Year Constant Maturity DGS10 1962-01-02 Daily 10-Year Constant Maturity DGS20 1962-01-02 Daily 20-Year Constant Maturity DGS3 1962-01-02 Daily 3-Year Constant Maturity DGS5 1962-01-02 Daily 5-Year Constant Maturity DGS7 1969-07-01 Daily 7-Year Constant Maturity DGS2 1976-06-01 Daily 2-Year Constant Maturity DGS30 1977-02-15 Daily 30-Year Constant Maturity Daily 3-Month Constant Maturity DGS3MO 1981-09-01 Daily 6-Month Constant Maturity DGS6MO 1981-09-01

DGS1MO	2001-07-31	Daily	1-Month	Constant	Maturity
GS1	1953-04-01	Monthly	1-Year	Constant	Maturity
GS10	1953-04-01	Monthly	10-Year	Constant	Maturity
GS20	1953-04-01	Monthly	20-Year	Constant	Maturity
GS3	1953-04-01	Monthly	3-Year	Constant	Maturity
GS5	1953-04-01	Monthly	5-Year	Constant	Maturity
GS7	1969-07-01	Monthly	7-Year	Constant	Maturity
GS2	1976-06-01	Monthly	2-Year	Constant	Maturity
GS30	1977-02-01	Monthly	30-Year	Constant	Maturity
GS3M	1981-09-01	Monthly	3-Month	Constant	Maturity
GS6M	1981-09-01	Monthly	6-Month	Constant	Maturity
GS1M	2001-07-01	Monthly	1-Month	Constant	Maturity

maturity date	1	3	6	12	24	36	60	84	120	240	360
1962-01-02	NaN	NaN	NaN	3.22	NaN	3.70	3.88	NaN	4.06	4.07	NaN
1962-01-03	NaN	NaN	NaN	3.24	NaN	3.70	3.87	NaN	4.03	4.07	NaN
1962-01-04	NaN	NaN	NaN	3.24	NaN	3.69	3.86	NaN	3.99	4.06	NaN
1962-01-05	NaN	NaN	NaN	3.26	NaN	3.71	3.89	NaN	4.02	4.07	NaN
1962-01-08	NaN	NaN	NaN	3.31	NaN	3.71	3.91	NaN	4.03	4.08	NaN
• • •											• • •
2025-02-21	4.36	4.32	4.30	4.15	4.19	4.19	4.26	4.35	4.42	4.69	4.67
2025-02-24	4.36	4.31	4.30	4.15	4.13	4.17	4.23	4.32	4.40	4.69	4.66
2025-02-25	4.34	4.30	4.28	4.12	4.07	4.08	4.12	4.21	4.30	4.59	4.55
2025-02-26	4.35	4.31	4.28	4.12	4.05	4.04	4.06	4.16	4.25	4.55	4.51
2025-02-27	4.38	4.32	4.28	4.13	4.07	4.05	4.09	4.19	4.29	4.59	4.56

[15774 rows x 11 columns]

maturity	1	3	6	12	24	36	60	84	120	240	360	
date												
1953-04-30	NaN	NaN	NaN	2.36	NaN	2.51	2.62	NaN	2.83	3.08	NaN	
1953-05-31	NaN	NaN	NaN	2.48	NaN	2.72	2.87	NaN	3.05	3.18	NaN	
1953-06-30	NaN	NaN	NaN	2.45	NaN	2.74	2.94	NaN	3.11	3.21	NaN	

```
1953-07-31 NaN NaN NaN 2.38
                                   NaN 2.62 2.75
                                                     NaN 2.93
                                                              3.12
                                                                      NaN
1953-08-31 NaN NaN
                      NaN 2.28
                                   NaN 2.58 2.80
                                                     NaN
                                                          2.95
                                                               3.10
                                                                      NaN
            . . .
                  . . .
                                   . . .
                        . . .
                             . . .
                                         . . .
                                               . . .
                                                     . . .
                                                                      . . .
. . .
                                                                . . .
                                                           . . .
2024-09-30 5.06
                4.92
                       4.55
                            4.03
                                  3.62
                                        3.51
                                              3.50
                                                    3.60
                                                          3.72
                                                                4.10
                                                                     4.04
2024-10-31 4.92
                4.72
                      4.44
                            4.20
                                  3.97
                                        3.90
                                              3.91
                                                    3.99
                                                          4.10
                                                               4.44
                                                                     4.38
2024-11-30 4.71
                4.62
                      4.43
                            4.33
                                  4.26
                                        4.21
                                              4.23
                                                    4.29
                                                          4.36
                                                               4.63 4.54
2024-12-31 4.50 4.39 4.32 4.23
                                  4.23 4.22
                                             4.25
                                                    4.32 4.39 4.66 4.58
2025-01-31 4.42 4.34 4.26 4.18 4.27 4.33 4.43
                                                   4.53 4.63 4.92 4.85
```

[862 rows x 11 columns]

```
# mapper to display maturity months as labels
mapper = lambda month: f"{month}-Month" if month < 12 else f"{int(month/12)}-Year"</pre>
```

```
cols = [3, 24, 120, 360]
fig, ax = plt.subplots(figsize=(10, 6))
daily[cols].rename(columns=mapper).plot(ax=ax, rot=0)
plt.title('Daily Constant Maturity Treasury Rates')
plt.ylabel('par yield')
plt.tight_layout()
```



```
cols = [12, 60, 120, 240]
fig, ax = plt.subplots(figsize=(10, 6))
monthly[cols].rename(columns=mapper).plot(ax=ax, rot=0)
plt.title('Monthly Constant Maturity Treasury Rates')
plt.ylabel('par yield')
plt.tight_layout()
```


13.2 Yield Curve

The U.S. Treasury's official **yield curve** is a par yield curve constructed using a monotone convex method. This curve is based on indicative bid-side price quotations collected by the Federal Reserve Bank of New York at approximately 3:30 PM each trading day.

Historically, the Treasury used a quasi-cubic Hermite spline (HS) method to construct the yield curve. This approach interpolated yields directly from observed market data under the assumption that the resulting curve was a par yield curve. However, since December 6, 2021, the monotone convex method has been the standard.

Constant Maturity Treasury (CMT) yields are derived from the Treasury's par yield curve and represent bondequivalent yields for semiannual interest-paying securities. These yields are expressed on a simple annualized basis rather than an effective annual yield (APY) basis, which incorporates compounding effects. To convert a CMT yield to APY, use:

$$APY = \left(1 + \frac{y}{2}\right)^2 - 1$$

13.2.1 Splines

Spline interpolation is used to estimate yields at maturities not directly observed in the market. A **piecewise cubic polynomial** ensures smooth transitions between maturities and maintains twice continuous differentiability.

```
yield_curve = dict()
curve_dates = sorted(daily.dropna().index[-1:0:-(5*252)])
for date in curve_dates:
    yield_curve[date] = CubicSpline(
        x=daily.columns.to_list(), y=daily.loc[date].values, bc_type='clamped')
```

```
# Plot historical yield curves
fig, ax = plt.subplots(figsize=(10, 6))
X = list(range(1, 361))
for col, (date, curve) in enumerate(yield_curve.items()):
    ax.plot(X, curve(X), label=date.strftime('%Y-%m-%d'), color=f"C{col}")
plt.legend()
for col, (date, curve) in enumerate(yield_curve.items()):
    daily.loc[date].plot(ax=ax, marker='o', ls='', color=f"C{col}", label=None)
plt.title('Interpolated Treasury Yield Curves')
plt.xlabel('Maturity (months)')
plt.tight_layout()
```


13.2.2 Bootstrap Method

Bootstrapping is a process used to derive spot rates by progressively solving for zero-coupon rates using available bond data. This iterative approach fits spot rates to increasingly longer maturities.

```
# To bootstrap 6-month spot rates from 6-month par yields
m = 2  # compounding periods per year
# list of 6-monthly maturities
maturities = list(range(int(12/m), daily.columns[-1]+1, int(12/m)))
# Helper to bootstrap spot rates from par yield curve
def bootstrap_spot(coupon: float, spots: List[float], m: int, price: float=1) ->_
+float:
    """Compute spot rate to maturity of par bond from yield and sequence of spots
```

```
Args:
    coupon : Annual coupon rate
    spots : Simple annual spot rates each period (excluding last period before.
⇔maturity
   m : Number of compounding periods per year
    price: Present value of bond
  Returns:
    Simple spot interest rate till maturity
   .....
  if not spots:
                      # trivial one-period bond
      return coupon / price
  n = len(spots) + 1  # number of coupons through maturity
   # discount factors from given spot rates
  discount = [(1 + spot/m) ** (-(1+t)) for t, spot in enumerate(spots)]
  # nominal amount of last payment
  last_payment = 1 + coupon/m
  # infer present value of last coupon and principal
  last_pv = price - np.sum(discount) * coupon/m
   # compute discount factor and annualize the effective rate
  spot = ((last_payment/last_pv) ** (1/n) - 1) * m
  return spot
```

```
# select most recent yield curve
curve_date = curve_dates[-1]
yields = [yield_curve[curve_date](t) / 100 for t in maturities]
spots = []
for coupon in yields:
    spots.append(bootstrap_spot(coupon=coupon, spots=spots, m=m))
DataFrame({curve_date.strftime('%Y-%m%d'): spots}, index=maturities).head()
```

2025-0227 6 0.042800 12 0.041285 18 0.040591 24 0.040684 30 0.040639

Helper to compute bond prices

```
Returns:
    Present value of bond
"""
if not pd.api.types.is_list_like(yields):
    yields = [yields] * n  # same yield-to-maturity is spot rate every_
    eperiod
    assert len(yields) == n, "Number of yields must equal number of couponds"
    pv = [(1 + yields[t-1]/m)**(-t) * (coupon/m + (par if t == n else 0))
        for t in range(1, n+1)] # discount every period's payment, plus last face
    return np.sum(pv)
```

```
# Sanity-check par bond price given spots
for t in range(len(yields)):
    price = bond_price(coupon=yields[t], n=t+1, m=2, yields=spots[:(t+1)])
    assert np.allclose(price, 1.0) # discounted payments at spot rates must equal_
    oprice
```

```
# Compute forward rates from spot rates
def forwards_from_spots(spots: List[float], m: int, skip: int=0) -> List[float]:
   """Compute forward rates given spot rates
   Args:
     spots : Sequence of simple annual spot rates
     m : Number of compounding periods per year
     skip: Number of initial periods skipped
    Returns:
     List of forward rates, excluding first period of spot rates input
    .....
    result = []
    assert len(spots) >= 2, "Require at least two spot rates as input"
    for t in range(1, len(spots)):
        n = skip + t
        numerator = (1 + spots[n]/m)**n
                                              # discounted value of period n
        denominator = (1 + \text{spots}[n-1]/m)^{**}(n-1) # discounter value of period n-1
        result.append(((numerator / denominator) - 1) * m)
    return result
```

forwards = [spots[0]] + forwards_from_spots(spots=spots, m=m)

Plot current yield curve

There are more sophisticated methods for fitting yield curves to treasuries prices, such as this model by Liu and Wu (2021)

```
f = ax.plot_surface(X, Y, Z, cmap='coolwarm', linewidth=0, antialiased=True)
ax.set_title('Reconstructed Treasury Interest Rates [Liu and Wu (2020)]')
ax.set_xlabel('date')
ax.set_ylabel('maturity (years)')
ax.set_zlabel('annual yield (%)')
fig.colorbar(f, shrink=0.5, aspect=5)
plt.tight_layout()
```



```
# Plot historical Yield Curves
curve_dates = sorted(liuwu.index[-1:0:-(7*12)])[-4:]
for date in curve_dates:
    yield_curve[date] = CubicSpline(
        x=monthly.columns.to_list(), y=monthly.loc[date].values, bc_type='clamped')
fig, axes = plt.subplots(2,2, figsize=(12, 8), sharey=True, sharex=True)
axes = axes.flatten()
for num, (curve_date, ax) in enumerate(zip(curve_dates, axes)):
    # fit yields
```

```
yields = [yield_curve[curve_date](t) / 100 for t in maturities]
```


13.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA), also referred to as **eigendecomposition**, involves rotating the data space so that each axis captures the maximum variance. We apply PCA to identify the key factors influencing daily interest rate in Constant Maturity Treasury (CMT) rates.

The number of factors in PCA equals the number of interest rate maturities analyzed. The first principal component accounts for 84% of daily yield variance, while the first two components explain almost 99%. The first three components together account for approximately 99.9%, meaning most of the uncertainty in yield changes can be attributed to these factors.

	Cumulative	Variance	Explained
1			0.841980
2			0.986916
3			0.997595
4			0.998925
5			0.999401
6			0.999727
7			0.999866
8			0.999929
9			0.999965
10			0.999986
11			1.000000
	1 2 3 4 5 6 7 8 9 10 11	Cumulative 1 2 3 4 5 6 7 8 9 10 11	Cumulative Variance 1 2 3 4 5 6 7 8 9 10 11

Text(0, 0.5, 'Factor Loading')

Key Factors Affecting Treasury Yields

- 1. Level Factor Represents a parallel shift in yields across all maturities.
- 2. Slope Factor –Indicates changes in the steepness of the yield curve, where short-term and long-term rates move in opposite directions.
- 3. **Twist Factor** –Describes changes in the curvature of the yield curve, where intermediate rates move differently from short- and long-term rates.

13.4 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a factorization method that decomposes a matrix into three components:

$$A = USV^T$$

where:

- U and V are orthogonal matrices representing rotations.
- S is a diagonal matrix containing singular values (scaling factors).

SVD generalizes eigenvalue decomposition:

$$A^T A = V \Lambda V^T$$

where Λ contains the eigenvalues.

A goal of both PCA and SVD is to approximate the original data matrix with a lower-dimensional presentation, with the most important eigen- and singular vectors associated with the largest eigenvalues and singular values respectively.

• Eigenvalues (λ) in PCA correspond to squared singular values in SVD.

- Principal components (columns of V) are the eigenvectors or right singular vectors.
- Loadings are obtained by multiplying each principal component by its corresponding singular value.
- Projections (scores) are computed by projecting data onto the principal components.

```
# A is num_samples (N) by num_features (K) data matrix, standardized by column
A = daily.dropna().values
A = (A - A.mean(axis=0)) / A.std(axis=0) # subtract mean, divide by std
N, K = A.shape
A.shape
```

(5896, 11)

```
# svd x is related to pca of x'x
u, s, vT = np.linalg.svd(A, full_matrices=False)
v = vT.T  # transposed right singular vector was returned
```

The **eigenvalues** (λ) of PCA

- can be retrieved as (N-1) times pca.explained_variance_
- are equal to the squares of the singular values (s from SVD)

```
# s**2 = lambda = N * explained_variance
assert np.allclose((N-1) * pca.explained_variance_, s**2), 'eigenvalues values'
assert np.allclose(pca.singular_values_, s), "singular values"
```

The **components** (columns of V) of an eigendecomposition

- are also called the eigenvectors, or right singular vectors from the SVD
- can be retrieved from the rows of pca.components_, or
- are the rows of V^T (identically, the columns of V from SVD)

Relatedly:

• loadings are computed by multiplying each component by its corresponding singular value $v \cdot s$

```
# square of loadings is same as square of data matrix, i.e. the covariance matrix
loadings = np.diag(pca.singular_values_) @ pca.components_
assert np.allclose(A.T @ A, loadings.T @ loadings), 'square matrix'
```

The projections of PCA

- are also known as the scores or co-ordinates
- are computed by projecting the data matrix on the components $A \cdot V$
- or by scaling each left singular vector by its corresponding singular value $u \cdot s$
- can be retrieved by calling pca.transform() on the data matrix

```
# assert: x @ v == transform(x) (aka projection on components)
y = pca.transform(A)
for pc in range(K):
    assert np.allclose((A@v)[:,pc], -y[:,pc]) or np.allclose((A@v)[:,pc], y[:,pc])
    assert np.allclose(u[:,pc]*s[pc], -y[:,pc]) or np.allclose(u[:,pc]*s[pc], y[:,pc])
```

13.5 Low-Rank Approximations

PCA and SVD allow approximating the original data matrix with a lower-dimensional representation. A rank-k approximation is a technique find a matrix A_k with lower rank k that is as close as possible to the original matrix A in terms of some measure, typically the Frobenius norm. This approximation reduces the complexity of the data while retaining its most important features.

13.5.1 Low-rank approximation by PCA

 $A \approx A'_{k}A_{k} = V_{[:k]}D_{[:k]}V'_{[:k]}$

```
ATA = A.T.dot(A)
eigval, eigvec = (N-1)*pca.explained_variance_, pca.components_.T
assert np.allclose(eigvec.dot(np.diag(eigval)).dot(eigvec.T), ATA), "pca error"
```

```
print('rank-K PCA approximation:')
DataFrame.from_dict({k: (la.norm(
    eigvec[:, :k].dot(np.diag(eigval[:k])).dot(eigvec[:, :k].T) - ATA)/la.norm(ATA))
    for k in range(1, 5)}, orient='index', columns=['Frobenius Norm'])\
    .rename_axis(index='K')
```

rank-K PCA approximation:

Frobenius Norm K 1 0.170097 2 0.012614 3 0.001707 4 0.000700

13.5.2 Low-rank approximation by SVD

```
A \approx A_k = U_{[:k]} S_{[:k]} V'_{[:k]}
```

```
assert np.allclose(u.dot(np.diag(s)).dot(v.T), A), "svd error"
```

```
print('rank-K SVD approximation:')
DataFrame.from_dict({k: la.norm(
    u[:, :k].dot(np.diag(s[:k])).dot(v[:, :k].T) - A) / la.norm(A)
    for k in range(1, 5)}, orient='index', columns=['Frobenius Norm'])\
    .rename_axis(index='K')
```

```
rank-K SVD approximation:
```

```
Frobenius Norm
K
1 0.397517
2 0.114383
3 0.049039
4 0.032781
```

References:

FRM Part 1 Exam Book Valuation and Risk Models, Chapter 12-13

Yan Liu and Jing Cynthia Wu "Reconstructing the Yield Curve", Journal of Financial Economics, 2021, 142 (3), 1395-1425.

https://home.treasury.gov/policy-issues/financing-the-government/interest-rate-statistics/ treasury-yield-curve-methodology

FOURTEEN

INTEREST RATE RISK

The essence of investment management is the management of risks, not the management of returns - Benjamin Graham

Changes in interest rates directly affect the value of bonds and fixed-income portfolios. Various measures of interest rate sensitivity, such as duration, convexity, DV01, and key rate shifts help quantify how bond prices respond to fluctations in the yield curve. Additionally, we explore the statistical approach to identifying key risk factors that explain interest rate movements.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from typing import List
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import statsmodels.formula.api as smf
from finds.readers import Alfred
from finds.recipes import bond_price
from secret import credentials
# %matplotlib qt
VERBOSE = 0
```

14.1 Interest rate sensitivity

14.1.1 Duration

Duration, or Macaulay Duration, measures how a bond's price P changes in response to an instantaneous change in its yield y.

Consider a bond with price P and yield y. To simplify the duration formula, we first express the yield using continuous compounding. The bond's price is given by:

$$P = \sum_{t=1}^n c_t e^{-yt}$$

Differentiating this equation, we obtain:

$$\Delta P = -\sum_{t=1}^n c_t t e^{-yt} \Delta y$$

Yield-based duration is defined as the proportional change in bond price for a small change in yield:

$$D = \frac{\Delta P}{P\Delta y} = \sum_{t=1}^{n} t \frac{c_t e^{-yt}}{P}$$

This formulation provides an alternative interpretation of duration: it represents the weighted average time at which cash flows are received, with each time weighted by the proportion of the bond's total value received at that time. This explains why the term "duration" is used to describe sensitivity to yield changes—duration effectively measures how long an investor must wait to receive the bond's cash flows.

Modified duration accounts for different compounding conventions. If yields are measured with semi-annual compounding instead of continuous compounding, Macaulay duration must be adjusted by dividing by $(1 + y_2/2)$ (or $1 + y_m/m$ for *m*-thly compounding).

Effective duration, on the other hand, measures the percentage change in the price of a bond with embedded options due to a small shift in all interest rates.

14.1.2 DV01

DV01 (Dollar Value of a 01) quantifies the impact of a one-basis-point change in interest rates on a bond or portfolio' s value. It is given by:

$$DV01 = -\frac{\Delta P}{\Delta r}$$

where Δr represents a small parallel shift in the interest rate term structure (expressed in basis points).

14.1.3 Convexity

Duration and convexity appear as the first two terms in a Taylor expansion of a bond's price with respect to interest rates. While duration provides a linear estimate of price sensitivity, convexity measures the curvature of the bond price-yield relationship, refining estimates for larger rate movements.

Convexity accounts for the fact that bond price changes are not perfectly linear with respect to interest rate movements. **Yield-based convexity**, when yields are expressed with continuous compounding, is given by:

$$C = \frac{1}{P} \frac{1}{(1+r/m)^2} \sum_{t=1}^{T} (t/2m + (t/m)^2) \frac{C_t}{(1+r/m)^t}$$

This formula represents a weighted average of the squared time to maturity. When yields are expressed with semi-annual compounding, these expressions must be divided by $(1 + y_2/2)^2$ (or $(1 + y_m/m)^2$ for *m*-thly compounding), and the result is known as **modified convexity**.

Effective convexity measures how duration itself changes in response to interest rate shifts and is calculated as:

$$C = \frac{1}{P} \left[\frac{P^+ + P^- - 2P}{(\Delta r)^2} \right]$$

```
n : Number of remaining coupons
     m : Number of compounding periods per year
     price : current market price of bond
     yields : Simple annual yield-to-maturity or spot rates each period
     par : face or par value of bond
   Returns:
     Macaulay duration
    .....
   if not pd.api.types.is_list_like(yields):
       yields = [yields] * n
                              # same spot rate every period
   assert len(yields) == n, "Number of spot rates must equal number of couponds"
   pv = [(1 + yields[t-1]/m) ** (-t) * (t/m) * (coupon/m + par*(t == n))
         for t in range(1, n+1)] # discount every period's time-weighted payment
   return np.sum(pv) / price
def modified_duration(coupon: float, n: int, m: int, price: float,
                     yields: float | List[float], par: float = 1, **kwargs) -> float:
    """Compute modified duration of a bond given spot rates or yield-to-maturity
   Args:
     coupon : Annual coupon rate
     n : Number of remaining coupons
     m : Number of compounding periods per year
     price : current market price of bond
```

```
Returns:
    Modified duration
"""
assert not pd.api.types.is_list_like(yields), "Not Implemented"
    ytm = yields
    return (macaulay_duration(coupon=coupon, n=n, m=m, price=price, yields=yields,_
-par=par)
    / (1 + ytm/2))
```

yields : Simple annual yield-to-maturity or spot rates each period

par : face or par value of bond

```
def modified_convexity(coupon: float, n: int, m: int, price: float,
                      yields: float | List[float], par: float = 1, **kwargs) ->_
⇔float:
   """Compute mocified convexity of a bond given spot rates or yield-to-maturity
   Args:
     coupon : Annual coupon rate
     n : Number of remaining coupons
     m : Number of compounding periods per year
     price : current market price of bond
     yields : Simple annual yield-to-maturity or spot rates each period
     par : face or par value of bond
   Returns:
    Modified convexity
    .....
   assert not pd.api.types.is_list_like(yields), "Not Implemented"
   ytm = yields
```

```
if not pd.api.types.is_list_like(yields):
    yields = [yields] * n  # same spot rate every period
assert len(yields) == n, "Number of spot rates must equal number of coupons"
    pv = [(1 + yields[t-1]/m)**(-t) * ((t/m)**2 + t/(2*m)) * (coupon/m + par*(t == n))
        for t in range(1, n+1)] # discount every period's time-weighted payment
return np.sum(pv) / (price * (1 + ytm/m)**2)
```

14.1.4 Barbells and bullets

Positive convexity benefits bondholders when there is a parallel shift in interest rates. Consider two fixed-income strategies:

- · A barbell strategy, which consists of holding short- and long-maturity bonds
- · A bullet strategy, which focuses on medium-term bonds

Both strategies may have the same yield (4%) and duration (8.1758), but the barbell strategy typically outperforms when interest rates shift in parallel. This creates an arbitrage opportunity:

- 1. Invest a given USD amount in the barbell strategy
- 2. Short the same USD amount in the bullet strategy

If term structure shifts were always parallel, this approach would be consistently profitable.

print("Table 12.4 Effective Durations and Convexities of Three Bonds")
bonds.round(4)

Table 12.4 Effective Durations and Convexities of Three Bonds

	Value	Effective Duration	Effective Convexity
5-year, 2% coupon	91.0174	4.6764	24.8208
10-year, 4% coupon	100.0000	8.1757	78.8979
20-year, 6% coupon	127.3555	12.6233	212.4587

Compute 5Y and 20Y weights of barbell portfolio, with same duration as bullet 10Y
barbell = ((bond10Y['duration'] - bond20Y['duration']) /

```
(bond5Y['duration'] - bond20Y['duration']))
print(f"Barbell: weight in 5Y = {barbell:.4f}, weight in 20Y = {1-barbell:.4f}")
```

```
Barbell: weight in 5Y = 0.5597, weight in 20Y = 0.4403
```

	Effective	Duration	Effective	Convexity
Bullet		8.175717		78.897925
Barbell		8.175717	-	107.444902

14.1.5 Key rate shifts

Consider three key spot rates: the two-year, five-year, and ten-year rates. Each influences rates in its surrounding maturity range, and together, their combined movements contribute to an overall one-basis-point shift in the yield curve.

These shifts, known as **key rate shifts**, allow for a more detailed decomposition of DV01. The impact of these shifts is captured by **partial 01s** or **key rate 01s** (**KR01s**), defined as follows:

- **KR01**₁: The reduction in portfolio value from a one-basis-point increase in the two-year spot rate
- **KR01**₂: The reduction in portfolio value from a one-basis-point increase in the five-year spot rate
- **KR01**₃: The reduction in portfolio value from a one-basis-point increase in the ten-year spot rate

Since these shifts sum to the overall DV01, we have:

$$DV01 = KR01_1 + KR01_2 + KR01_3$$

By analyzing these key rate sensitivities, investors can better estimate portfolio values under various term structure movements and hedge against specific interest rate risks.

```
KR = [2, 5, 10]
DV01 = dict()
for maturity in np.arange(0, 15, 0.5):
    if maturity <= KR[0]:
        changes = [1, 0, 0]
    elif maturity >= KR[2]:
        changes = [0, 0, 1]
    elif maturity < KR[1]:
        diff = (maturity - KR[0])/(KR[1] - KR[0])
        changes = [1 - diff, diff, 0]
else:
        diff = (KR[2] - maturity)/(KR[2] - KR[1])
        changes = [0, diff, 1-diff]
DV01[maturity] = changes
```

```
fig, ax = plt.subplots(figsize=(10, 6))
DataFrame.from_dict(DV01, orient='index', columns=[f"{y}Y-rate" for y in KR])\
            .plot(ax=ax)
ax.legend()
ax.set_title('Changes in all rates when key rate is increased by one basis point')
ax.set_ylabel('Rate increase (bp)')
ax.set_xlabel('Maturity (years)')
ax.set_ylim(top=2)
plt.tight_layout()
```


14.2 Risk factors

We examine the risk factors which drive the daily returns of the Merrill Lynch Total Bond Indexes.

```
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
```

```
# get Merrill Lynch bond indexes
freq = 'D'  # periodicity 'M' or 'D'
cat = alf.get_category(32413)
print(cat['id'], cat['name'])
```

32413 BofA Merrill Lynch Total Bond Return Index Values

```
# get bond index returns
bonds = [] # to accumulate bond returns
for s in cat['series']:
```

```
bonds.append(alf(s['id'], start=19961231, freq=freq) )
bonds_df = pd.concat(bonds, axis=1).sort_index()
```

		first	last
notna	count		
1	15	19961231	19971230
2	16	19971231	19981230
3	33	19981231	20031230
4	48	20031231	20181108
5	46	20181109	20181109
6	48	20181112	20250228

Choose start date with good data availability

	BAMLCC0A0CMTRIV	BAMLCC0A1AAATRIV	BAMLCC0A2AATRIV	BAMLCC0A3ATRIV	\setminus
date					
19990104	-0.001053	-0.001421	-0.000660	-0.001166	
19990105	-0.003846	-0.004194	-0.003500	-0.003857	
19990106	0.002388	0.002099	0.002102	0.002495	
19990107	-0.002694	-0.002813	-0.002413	-0.002573	
19990108	-0.002583	-0.002941	-0.002419	-0.002658	
• • •	•••		•••		
20250221	0.004058	0.005418	0.004519	0.004090	
20250224	0.001879	0.002273	0.001855	0.001842	
20250225	0.005450	0.007181	0.006098	0.005468	
20250226	0.002036	0.002643	0.002200	0.002056	
20250227	-0.002092	-0.003094	-0.002047	-0.002056	
	BAMLCC0A4BBBTRIV	BAMLCC1A013YTRIV	BAMLCC2A035YTRIV	7 \	
date					
19990104	-0.000995	0.000076	0.000473	3	
19990105	-0.003952	-0.000844	-0.002452		
19990106	0.002419	0.000466	0.000901	-	
19990107	-0.002996	0.000101	-0.000853	3	
19990108	-0.002504	-0.000920	-0.002006	5	
20250221	0.003918	0.001278	0.002482		
20250224	0.001917	0.000683	0.001165	5	

20250225	0.005274	0.001025	0.002846		
20250226	0.001964	0.000422	0.001190		
20250227	-0.002106	0.000216	-0.000200		
	BAMLCC3A057YTRIV BA	MLCC4A0710YTRIV	BAMLCC7A01015YTRIV	\	
date					
19990104	0.000534	-0.000519	-0.001209		
19990105	-0.003343	-0.004276	-0.004990		
19990106	0.001695	0.001967	0.002537		
19990107	-0.001561	-0.002662	-0 003371		
19990107	-0 003309	-0 003773	-0.004368		
19990100	0.003309	0.005775	0.004308	•••	
•••				•••	
20250221	0.003648	0.004107	0.005264	•••	
20250224	0.001481	0.001/9/	0.002408	•••	
20250225	0.004326	0.005516	0.007383	•••	
20250226	0.001797	0.002089	0.002762		
20250227	-0.000742	-0.001944	-0.002688		
	BAMLEMPTPRVICRPITRIV	BAMLEMRACRPIASI	ATRIV BAMLEMRECRP	IEMEATRIV \	
date					
19990104	0.001599	-0.0	00700	-0.005616	
19990105	0 002692	0.0	00400	0 008113	
19990106	0 007144	0.0	03395	0.000115	
10000107	0.00/144	0.0	03005	0.009133	
19990107	-0.001484	-0.0	03095	0.007388	
19990108	-0.000594	0.0	01998	0.000392	
•••			•••	•••	
20250221	0.001815	0.0	02360	0.001548	
20250224	0.001124	0.0	01355	0.001095	
20250225	0.002267	0.0	03170	0.002267	
20250226	0.001417	0.0	01305	0.001557	
20250227	-0.000023	0.0	00111	0.000705	
	BAMLEMRLCRPILATRIV	BAMLEMUBCRPIUSTRI	V BAMLHE00EHYITRI	$I \setminus$	
date					
19990104	0.002297	0.00109	9 0.00019	5	
19990105	0.002392	0.00239	4 0.01228	7	
19990106	0 006251	0 00606	0 0.0057	7	
19990107	0 000198	-0.00069	A 0.00393	,)	
10000100	0.000190	0.00000		<u>-</u>	
19990100	-0.002079	-0.00089	2 0.00000	J	
··· 20250221		0 00205	· · ·	•	
20250221	0.001334	0.00205	0.00030	2	
20250224	0.000737	0.00116	1 0.00042.	2	
20250225	0.002544	0.00293	9 0.00002	D -	
20250226	0.002419	0.00175	5 0.00065	9	
20250227	-0.000991	-0.00006	2 0.00052	7	
	BAMLHYH0A0HYM2TRIV	BAMLHYH0A1BBTRIV	BAMLHYH0A2BTRIV	\	
date					
19990104	0.001490	0.000250	0.001999		
19990105	0.000674	-0.000834	0.000781		
19990106	0.001487	0.001583	0.001041		
19990107	-0.000112	-0.001250	0.000520		
19990108	0.001737	-0.000918	0.002509		
20250221	-0.000726	-0.000524	-0.001033		
20250224	0 001040	0 001016	0 001033		
	0.001010	0.001010	0.001000		

20250225	0.001028	0.001456	0.000758	
20250220	-0.000006	-0.000065	0.000063	
BA	AMLHYH0A3CMTRIV			
date				
19990104	0.003234			
19990105	0.005428			
19990106	0.003480			
19990107	0.001005			
19990108	0.007643			
20250221	-0.000715			
20250224	0.001213			
20250225	-0.000062			
20250226	0.003319			
20250227	0.000046			
[6830 rows >	<pre>x 33 columns]</pre>			

Select these bond return indexes

```
pd.set_option('display.max_colwidth', None)
print("Bond Index Total Returns")
Series(alf.header(rets.columns), index=rets.columns, name='title')\
    .to_frame().rename_axis('series')
```

```
Bond Index Total Returns
```

↔ title	
series	
BAMLCC0A0CMTRIV	ICE BofA US_
⇔Corporate Index Total Return Index Value	
BAMLCC0A1AAATRIV	ICE BofA AAA US_
⇔Corporate Index Total Return Index Value	
BAMLCC0A2AATRIV	ICE BofA AA US.
⇔Corporate Index Total Return Index Value	
BAMLCC0A3ATRIV	ICE BofA Single-A US_
⇔Corporate Index Total Return Index Value	
BAMLCC0A4BBBTRIV	ICE BofA BBB US_
⇔Corporate Index Total Return Index Value	
BAMLCC1A013YTRIV	ICE BofA 1-3 Year US_
GCorporate Index Total Return Index Value	
BAMLCC2A035YTRIV	ICE BofA 3-5 Year US_
GCorporate Index Total Return Index Value	
BAMLCC3A057YTRIV	ICE BofA 5-7 Year USL
GCorporate Index Total Return Index Value	
BAMLCC4A0710YTRIV	ICE BofA 7-10 Year USL
GCorporate Index Total Return Index Value	
BAMLCC7A01015YTRIV	ICE BofA 10-15 Year USL
→Corporate Index Total Return Index Value	
BAMLCC8A015PYTRIV	ICE BofA 15+ Year US_
⊖Corporate Index Total Return Index Value	
	(continues on next page)

BAMLEM1BRRAAA2ACRPITRIV ICE BofA AAA-A Emerging Markets_ →Corporate Plus Index Total Return Index Value BAMLEM2BRRBBBCRPITRIV ICE BofA BBB Emerging Markets_ ⇔Corporate Plus Index Total Return Index Value BAMLEM3BRRBBCRPITRIV ICE BofA BB Emerging Markets_ ⇔Corporate Plus Index Total Return Index Value BAMLEM4BRRBLCRPITRIV ICE BofA B & Lower Emerging Markets_ ⇔Corporate Plus Index Total Return Index Value BAMLEM5BCOCRPITRIV ICE BofA Crossover Emerging Markets_ GCorporate Plus Index Total Return Index Value BAMLEMCBPITRIV ICE BofA Emerging Markets ⇔Corporate Plus Index Total Return Index Value BAMLEMEBCRPIETRIV ICE BofA Euro Emerging Markets. ⇔Corporate Plus Index Total Return Index Value BAMLEMFSFCRPITRIV ICE BofA Private Sector Financial Emerging Markets_ GCorporate Plus Index Total Return Index Value BAMLEMHBHYCRPITRIV ICE BofA High Yield Emerging Markets_ ⇔Corporate Plus Index Total Return Index Value BAMLEMIBHGCRPITRIV ICE BofA High Grade Emerging Markets_ ⇔Corporate Plus Index Total Return Index Value BAMLEMNSNFCRPITRIV ICE BofA Non-Financial Emerging Markets_ ⇔Corporate Plus Index Total Return Index Value BAMLEMPBPUBSICRPITRIV ICE BofA Public Sector Issuers Emerging Markets_ GCorporate Plus Index Total Return Index Value ICE BofA Private Sector Issuers Emerging Markets_ BAMLEMPTPRVICRPITRIV →Corporate Plus Index Total Return Index Value BAMLEMRACRPIASIATRIV ICE BofA Asia Emerging Markets_ →Corporate Plus Index Total Return Index Value BAMLEMRECRPIEMEATRIV ICE BofA EMEA Emerging Markets_ GCorporate Plus Index Total Return Index Value BAMLEMRLCRPTLATRIV ICE BofA Latin America Emerging Markets_ ⇔Corporate Plus Index Total Return Index Value BAMLEMUBCRPIUSTRIV ICE BofA US Emerging Markets_ GCorporate Plus Index Total Return Index Value BAMLHE00EHYITRIV ICE BofA Euro High Yield Index Total Return Index Value BAMLHYHOAOHYM2TRIV ICE BofA US. High Yield Index Total Return Index Value ICE BofA BB US_ BAMLHYH0A1BBTRIV High Yield Index Total Return Index Value BAMLHYH0A2BTRIV ICE BofA Single-B US_ ↔High Yield Index Total Return Index Value BAMLHYH0A3CMTRIV ICE BofA CCC & Lower US_ High Yield Index Total Return Index Value

14.2.1 Statistical risk factors

Extract principal components of bond index returns

```
[5.93480704e-01 1.83414224e-01 7.60999397e-02 2.29460554e-02
2.08374926e-02 1.73252063e-02 1.58102554e-02 1.11222261e-02
1.07270153e-02 9.46337690e-03 7.12268856e-03 5.78660305e-03
5.08617829e-03 4.56329291e-03 3.87130739e-03 2.53236096e-03
2.40159698e-03 2.17255450e-03 1.28094767e-03 9.31393646e-04
7.70330791e-04 6.01123712e-04 3.93600105e-04 3.60165273e-04
3.03684121e-04 2.70804862e-04 9.27216331e-05 8.30786301e-05
5.32780919e-05 3.92254907e-05 3.55714421e-05 1.53907425e-05
5.60549950e-06]
```

	Cumulative	Variance	Ratio	Explained
1				0.593481
2				0.776895
3				0.852995
4				0.875941
5				0.896778
6				0.914104
7				0.929914
8				0.941036
9				0.951763
10				0.961226

```
# Scree plot
fig, ax = plt.subplots(num=1, clear=True, figsize=(10, 6))
scree.plot(kind='bar', rot=0, width=.8, ax=ax)
ax.set_title('Scree Plot: PCA of FRED BofA Bond Return Indexes' + date_str,...
 ⇔fontsize=16)
ax.xaxis.set_tick_params(labelsize=12)
ax.set_ylabel("Percent Variance Explained", fontsize=14)
ax.set_xlabel("Principal Component", fontsize=14)
plt.tight_layout()
```


Scree Plot: PCA of FRED BofA Bond Return Indexes (19990104-20250227)

14.2.2 Explainability of statistical risk factors

Construct interest rate spreads to compare with the statistical factors:

- · Level: The average of the two-year and ten-year Treasury rates
- Slope: The difference between the ten-year and two-year Treasury rates
- Twist: The difference between (ten-year minus five-year) and (five-year minus two-year) rates
- Credit Spread: The difference between BAA corporate bond yields and ten-year Treasury rates

level credit slope twist date 1986-01-03 0.010 -0.04 1.776357e-15 1.776357e-15 1986-01-06 0.015 -0.01 1.000000e-02 -1.000000e-02 1986-01-07 -0.100 0.06 -6.000000e-02 -8.881784e-16 1986-01-08 0.155 -0.14 7.000000e-02 3.000000e-02 1986-01-09 0.160 -0.05 -4.000000e-02 -8.000000e-02 2025-02-24 -0.040 -0.01 4.000000e-02 -2.000000e-02 2025-02-25 -0.080 0.02 -4.000000e-02 6.000000e-02 2025-02-26 -0.035 0.01 -3.000000e-02 5.000000e-02 2025-02-27 0.030 0.01 2.000000e-02 0.000000e+00 2025-02-28 -0.065 0.05 3.000000e-02 -1.000000e-02

[9795 rows x 4 columns]

```
# Show correlations between bond factor returns and spread changes
data = pd.concat([spreads, factors], axis=1, join='inner')
corr = data.corr()
#plt.imshow(corr**2, vmin=0, vmax=1, cmap='Purples')
plt.imshow(corr, vmin=-1, vmax=1, cmap='seismic')
plt.xticks(range(len(corr)), corr.index)
plt.yticks(range(len(corr)), corr.index)
```

(continued from previous page) plt.colorbar() plt.title('Correlation of bond factors and interest rate spread changes')

```
Text(0.5, 1.0, 'Correlation of bond factors and interest rate spread changes')
```


Correlation of bond factors and interest rate spread changes

```
# Show regression fits
for pc in range(K):
```

```
print(smf.ols(f"PC{pc+1} ~ credit + level + slope + twist", data=data)\
      .fit(cov_type='HAC', cov_kwds={'maxlags': 63})\
      .summary())
```

		OLS Re	egress	sion Re	sults		
Dep. Variable:			PC1	R-squ	ared:		0.547
Model:			OLS	Adj.	R-squared:		0.546
Method:		Least Squa	ares	F-sta	tistic:		449.8
Date:	Mor	n, 03 Mar 2	2025	Prob	(F-statistic):		0.00
Time:		17:15	5 : 31	Log-I	ikelihood:		-16545.
No. Observations:	:	6	5533	AIC:			3.310e+04
Df Residuals:		6	5528	BIC:			3.313e+04
Df Model:			4				
Covariance Type:			HAC				
	coef	std err		Z	P> z	[0.025	0.975]

ge)

						(0	onunued nom previous
Intercept 0	.0260	0.089	Ο.	293	0.770	-0.148	0.200
credit 67	.2252	10.644	6.	316	0.000	46.363	88.087
level 67	.5805	3.099	21.	810	0.000	61.507	73.654
slope 9	.3162	2.473	3.	767	0.000	4.469	14.164
twist -13	.9266	2.182	-6.	384	0.000	-18.202	-9.651
Omnibus:		4287.2	===== 230	===== Durbi	======================================		1.169
Prob(Omnibus):		0.0	000	Jarqu	e-Bera (JB):		232868.764
Skew:		2.4	485	Prob(JB):		0.00
Kurtosis:		31.8	823 	Cond.	No.		40.8
Notes:							
<pre>[1] Standard Err GG3 lags and wi</pre>	ors are h thout sma	neterosceda all sample OLS Rec	astici corre gressi	ty an ction on Re	d autocorrela sults	tion robu	ust (HAC) usin
Dep. Variable:		I	PC2	R-squ	ared:		0.486
Model:		(JLS	Adj.	K-squared:		0.486
Method:	1	least Squar	res	F-sta	tistic:		276.0
Date:	Mon,	03 Mar 20	JZ5	Prob	(F-statistic)	:	1.62e-219
lime:		1/:15	:31 = 2 2	LOG-L	ikelinood:		-13117.
No. Observations	:	6	533	AIC:			2.624e+04
DI RESIDUAIS:		0.	120	BIC:			2.0200+04
Covariance Type:		т	4 44				
==================			======				
	coef	std err		Z	P> z	[0.025	0.975]
Intercept 0	.0026	0.048	0.	055	0.956	-0.092	0.097
credit 8	.5003	3.413	2.	491	0.013	1.811	15.190
level -27	.6696	1.648	-16.	794	0.000	-30.899	-24.440
slope -14	.4220	1.193	-12.	090	0.000	-16.760	-12.084
twist 0	.0005	1.291	0.	000	1.000	-2.530	2.531
Omnibus:		4199.4	401	Durbi	n-Watson:		1.263
Prob(Omnibus):		0.0	000	Jarqu	e-Bera (JB):		212780.844
Skew:		2.4	428	Prob(JB):		0.00
Kurtosis:		30.5	534	Cond.	No.		40.8

PC3	R-squared:	0.048
OLS	Adj. R-squared:	0.048
Least Squares	F-statistic:	9.825
Mon, 03 Mar 2025	Prob (F-statistic):	6.37e-08
17:15:32	Log-Likelihood:	-12252.
6533	AIC:	2.451e+04
6528	BIC:	2.455e+04
4		
HAC		
	PC3 OLS Least Squares Mon, 03 Mar 2025 17:15:32 6533 6528 4 HAC	PC3 R-squared: OLS Adj. R-squared: Least Squares F-statistic: Mon, 03 Mar 2025 Prob (F-statistic): 17:15:32 Log-Likelihood: 6533 AIC: 6528 BIC: 4 HAC

	coef	std e	rr	Z	P> z	[0.025	0.975]
Intercept	-0.0047	0.0	25 –(0.189	0.850	-0.053	0.044
credit -	12.9602	2.3	26 -5	5.571	0.000	-17.519	-8.401
level	-2.1745	1.3	02 -2	1.671	0.095	-4.726	0.377
slope	1.7327	1.2	18 1	1.422	0.155	-0.655	4.120
twist	0.4779	1.0	97 (0.436	0.663	-1.671	2.627
Omnibus:		3	======= 598.010	Durbi	======================================		1.563
<pre>Prob(Omnibus):</pre>			0.000	Jarqu	e-Bera (JB):		548862.079
Skew:			1.601	Prob(JB):		0.00
Kurtosis:			47.789	Cond.	No.		40.8
[1] Standard E ⇔63 lags and	rrors are without	e hetero: small san OL: =======	scedastic mple cori S Regress	city an rection sion Re ======	d autocorrela sults =======	tion robu	st (HAC) using
Dep. Variable:			PC4	R-squ	ared:		0.024
Model:			OLS	Adj.	R-squared:		0.024
Method:		Least :	Squares	F-sta	tistic:		13.23
Date:	M	on, 03 Ma	ar 2025	Prob	(F-statistic)	:	9.77e-11
Time:		1	7:15:32	Log-L	ikelihood:		-8402.4
No. Observatio	ns:		6533	AIC:			1.681e+04
No. Observation Df Residuals:	ns:		6533 6528	AIC: BIC:			1.681e+04 1.685e+04
No. Observation Df Residuals: Df Model:	ns:		6533 6528 4	AIC: BIC:			1.681e+04 1.685e+04
No. Observation Df Residuals: Df Model: Covariance Typ	ns: e: ========		6533 6528 4 HAC	AIC: BIC:			1.681e+04 1.685e+04
No. Observation Df Residuals: Df Model: Covariance Typ	ns: e: coef	======================================	6533 6528 4 HAC ======	AIC: BIC: z	P> z	[0.025	1.681e+04 1.685e+04
No. Observation Df Residuals: Df Model: Covariance Type 	ns: e: coef 	std e	6533 6528 4 HAC ======= rr 13 -(AIC: BIC: z 	P> z 0.901	[0.025	1.681e+04 1.685e+04
No. Observation Df Residuals: Df Model: Covariance Type Intercept credit	ns: e: -0.0016 2.5655	std e: 0.0	6533 6528 4 HAC rr 13 -(91 2	AIC: BIC: z 0.125 1.517	P> z 0.901 0.129	[0.025 -0.027 -0.748	1.681e+04 1.685e+04
No. Observation Df Residuals: Df Model: Covariance Type ====================================	ns: coef -0.0016 2.5655 0.5677	std e: 0.0 1.6 0.7	6533 6528 4 HAC 13 -(91 2 53 (AIC: BIC: z 0.125 1.517 0.753	P> z 0.901 0.129 0.451	[0.025 -0.027 -0.748 -0.909	1.681e+04 1.685e+04
No. Observation Df Residuals: Df Model: Covariance Typ ====================================	ns: coef 2.5655 0.5677 2.7974	std e: 0.03 1.6 0.7 0.4	6533 6528 4 HAC Trr 13 -(91 2 53 (28 6	AIC: BIC: z 0.125 1.517 0.753 6.532	P> z 0.901 0.129 0.451 0.000	[0.025 -0.027 -0.748 -0.909 1.958	1.681e+04 1.685e+04 0.975] 0.024 5.879 2.044 3.637
No. Observation Df Residuals: Df Model: Covariance Type Intercept credit level slope twist	ns: coef -0.0016 2.5655 0.5677 2.7974 1.6629	std e: 0.0 1.6 0.7 0.4 0.4	6533 6528 4 HAC Trr 13 -(91 2 53 (28 6 52 2	AIC: BIC: z 0.125 1.517 0.753 6.532 3.679	P> z 0.901 0.129 0.451 0.000 0.000	[0.025 -0.027 -0.748 -0.909 1.958 0.777	1.681e+04 1.685e+04 0.975] 0.024 5.879 2.044 3.637 2.549
No. Observation Df Residuals: Df Model: Covariance Type ====================================	ns: coef -0.0016 2.5655 0.5677 2.7974 1.6629	std e: 0.0 1.6 0.7 0.4 0.4	6533 6528 4 HAC Trr 13 -(91 2 53 (28 6 52 3 769.335	AIC: BIC: z 0.125 1.517 0.753 6.532 3.679 Durbi	<pre>P> z 0.901 0.129 0.451 0.000 0.000 n-Watson:</pre>	[0.025 -0.027 -0.748 -0.909 1.958 0.777	1.681e+04 1.685e+04 0.975] 0.024 5.879 2.044 3.637 2.549 ===== 1.940
No. Observation Df Residuals: Df Model: Covariance Type 	ns: coef -0.0016 2.5655 0.5677 2.7974 1.6629	std e: 0.0 1.6 0.7 0.4 0.4	6533 6528 4 HAC Trr 13 -(91 2 53 (28 6 52 3 769.335 0.000	AIC: BIC: 2 0.125 1.517 0.753 6.532 3.679 Durbi Jarqu	<pre>P> z 0.901 0.129 0.451 0.000 0.000 n-Watson: e-Bera (JB):</pre>	[0.025 -0.027 -0.748 -0.909 1.958 0.777	1.681e+04 1.685e+04 0.975] 0.024 5.879 2.044 3.637 2.549 1.940 176343.662
No. Observation Df Residuals: Df Model: Covariance Type 	ns: coef -0.0016 2.5655 0.5677 2.7974 1.6629	std e 0.0 1.6 0.7 0.4 0.4	6533 6528 4 HAC Trr 13 -(91 2 53 (28 6 52 3 769.335 0.000 1.201	AIC: BIC: D.125 1.517 0.753 6.532 3.679 Durbi Jarqu Prob(<pre>P> z 0.901 0.129 0.451 0.000 0.000 ==========================</pre>	[0.025 -0.027 -0.748 -0.909 1.958 0.777	1.681e+04 1.685e+04 0.975] 0.024 5.879 2.044 3.637 2.549 ===== 1.940 176343.662 0.00

References:

FRM Part I Exam Book Valuation and Risk Models Ch12-13

CHAPTER

FIFTEEN

OPTIONS PRICING

Derivatives are financial weapons of mass destruction - Warren Buffett

We explore the basics of options, common strategies, and the foundational pricing models used in the financial markets. The price of an option is influenced by various factors, including the underlying asset's price, the time remaining until expiration, the volatility of the asset, interest rates, and the strike price. The valuation of options can be approached through techniques like binomial tree pricing and Monte Carlo simulations, or models like the Black-Scholes-Merton model.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from pandas import DataFrame, Series
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from tqdm import tqdm
import time
from finds.utils import row_formatted
from finds.readers import Alfred
from secret import credentials
VERBOSE = 0
#%matplotlib qt
```

15.1 Options

An **European** call or put option grants the buyer the right to buy or sell an asset at a specified price on a given expiration date. An **American** call or put option, on the other hand, allows the buyer to exercise the option at any time before or on the expiration date. The specified date is known as the **expiration** (or **maturity**) date, while the price at which the asset can be traded is referred to as the **strike** (or **exercise**) price.

Options can be categorized based on their **moneyness**, meaning the relationship between the option' s strike price and the current price of the underlying asset. An option is considered **in-the-money** if it would result in a positive payoff if exercised immediately, **out-of-the-money** if it would lead to a negative payoff, and **at-the-money** if the strike price equals the current market price.

The value of an option depends on several factors, including:

- The price of the underlying asset (S)
- The strike price (K)
- The risk-free rate (r)
- The volatility of the asset' s price (σ)

- The time to maturity (T)
- Any dividends to be paid during the life of the option (q)

Put-call parity defines the relationship between the prices of European call and put options with identical strike prices and expiration dates: S - C = PV(K) - P.

15.1.1 Option strategies

Various trading strategies involve entering positions in multiple options simultaneously, and sometimes incorporating the underlying asset.

- A **protective put** strategy involves buying a put option while holding the underlying asset. This combined position offers a payoff similar to that of a call option, along with the amount of cash equivalent to the present value of the strike price.
- A **covered call** strategy entails owning an asset and selling a call option on it. Typically, the call option is outof-the-money, and the strategy generates income from the option premium while sacrificing potential upside gains beyond the strike price.
- A **bull spread** is employed by an investor expecting an increase in the asset's price. The strategy involves buying a European call with a lower strike price (K1) and selling a European call with a higher strike price (K2).
- A **bear spread** involves buying a European put option with a higher strike price (K2) and selling a European put option with a lower strike price (K1).
- A **box spread** is a portfolio consisting of a bull spread (using call options) and a bear spread (using put options). Both spreads use the same strike prices and expiration dates.
- A butterfly spread involves a combination of three options, created using either calls or puts. A common version involves one long call with a lower strike price (K1), one long call with a higher strike price (K3), and two short calls at a strike price (K2), where K2 = (K1 + K3)/2.
- A **calendar spread** strategy consists of buying a long call option with an expiration date at time T* and selling a short call option with an earlier expiration date, both at the same strike price (K).
- A straddle is created by holding both a long call and a long put with the same strike price and expiration date.
- A **strangle** is similar to a straddle but reduces the cost by selecting a call option with a higher strike price than the put option.

```
# define call and put payoffs at maturity
def call_payoff(K):
    return lambda s: s - K if s > K else 0

def put_payoff(K):
    return lambda s: K - s if s < K else 0</pre>
```

```
ax.legend([label] + list(df.columns))
def _ls(n):
    """helper to label as long or short position"""
    return 'long' if n >=0 else 'short'
# Define and plot the options strategies
fig, ax = plt.subplots(nrows=4, ncols=2, figsize=(10,12))
ax = ax.flatten()
def options_strategy(K, calls=0, puts=0, stocks=0):
    return lambda s: {f"{_ls(calls)} call {K}": calls*call_payoff(K)(s),
                      f"{_ls(puts)} put {K}": puts*put_payoff(K)(s),
                      "stock": stocks*s}
plot_payoff(options_strategy(K=100, puts=1, stocks=1), ax=ax[0], label='Protective Put
<p')</p>
plot_payoff(options_strategy(K=100, calls=-1, stocks=1), ax=ax[1], label='Covered Call
<p')
def bull_spread(K1, K2):
    assert K2 > K1, "K2 must be greater than K1"
    return lambda s: {f"long call {K1}": call_payoff(K1)(s),
                      f"short call {K2}": -call_payoff(K2)(s)}
plot_payoff(bull_spread(K1=95, K2=105), ax=ax[2], label='Bull Spread')
def bear_spread(K1, K2):
    assert K2 > K1, "K2 must be greater than K1"
    return lambda s: {f"short put {K1}": -put_payoff(K1)(s),
                      f"long put {K2}": put_payoff(K2)(s) }
plot_payoff(bear_spread(K1=95, K2=105), ax=ax[3], label='Bear Spread')
def box_spread(K1, K2):
    assert K2 > K1, "K2 must be greater than K1"
    return lambda s: {f"short put {K1}": -put_payoff(K1)(s),
                      f"long call {K1}": call_payoff(K1)(s),
                      f"long put {K2}": put_payoff(K2)(s),
                      f"short call {K2}": -call_payoff(K2)(s) }
plot_payoff(box_spread(K1=95, K2=105), ax=ax[4], label='Box Spread')
def butterfly_spread(K1, K3):
    assert K3 > K1, "K3 must be greater than K1"
    K2 = (K1 + K3) / 2
    return lambda s: {f"long call {K1}": call_payoff(K1)(s),
                      f"short calls {K2:g}": -2*call_payoff(K2)(s),
                      f"long call {K3}": call_payoff(K3)(s)}
plot_payoff(butterfly_spread(K1=90, K3=110), ax=ax[5], label='Butterfly_spread')
def straddle(K):
    return lambda s: {f"long put {K}": put_payoff(K)(s),
```

df.plot(marker='.', ls='', ms=4, ax=ax)

15.1. Options

15.1.2 Exotic options

In addition to standard European and American options (which are termed plain vanilla options), there are **exotic options** (or simply **exotics**) which have more complex structures and non-standard features.

- A Bermudan option is one where the exercise of the option is restricted to certain predetermined dates.
- A forward start option is an option that starts at a future date and is usually at-the-money at the time it begins.
- A **gap** option is a European option where the price triggering a payoff is different from the price used to calculate the payoff.
- A cliquet option is a series of forward start options, each with its own rules for determining strike prices.
- **Binary** options (also called **digital** options) pay a fixed amount or asset if the option's price exceeds (or falls below) the strike price, otherwise, they pay nothing.
- Asian options provide payoffs based on the arithmetic average of the asset' s price during the option' s life.
- A **lookback** option' s payoff depends on the maximum or minimum price reached by the asset during its lifetime. A floating lookback option gives a payoff based on the difference between the final asset price and the minimum (or maximum) price reached, while a fixed lookback option bases the payoff on the difference between the maximum (or minimum) price and the strike price.
- **Barrier** options have payoffs that depend on whether the price of the asset reaches a specific level, with various types like down-and-out, down-and-out, and up-and-in.
- A compound option is an option on another option, which results in two strike prices and two expiration dates.
- An asset-exchange option allows the holder to exchange one asset for another.
- A volatility swap is a forward contract based on the realized volatility of an asset during a specified period. Traders exchange the realized volatility at the end of the period for a pre-specified volatility rate.
- The exercise of a Bermudan option is restricted to certain dates.
- A **forward start** option is an option that will begin at a future time. It is usually stated that the option will be at-the-money at the time it starts.
- A **gap** option is a European call or put option where the price triggering a payoff is different from the price used in calculating the payoff.
- A cliquet option is a series of forward start options with certain rules for determining the strike prices.
- **Binary** call (put) options may a fixed amount of cash or an asset when its price is above (below) the strike price, or nothing otherwise. Cash-or-nothing optinos are sometimes referred to as **digital** options.
- Asian options provide a payoff dependent on an arithmetic aver-age of the underlying asset price during the life of the option.
- The payoff from a **lookback** option depends on the maximum or minimum asset price reached during the life of the option. A floating lookback call (put) gives a payoff equal difference between the final asset price and minimum (maximum) price. The payoff of a fixed lookback call (put) is based on the difference between the maximum (minimum) price and the strike price.
- **Barrier** options come into existence or ceases to exist depending on whether the asset price reaches a particular barrier. There are down-and-out, down-and-in, up-and-out and up-and-in variants.
- A compound option is an option on another option. Thus, there are two strike prices and two maturity dates.
- In an asset-exchange option, the holder has the right to exchange one asset for another.
- A volatility swap is a forward contract on the realized volatility of an asset during a certain period. A trader agrees to exchange a pre-specified volatility for the realized volatility at the end of the period.

15.2 Binomial option pricing

The **binomial option pricing model**, proposed by Cox, Ross, and Rubinstein (1979), is widely used to value Americanstyle options and other derivatives.

15.2.1 No-arbitrage

The no-arbitrage principle assumes there are no opportunities for riskless profit in the market. The **law of one price** stipulates that if two portfolios produce the same cash flows at the same times, they should have the same price. Binomial trees use this no-arbitrage principle to model option pricing.

For example, assuming a non-dividend-paying stock with price S, the stock can either increase to Su or decrease to Sd within time T. The portfolio is structured with:

- A short position in the derivative, and
- A position in the stock which we set equal to $\Delta = \frac{f_u f_d}{Su Sd}$

The value of the portfolio at time T is

- $Su\Delta f_u$ if the stock price increases, and
- $Sd\Delta f_d$ if the stock price decreases.

The value of the portfolio today is $S\Delta - f$, where f is the value of the derivative today. Suppose r is the risk-free rate for maturity T. For no arbitrage, we must have

 $S\Delta-f=\frac{f_ud-f_du}{u-d}e^{-rT}$

Substituting for Δ , gives:

$$f=e^{-rT}[pf_u+(1-p)f_d]$$

where $p = \frac{e^{rT} - d}{u - d}$

15.2.2 Risk neutral pricing

Suppose we choose to interpret the variable p as the probability of an upward movement (with 1 - p being the probability of a downward movement), then the expected stock price grows at the risk-free rate. It also means that p is the probability of an upward movement in a risk-neutral world.

The **risk-neutral** valuation approach applies a probability p for upward movements and values the option by its expected payoff, discounted at the risk-free rate. Risk-neutral pricing assumes that all assets earn the risk-free rate of return in the market. Put another way, a risk-neutral world is one where all tradable assets have an expected return equal to the risk-free interest rate. The probabilities of different outcomes in a risk-neutral world are therefore based on this assumption, and a risk-neutral investor has no preference between assets with different risks. This methodology simplifies the valuation process by treating all market participants as indifferent to risk.

It should be emphasized that the risk-neutral valuation is nothing more than an artificial way of valuing derivatives. We are not assuming that the world is actually risk-neutral. We are instead arguing that the price of a derivative is the same in the real world as it would be in the risk-neutral world

15.2.3 Binomial tree

In practice, the binomial model is extended to multi-step trees, where each step reflects changes in the asset's price over time. Parameters like Δt (time between steps), and u, d (upward and downward movements) are chosen based on the asset's volatility:

- the length of a tree step as Δt
- the parameters u and d should be chosen to reflect the volatility of the stock price. If we denote the volatility per year by σ , then appropriate values for the parameters are

$$- u = e^{\sigma\sqrt{\Delta t}}$$
$$- u = e^{-\sigma\sqrt{\Delta t}}$$

where Δt is measured in years.

- hence $f = e^{-r\Delta t} [pf_u + (1-p)f_d] where p = \langle dfrac \{e^{t} d\} \{u d\} \}$
- the delta, or position taken in the stock to hedge a short posion in the derivative, is $\Delta = \frac{f_u f_d}{Su Sd}$

Dividends: For assets paying dividends, the probability p is adjusted to account for the dividend yield q:

$$p = \frac{e^{(r-q)\Delta t} - a}{u - d}$$

Currency Options: A currency can be considered as an asset providing a yield at the foreign risk-free rate. Therefore, the analysis we presented for a stock paying a continuous dividend yield applies, with q equal to the foreign risk-free rate.

Futures: Because it costs nothing to enter into a futures contract, the return on a futures contract in a risk-neutral world must be zero. This means we can treat a futures contract like a stock, paying a continuous dividend yield equal to the risk free rate.

```
def binomial_tree(S, sigma, r, T, steps, payoff=None, q=0, american=False,
                  verbose=True):
    delta_t = T / steps
    u = np.exp(sigma * np.sqrt(delta_t))
    d = np.exp(-sigma * np.sqrt(delta_t))
    p = (np.exp((r - q) * delta_t) - d) / (u - d)
    result = dict(value=None, u=u, d=d, p=p, delta_t=delta_t)
    if payoff is not None:
        label = "STEP {:<5d}".format # to label output of each step</pre>
        # initialize price vectors at last step
        prices = DataFrame(0.0, index=np.arange(steps+1),
                           columns=['stock', 'option', 'delta'])
        for downs in range(steps+1):
            s = d^* downs * u^* (steps-downs) * S
                                                    # price after number of downs
            prices.loc[downs, 'stock'] = s
            prices.loc[downs, 'option'] = payoff(s) # option value at expiry
        print (row_formatted (prices.T.rename_axis (columns=label (steps)),
                            default="{:.4f}"))
        # roll back one time step at a time
        for step in range(steps - 1, -1, -1):
            # update all scenarios in this time step
            for downs in range(step+1):
                # stock price after this number of downs
```

European call option in 2 steps

STEP 2	0	1	2
stock	41.2995	29.0000	20.3635
option	11.2995	0.0000	0.0000
delta	0.0000	0.0000	0.0000
STEP 1	0	1	
stock	34.6076	24.3010	
option	5.5483	0.0000	
delta	1.0963	0.0000	
STEP 0 stock option delta	0 29.0000 2.7243 0.5383		

```
STEPSvalueudpdelta_t22.72431.19340.8380.49840.5
```

European put option in 2 steps

STEP 2	0	1	2
stock	41.2995	29.0000	20.3635
option	0.0000	1.0000	9.6365
delta	0.0000	0.0000	0.0000

STEP 1	0	1
stock	34.6076	24.3010
option	0.4941	5.2523
delta	-0.0970	-0.8380
STEP 0 stock option delta	0 29.0000 2.8377 -0.4617	

STEPS	value	u	d	р	delta_t
2	2.8377	1.1934	0.838	0.4984	0.5

American put option in 4 steps

STEP 2	0	1	2
stock	41.2995	29.0000	20.3635
option	0.0000	1.0000	9.6365
delta	0.0000	0.0000	0.0000
STEP 1	0	1	
stock	34.6076	24.3010	
option	0.4941	5.6990	
delta	-0.0970	-0.8380	
STEP 0 stock option delta	0 29.0000 3.0584 -0.5050		

STEPS	value	u	d	р	delta_t
2	3.0584	1.1934	0.838	0.4984	0.5

American put option in 4 steps

STEP 4	0	1	2	3	4
stock	47.8129	37.2367	29.0000	22.5852	17.5894
option	0.0000	0.0000	1.0000	7.4148	12.4106
delta	0.0000	0.0000	0.0000	0.0000	0.0000
STEP 3	0	1	2	3	
stock	42.1948	32.8613	25.5924	19.9314	
option	0.0000	0.4974	4.4076	10.0686	
delta	0.0000	-0.1376	-0.8825	-0.6873	

(continued from previous page)

STEP 2	0	1	2	
stock	37.2367	29.0000	22.5852	
option	0.2474	2.4387	7.4148	
delta	-0.0684	-0.5379	-0.7788	
STEP 1	0	1		
stock	32.8613	25.5924		
option	1.3356	4.8958		
delta	-0.3015	-0.6846		
STEP 0	0			
stock	29.0000			
option	3.0966			
delta	-0.4898			
CTEDC		u d		dolto t
JIEPS A	va⊥ue 3 0966 1 13	u u 31 0 8825	с р	0 25
1	J. U. J. U. J.	JI 0.002J		0.20

European call on index with dividend yield

```
# Figure 14.7 of FRM Part I Exam Book "Valuation and Risk Models"
binomial_tree(S=2500, sigma=0.15, r=0.03, q=0.02, T=0.5, steps=3,
              payoff=call_payoff(K=2500))
```

STEP 3	0	1	2	3
stock	3004.1734	2657.8778	2351.5002	2080.4391
option	504.1734	157.8778	0.0000	0.0000
delta	0.0000	0.0000	0.0000	0.0000
STEP 2	0	1	2	
stock	2825.7257	2500.0000	2211.8212	
option	328.7911	78.2792	0.0000	
delta	1.1303	0.5153	0.0000	
STEP 1	0	1		
stock	2657.8778	2351.5002		
option	202.0979	38.8125		
delta	0.8177	0.2555		
STEP 0	0			
stock	2500.0000			
option	119.5793			
delta	0.5330			

STEPS value u d p delta_t 119.5793 1.0632 0.9406 0.4983 0.1667 3

American call option on foreign currency

```
# Figure 14.8 of FRM Part I Exam Book "Valuation and Risk Models"
binomial_tree(S=0.78, sigma=0.12, r=0.02, q=0.06, T=1, steps=4,
              payoff=call_payoff(K=0.8))
```

STEP 4		0	1	2	3	4
stock	0	.9916	0.8794	0.7800	0.6918	0.6136
option	0	.1916	0.0794	0.0000	0.0000	0.0000
delta	0	.0000	0.0000	0.0000	0.0000	0.0000
STEP 3		0	1	2	3	
stock	0	.9338	0.8282	0.7346	0.6515	
option	0	.1239	0.0318	0.0000	0.0000	
delta	1	.1972	0.8483	0.0000	0.0000	
STEP 2		0	1	2		
stock	0	.8794	0.7800	0.6918		
option	0	.0685	0.0127	0.0000		
delta	0	.9837	0.3394	0.0000		
STEP 1		0	1			
stock	0	.8282	0.7346			
option	0	.0350	0.0051			
delta	0	.5955	0.1358			
STEP 0		0				
stock	0	.7800				
option	0	.0170				
delta	0	.3191				
STEPS	value		u	d	p delta	_t
4	0.017	1.061	8 0.941	8 0.402	1 0.	25

American put option on futures contract

STEP 3	0	1	2	3
stock	51.2946	41.9965	34.3838	28.1511
option	0.0000	0.0000	5.6162	11.8489
delta	0.0000	0.0000	0.0000	0.0000
STEP 2	0	1	2	
stock	46.4133	38.0000	31.1118	
option	0.0000	2.9190	8.8882	
delta	0.0000	-0.7377	-0.8187	
STEP 1 stock option delta	0 41.9965 1.5172 -0.3834	1 34.3838 5.9925 -0.7841		
STEP 0 stock option delta	0 38.0000 3.8282 -0.5879			

STEPS	value	u	d	р	delta_t
3	3.8282	1.1052	0.9048	0.475	0.25

15.3 Black-Scholes-Merton model

The **Black-Scholes-Merton model**, introduced in two papers in 1973, revolutionized options pricing and remains one of the most widely used models for pricing European options. Based on assumptions like lognormal stock price distributions, continuous trading, and no-arbitrage conditions, the model provides a formula for calculating the price of call and put options. In one of the papers, Black and Scholes used the capital asset pricing model (CAPM) to derive the relationship between the return from a stock and the return from an option on the stock. In the other, Merton used no-arbitrage arguments similar to those of the binomial tree approach. Both derived that the price evolution of derivatives satisfies the same partial differential equation:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 S}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

To value an option, we simply apply boundary conditions. For a European call option with time to maturity T and strike price K, the boundary condition is that the value of the option is max(S - K, 0) at time T. For a European put, this boundary condition is max(K - S, 0). Other derivatives give rise to other boundary conditions.

The solutions for the prices of a European call and put are the Black-Scholes-Merton formulas:

$$\begin{split} C &= Se^{-qT}\Phi(d_1) - Ke^{-rT}\Phi(d_2) \\ p &= Ke^{-rT}\Phi(-d_2) - Se^{-qT}\Phi(-d_1) \end{split}$$

where:

•
$$d_1 = \frac{\ln(S_0/K) + (r - q + \sigma^2/2)T}{\sigma\sqrt{T}}$$

• $d_2 = \frac{\ln(S_0/K) + (r - q - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$

- S is the current stock price,
- K is the strike price,
- T is the time to maturity in years,
- r is the risk-free rate per year (continuously compounded),
- q is the dividend yield (or foreign risk-free rate for currency options)
- σ is an estimated volatility per year over the next T years,
- Φ is the cumulative normal distribution function

Suppose discreate dividends are expected by be paid with ex-dates during the life of the option. The option can be valued by replacing stock price S with S - PV(D), the present value of those dividends.

Since American call options on a non-dividend paying stock should never be exercised early, the pricing formula for American call options on non-dividend paying stocks as well as for European call options are the same. But it may be optimal to exercise early when there are discrete dividends, but only immediately before an ex-dividend date. American put options on stocks and all American options on stock indices, currencies, and futures should not be valued as European options. Binomial trees can be used in these cases.

Black-Scholes-Merton option pricing formulas

```
def _d1(S, K, sigma, r, T, q):
    """helper to compute d1 term in Black-Scholes-Merton formula"""
    return (np.log(S/K) + (r - q + sigma**2/2) * T) / (sigma * np.sqrt(T))
```

```
def call(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton call option value"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
    d2 = d1 - sigma * np.sqrt(T)
    return S*np.exp(-q*T)*stats.norm.cdf(d1) - K*np.exp(-r*T)*stats.norm.cdf(d2)
```

```
def put(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton put option value"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
    d2 = d1 - sigma * np.sqrt(T)
    return K*np.exp(-r*T)*stats.norm.cdf(-d2) - S*np.exp(-q*T)*stats.norm.cdf(-d1)
```

```
print(call(S=56, K=60, r=0.05, sigma=0.3, T=18/12)) # 8.3069
print(put(S=56, K=60, r=0.05, sigma=0.3, T=18/12)) # 7.9715
```

```
8.306909593824336
7.971518773537515
```

15.3.1 Implied volatility

Implied volatility is the volatility figure derived from an option's market price and used to infer expectations about future price movements.

The Chicago Board Options Exchange has developed indices that track volatilities. The most popular of these is the SPX VIX index, which tracks the volatilities of 30-day options on the S&P 500. Traders monitor implied volatilities carefully and often use them to communicate prices.

```
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE, convert_date=0)
vix = alf('VIXCLS')
sp500_sq = alf('SP500', log=1, diff=1).rename('SP500 squared returns')
sp500 = alf('SP500')
df = pd.concat([100*np.sqrt(252*sp500_sq**2), vix], axis=1, join='inner').dropna()
fig, ax = plt.subplots(figsize=(10, 6))
df.plot(ax=ax, lw=.5)
ax.set_ylabel('Volatility')
bx = ax.twinx()
sp500.plot(ax=bx, lw=1, color="C2")
bx.set_ylabel('SP500 Price Level')
plt.title('Daily SP500 and VIX')
plt.legend()
plt.tight_layout()
```


15.3.2 Volatility smile

If the assumptions underlying the Black-Scholes-Merton model held exactly, all options on an asset would have the same implied volatility at all times. In practice, implied volatility varies with the strike price and time to maturity. The **volatility smile** refers to this observed pattern, where options with extreme strike prices (both high and low) tend to have higher implied volatilities. Because of put-call parity, the implied volatility of a European call option is the same as that of a European put option when they have the same strike price and time to maturity.

In equity options, the volatility smile generally slopes downward. This means that out-of-the-money puts and in-themoney calls tend to have higher implied volatilities, while out-of-the-money calls and in-the-money puts have lower implied volatilities. This phenomenon is often referred to as a volatility skew. There is a negative correlation between equity prices and volatility, which means that as stock prices fall, volatility increases, and as stock prices rise, volatility decreases.

For foreign currency options, the volatility smile takes a U-shape. Both out-of-the-money and in-the-money options tend to have higher implied volatilities compared to at-the-money options. The volatility of exchange rates is not constant and can be subject to sudden jumps, often driven by central bank actions. These nonconstant volatilities and jumps make extreme price movements more likely.

Traders also often use a volatility term structure, where the implied volatility of an option depends on its time to maturity. When volatility smiles and term structures are combined, they form a **volatility surface**. This surface shows implied volatility as a function of both the strike price and the time to maturity. When quoting option prices, traders interpolate between known implied volatilities to estimate the implied volatility for the option in question. This estimated volatility is then plugged into the Black-Scholes-Merton model to calculate the option price. This approach helps address the fact that the market does not always price options in line with the assumptions of the Black-Scholes-Merton model.

15.3.3 The "Greeks"

The Greek letters, or **Greeks** as they are often called, are metrics used to measure the sensitivity of option prices to different factors such as changes in the price of the underlying asset, volatility, time decay, and interest rates.

• Delta measures the sensitivity to changes in the price of the underlying asset:

$$\begin{split} \Delta_c &= e^{-qt} \Phi(d_1) \\ \Delta_n &= e^{-qt} [\Phi(d_1) - 1] \end{split}$$

• Gamma measures the sensitivity of a portfolio' s delta to changes in the price of the underlying asset:

$$\Gamma = \frac{e^{-qt}}{S\sigma\sqrt{t}}\phi(d_1)$$

• Theta measures the sensitity to time to expiration

$$\begin{split} \Theta_c &= -\frac{S\sigma e^{-qt}}{2\sqrt{t}}\phi(d_1) - rKe^{-rt}\Phi(d_2) + qSe^{-qt}\Phi(d_1)\\ \Theta_p &= -\frac{S\sigma e^{-qt}}{2\sqrt{t}}\phi(d_1) + rKe^{-rt}\Phi(-d_2) - qSe^{-qt}\Phi(-d_1) \end{split}$$

• Vega measures the sensitivity to the implied volatility

$$V=Se^{-qt}\sqrt{t}\phi(d_1)$$

• Rho measures the sensitivity to changes in the level of interest rate

$$\label{eq:rho} \begin{split} \rho_c &= Kte^{-rt}\Phi(d_2) \\ \rho_p &= Kte^{-rt}\Phi(-d_2) \end{split}$$

Any of the Greek letters for a portfolio of derivatives dependent on the same asset can be calculated as the weighted sum of the Greek letters for each portfolio component.

The Black-Scholes-Merton analysis can be used to show that $\Theta + (r-q)S\Delta + \frac{1}{2}\sigma^2 S^2\Gamma = (r-q)C$

Define and plot options sensitivities

```
# Plot options sensitivities
fig, ax = plt.subplots(nrows=4, ncols=2, figsize=(10,12))
ax = ax.flatten()
# call option parameters
opt = dict(K=105, r=0.04, sigma=0.25, T=1)
def delta_call(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton call option delta"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
```

```
return np.exp(-q*T) * stats.norm.cdf(d1)
def delta_put(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton put option delta"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
    return -np.exp(-q*T) * stats.norm.cdf(-d1)
print(delta_call(S=100, **opt)) # 0.5358
plot_greek(greek=delta_call, label='Call Delta', ax=ax[0], c="C0", **opt)
plot_greek(greek=delta_put, label='Put Delta', ax=ax[1], c="C1", **opt)
def vega(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton call or put option delta"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
    return S * np.exp(-q*T) * np.sqrt(T) * stats.norm.pdf(d1)
print(vega(S=100, **opt)) # 39.73
plot_greek(greek=vega, label='Vega', ax=ax[2], c="C2", **opt)
def gamma(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton call or put option gamma"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
    return np.exp(-q*T) * stats.norm.pdf(d1) / (S * sigma * np.sqrt(T))
print(gamma(S=100, **opt)) # 0.0159
plot_greek(greek=gamma, label='Gamma', ax=ax[3], c="C3", **opt)
def theta_call(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton call option theta"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
    d2 = d1 - sigma * np.sqrt(T)
    return ((-S * np.exp(-q*T) * stats.norm.pdf(d1) * sigma / (2 * np.sqrt(T)))
            - (r * K * np.exp(-r*T) * stats.norm.cdf(d2)) +
            + (q * S * np.exp(-q*T) * stats.norm.cdf(d1)))
def theta_put(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton put option theta"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
    d2 = d1 - sigma * np.sqrt(T)
    return ((-S * np.exp(-q*T) * stats.norm.pdf(d1) * sigma / (2 * np.sqrt(T)))
            + (r * K * np.exp(-r*T) * stats.norm.cdf(-d2)) +
            - (q * S * np.exp(-q*T) * stats.norm.cdf(-d1)))
print(theta_call(S=100, **opt)) # 6.73
plot_greek(greek=theta_call, label='Call Theta', ax=ax[4], c="C4", **opt)
plot_greek(greek=theta_put, label='Put Theta', ax=ax[5], c="C5", **opt)
def rho_call(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton call option rho"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
    d2 = d1 - sigma * np.sqrt(T)
    return K * T * np.exp(-r * T) * stats.norm.cdf(d2)
def rho_put(S, K, sigma, r, T, q=0.):
    """Black-Scholes-Merton put option rho"""
    d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
    d2 = d1 - sigma * np.sqrt(T)
    return -K * T * np.exp(-r * T) * stats.norm.cdf(-d2)
```

```
print(rho_call(S=100, **opt)) # 44
plot_greek(greek=rho_call, label='Call Rho', ax=ax[6], c="C6", **opt)
plot_greek(greek=rho_put, label='Put Rho', ax=ax[7], c="C7", **opt)
plt.suptitle('Sensitivity of Options Prices (the "Greeks")')
plt.tight_layout()
```

```
0.5357925584332519
39.73355715246575
0.0158934228609863
-6.727614629584682
44.02299963816157
```


0.3822502482065442 0.38225024820654485

15.4 Monte Carlo simulation

Simulation is an effective way to estimate expectations that are difficult or impossible to compute analytically. Consider a random variable X that can be simulated (for example, from a normal distribution), and a function g that can be evaluated at realizations of X. To estimate the expected value of g(X), we take multiple simulated draws. Since these draws are independent and identically distributed (iid), the expectation can be approximated as:

$$\hat{E}[g(X)] = \frac{1}{b}\sum_{i=1}^{b}g(X_i)$$

where b is the number of simulated samples. By the Law of Large Numbers (LLN), the approximation improves as b increases:

$$\lim_{b\to\infty} \hat{E}[g(X)] = E[g(X)]$$

Additionally, the Central Limit Theorem (CLT) implies that the distribution of the simulated estimate approaches a normal distribution as the number of simulations grows. The variance of the simulated estimate can be approximated by:

$$V[\hat{E}[g(X)]] = \frac{\sigma_b^2}{b}$$

where σ_b^2 is the sample variance. This variance can be estimated as:

$$\sigma_g^2 = \frac{1}{b} \sum_{i=1}^{b} (g(X_i) - E[g(X_i)])^2$$

which is the standard variance estimator for iid samples. The standard error of the estimate, $\frac{\sigma_g}{\sqrt{b}}$, indicates the accuracy of the approximation. This allows us to adjust *b* to achieve any desired level of precision.

15.4.1 Antithetic Variates

Antithetic variates are a technique to improve the accuracy of simulation by generating a second set of random variables that are negatively correlated with the original set of random variables. These pairs of variables are created using a single uniform random number. Each uniform variable U_i generates its counterpart $1 - U_i$, both of which are then mapped through the inverse cumulative distribution function (CDF) to generate correlated random variables.

Using antithetic variates reduces the simulation error, but only if the function g(X) is monotonic, which ensures that the negative correlation between the paired variables results in reduced error. The benefit of this approach comes from the negative correlation, which decreases the standard error and thus increases the accuracy of the simulation.

15.4.2 Control Variates

Control variates are another technique to enhance simulation accuracy. A control variate is a derived random variable $h(X_i)$, which is correlated with the primary variable $g(X_i)$ but has a known mean, typically zero. To be effective, a good control variate must satisfy two criteria:

1. It should be computationally inexpensive to construct from the data x_i , offering a more cost-effective alternative to increasing the number of simulations.

2. It should exhibit a high correlation with the function g(X), making it useful for reducing the error in the primary estimate.

The optimal parameter β , which minimizes the approximation error, is typically found using regression:

$$g(x_i) = \alpha + \beta h(x_i)$$

By adjusting β , the control variate technique helps improve the accuracy of the estimated value of g(X).

15.4.3 Simulating option prices

To simulate the price of a financial option, we assume that the logarithm of the stock price follows a normal distribution. The log of the stock price at time T, denoted s_T , is given by:

$$s_T = s_0 + T\left(r_f - \frac{\sigma^2}{2}\right) + \sqrt{T}x_i$$

where x_i is a random variable sampled from a normal distribution $N(0, \sigma^2)$, r_f is the risk-free rate, and σ^2 is the variance of the stock return. The final stock price is then $S_T = \exp(s_T)$, and the present value of the option's payoff is:

$$C = \exp(-r_f T) \max(S_T - K, 0)$$

where K is the strike price of the option. The expected price of a call option can be estimated by averaging the simulated payoffs:

$$E[C] = \overline{C} = \frac{1}{b} \sum_{i=1}^{b} C_i$$

where C_i represents the simulated payoff for each instance. This approach is particularly useful for complex pricing scenarios where analytical solutions may not exist.

```
# helpers for random number generator and monte carlo simulation
class RNG:
   """Helper to generate random normal variables, with optional antithetic variates""
⇔″
   def __init__(self, seed=None, antithetic=False, ppf=stats.norm.ppf):
       self.ppf = ppf
       self.antithetic = antithetic
       self._prev = None # to track if antithetic pair available to return next
       self.seed = seed
        self.rng = np.random.default_rng(seed)
   def __call__(self, shape=1, **kwargs):
        _shape = (shape, ) if isinstance(shape, int) else shape
       n = np.prod(_shape)
       if self.antithetic: # generate half as many rv's, by returning 1-rv
           new = int((n + 1) / 2) if self._prev is None else int(n / 2)
           new = self.rng.random((new,))
            rem = 1 - new[:n - len(new) - int(self._prev is not None)]
            last = new[-1] if len(rem) < len(new) else None # if last pair unused</pre>
            out = [] if self._prev is None else [1 - self._prev]
            #out.extend(new)
            #out.extend(rem)
            for x, y in zip(new[:len(rem)], rem):
                out.extend([x, y])
```

```
if last is not None:
               out.extend([last])
            out = np.array(out)
            self._prev = last
        else:
            out = self.rng.random(_shape)
        if shape == 1:
            return self.ppf(out[0], **kwargs)
        else:
            return self.ppf(out.reshape(_shape), **kwargs)
def monte_carlo(rng, S, K, sigma, r, T, control=None):
    """Helper to price European call option by Monte Carlo Simulation
    Args:
     control : True price of European put option, as control variate
    .....
    if rng.antithetic:
        label = 'Both' if control else 'Antithetic'
    else:
        label = 'Control' if control else 'Standard'
    result = \{\}
    for b in [50*4**i for i in range(9)]:
       tic = time.time()
       x = rng(b, scale=sigma)
        s = S * np.exp(T * (r - sigma**2/2) + np.sqrt(T) * x)
        c = np.exp(-r * T) * np.maximum(s - K, 0)
        if control is not None: # to apply control variate method
            error = np.exp(-r * T) * np.maximum(K - s, 0) - control # error of put_
 ⇔price
           ols = stats.linregress(x=error, y=c) # compute best hedge to minimize.
⇔error
            c = c - ols.slope * error
        result[b] = dict(Price=np.mean(c).round(2),
                         StdErr=(np.std(c) / np.sqrt(b)).round(2),
                         elapsed = np.round(time.time() - tic, 4))
    return DataFrame.from_dict(result, orient='index').rename_axis(columns=label)
RNG(antithetic=True)((2, 3)) # generate normal r.v.'s with antithetic variates
```

```
array([[-0.72886259, 0.72886259, 0.25403329],
[-0.25403329, -0.81873243, 0.81873243]])
```

Standard simulation

```
S = 2500
K = 2500
sigma = 0.164
r = 0.02
T = 2
seed = 42
rng = RNG(seed=seed)
monte_carlo(rng, S=S, K=K, sigma=sigma, r=r, T=T)
```

Price	StdErr	elapsed
297.91	54.77	0.0005
247.65	25.97	0.0003
283.95	15.23	0.0003
279.62	7.59	0.0004
278.25	3.73	0.0009
279.45	1.85	0.0027
278.93	0.93	0.0112
278.31	0.46	0.0491
278.59	0.23	0.2490
	Price 297.91 247.65 283.95 279.62 278.25 279.45 278.93 278.31 278.59	PriceStdErr297.9154.77247.6525.97283.9515.23279.627.59278.253.73279.451.85278.930.93278.310.46278.590.23

Antithetic Variates

```
rng = RNG(seed=seed, antithetic=True)
monte_carlo(rng, S=S, K=K, sigma=sigma, r=r, T=T)
```

Antithetic	Price	StdErr	elapsed
50	280.86	54.41	0.0004
200	242.12	25.04	0.0006
800	276.97	14.15	0.0013
3200	284.38	7.63	0.0013
12800	277.30	3.72	0.0014
51200	279.28	1.87	0.0052
204800	278.15	0.93	0.0225
819200	278.46	0.46	0.1279
3276800	278.48	0.23	0.4977

Control Variates

```
control = put(S, K, sigma, r, T) # Black-Scholes-Merton put price
rng = RNG(seed=seed)
monte_carlo(rng, S=S, K=K, sigma=sigma, r=r, T=T, control=control)
```

Control	Price	StdErr	elapsed
50	263.59	47.04	0.0010
200	251.85	22.76	0.0003
800	287.49	13.52	0.0002
3200	279.92	6.76	0.0003
12800	278.43	3.32	0.0010
51200	279.01	1.64	0.0022
204800	279.02	0.83	0.0109
819200	278.22	0.41	0.0441
3276800	278.64	0.21	0.3454

Both Antithetic and Control Variates

```
control = put(S, K, sigma, r, T)  # Black-Scholes-Merton put price
rng = RNG(seed=seed, antithetic=True)
monte_carlo(rng, S=S, K=K, sigma=sigma, r=r, T=T, control=control)
```

Both	Price	StdErr	elapsed
50	286.14	45.71	0.0006
200	227.29	22.03	0.0008
800	277.91	12.32	0.0003

3200	286.51	6.79	0.0008
12800	276.56	3.31	0.0018
51200	279.47	1.66	0.0058
204800	277.88	0.83	0.0244
819200	278.41	0.41	0.1019
3276800	278.41	0.21	0.5569

References:

F. Black and M. Scholes, "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, 81 (May/June 1973): 637–59

R. C. Merton, "Theory of Rational Option Pricing," Bell Journal of Economics and Management Science 4 (Spring 1973): 141–183.

Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option Pricing: A Simplified Approach. Journal of Financial Economics, 7(3), 229-263.

Terence Lim, Andrew W. Lo, Robert C. Merton and Myron S. Scholes (2006), "The Derivatives Sourcebook", Foundations and Trends in Finance: Vol. 1: No. 5–6, pp 365-572. http://dx.doi.org/10.1561/0500000005

FRM Part I Exam Book Financial Markets and Products Ch. 14-15

FRM Part I Exam Book Quantitative Analysis Ch. 13

FRM Part I Exam Book Valuation and Risk Models Ch. 14-16

FRM Part II Exam Book Market Risk Measurement and Management Ch. 15

CHAPTER

SIXTEEN

VALUE AT RISK

The only constant in life is change - Heraclitus

Value at Risk (VaR) is a widely used risk measure in financial risk management that quantifies the potential loss in a portfolio over a given time period with a specified confidence level. However, VaR has limitations, including its inability to capture the severity of losses beyond its threshold. To address this, alternative measures such as Expected Shortfall (ES) have been introduced. We explore different methodologies for calculating VaR, including parametric, historical, and Monte Carlo simulation approaches, as well as advanced techniques such as stressed VaR and bootstrapping. Additionally, we examine conditional volatility models, including EWMA and GARCH, to account for changing market conditions. Finally, we discuss backtesting methods, such as the Kupiec Likelihood Ratio test and conditional coverage tests, to validate the accuracy of VaR models in real-world scenarios.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from typing import Dict
import numpy as np
from scipy import stats
import pandas as pd
from pandas import DataFrame, Series
import statsmodels.api as sm
import matplotlib.pyplot as plt
from finds.readers import Alfred
from finds.utils import row_formatted
from secret import credentials
#pd.set_option('display.max_rows', None)
VERBOSE = 0
#%matplotlib qt
```

16.1 Risk measures

Value at Risk (VaR) is a fundamental risk measure that estimates the maximum potential loss in a portfolio over a specific period at a given confidence level. A VaR at an (\alpha%) confidence level represents the loss threshold that has an (\alpha]pha%) probability of being exceeded.

16.1.1 Coherence

A major limitation of VaR is that it does not provide insight into the magnitude of losses beyond its threshold. Artzner et al. proposed four essential properties that a risk measure should satisfy:

- 1. **Monotonicity:** If one portfolio consistently performs worse than another under all conditions, it should have a higher risk measure.
- 2. Translation Invariance: Adding a risk-free cash amount K to a portfolio should reduce its risk measure by K.
- 3. Homogeneity: Scaling a portfolio by a factor of X should scale its risk measure by the same factor.
- 4. **Subadditivity:** The risk measure of a merged portfolio should not exceed the sum of the individual risk measures, ensuring diversification benefits.

A risk measure that satisfies all four properties is considered **coherent**. **Expected Shortfall (ES)** is a coherent risk measure, whereas VaR lacks subadditivity. ES is calculated as the probability-weighted average of losses beyond the VaR threshold. Other coherent risk measures can be derived by applying a risk aversion function to weight quantiles, with ES being a special case where tail quantiles receive equal weighting.

Retrieve crypto currency index returns from FRED

crypto index names
titles.to_frame().rename_axis(index=cat['id'])

Cryptocurrencies

33913 CBBCHUSD Coinbase Bitcoin Cash CBBTCUSD Coinbase Bitcoin CBETHUSD Coinbase Ethereum CBLTCUSD Coinbase Litecoin

recent crypto log returns
cryptos

	CBBCHUSD	CBBTCUSD	CBETHUSD	CBLTCUSD
date				
2014-12-01	NaN	NaN	NaN	NaN
2014-12-02	NaN	0.021391	NaN	NaN
2014-12-03	NaN	0.000000	NaN	NaN
2014-12-04	NaN	-0.002384	NaN	NaN
2014-12-06	NaN	0.002384	NaN	NaN
2025-02-26	0.010099	0.006085	-0.011953	0.018231
2025-02-27	0.062384	-0.003877	-0.030322	0.009735
2025-02-28	-0.014295	0.020210	-0.008916	-0.029413
2025-03-01	0.071640	0.091550	0.127686	0.028240
2025-03-02	-0.003326	-0.010081	-0.019098	0.015676
[3710 rows	x 4 column	ns]		

16.1.2 Parametric method

Assuming returns follow a normal distribution, VaR and ES at a confidence level α are given by:

$$VaR = -\mu + \sigma z_{1-\alpha}$$
$$ES = -\mu + \sigma \frac{\exp(-z_{1-\alpha}^2/2)}{(1-\alpha)\sqrt{2\pi}}$$

where z_{α} is the standard normal quantile corresponding to α .

For example, at a 95% confidence level ($\alpha = 0.95$), $z_{\alpha} = -1.645$, which represents the lower 5% quantile. In practice, μ and σ are estimated from historical data, but since short-term mean returns are difficult to measure accurately, μ is often assumed to be zero.

Under the assumption that geometric returns are normally distributed, then arithmetic returns follow a **lognormal distribution**. The skewness of the lognormal $(\exp(\sigma^2) + 2)\sqrt{(\exp(\sigma^2) - 1)}$ is always positive, hence the lognormal has a long right-tail. The lognormal has kurtosis $\exp(\sigma^2)^4 + 2\exp(\sigma^2)^3 + 3\exp(\sigma^2)^2 - 3$ which exceeds 3 and increases with volatility, hence exhibits fatter tails than the normal distribution.

```
# Helper to compute parametric VaR and ES
def parametric_risk(sigma: float | Series, alpha: float) -> Dict:
    """Calculate parametric gaussian VaR and ES"""
    var = -sigma * stats.norm.ppf(1 - alpha)
    es = sigma * stats.norm.pdf(stats.norm.ppf(1 - alpha)) / (1 - alpha)
    return dict(value_at_risk=var, expected_shortfall=es)
```

Parametric Risk Measures (alpha=0.95)

	CBBCHUSD	CBBTCUSD	CBETHUSD	CBLTCUSD
volatility	0.0576	0.0396	0.0505	0.0543
value_at_risk	0.0948	0.0651	0.0831	0.0894
expected_shortfall	0.1189	0.0817	0.1042	0.1121

16.1.3 Delta-Normal method

The delta-normal method provides an approximation for non-linear portfolios by assuming that underlying asset returns are normally distributed. The risk of the portfolio is modeled using **delta**, which measures the sensitivity of portfolio value to changes in underlying asset prices. A more refined approximation includes **gamma**, the second derivative of portfolio value with respect to asset prices, known as the **delta-gamma method**.

16.1.4 Monte Carlo simulation method

Monte Carlo simulation applies to both linear and non-linear portfolios. This approach generates random scenarios based on an assumed distribution for underlying risk factors. If 1,000 scenarios are simulated, the 95% VaR is estimated as the 50th worst loss (i.e., the 5th percentile), while Expected Shortfall is calculated as the average of the 49 worst losses.

However, standard Monte Carlo models assume normality and independence, which may not always reflect real-world financial data, necessitating the use of **non-parametric approaches**.

A **QQ plot** compares the empirical distribution of returns to a theoretical normal distribution. If returns exhibit heavier tails than the reference distribution, the QQ plot will have steeper slopes at the extremes.

```
# QQ Plot for Gaussian assumption
from statsmodels.graphics.gofplots import ProbPlot
fig, axes = plt.subplots(2, 2, figsize=(10, 9))
for label, ax in zip(cryptos, axes.flatten()):
    pp = ProbPlot(cryptos[label].dropna(), fit=True)
    pp.qqplot(ax=ax, color='CO', alpha=.5)
    sm.qqline(ax=ax, fmt='r--', line='45', lw=1)
    ax.set_title(f"{titles[label]}")
plt.suptitle(f"Daily Crypto Returns" + date_str)
plt.tight_layout()
```


Lag plot of daily returns

```
# Autocorrelation of returns
import statsmodels.api as sm
fig, axes = plt.subplots(2, 2, figsize=(10, 9))
for label, ax in zip(cryptos, axes.flatten()):
    X = cryptos[label].dropna()
    pd.plotting.lag_plot(X, lag=1, ax=ax)
    r = stats.linregress(X.values[1:], X.values[:-1])
    ax.axline((0, r.intercept), slope=r.slope, ls=':', color="red")
    ax.set_title(f"{titles[label]}")
plt.suptitle(f"Daily Crypto Returns")
plt.tight_layout()
```


Lag plot of squared daily returns

```
# Autocorrelation of squared returns
fig, axes = plt.subplots(2, 2, figsize=(10, 9))
for label, ax in zip(cryptos, axes.flatten()):
    X = cryptos[label].dropna()**2
    pd.plotting.lag_plot(X, lag=1, ax=ax)
    r = stats.linregress(X.values[1:], X.values[:-1])
    ax.axline((0, r.intercept), slope=r.slope, ls=':', color="red")
    ax.set_title(f"{titles[label]}")
plt.suptitle(f"Daily Crypto Squared Returns")
plt.tight_layout()
```


16.1.5 Historical Simulation method

Historical simulation (HS) is the simplest non-parametric approach that estimates VaR by ordering historical losses and selecting the appropriate quantile. Expected Shortfall is calculated as the average of losses beyond the VaR threshold. This method accommodates non-normal features such as skewness and fat tails, making it robust in capturing market risks. However, its accuracy depends on whether the historical dataset adequately represents future market conditions.

```
# Helper to compute VaR, ES and sample moments from historical simulation
def historical_risk(X: Series, alpha: float):
    """Calculate historical VaR, ES, and sample moments"""
    X = X.dropna()
    N = len(X)
    var = -np.percentile(X, 100 * (1 - alpha))
    es = -np.mean(X[X < var])
    vol = np.std(X, ddof=0)
    skew = stats.skew(X)
    kurt = stats.kurtosis(X)
    jb = stats.jarque_bera(X)[0]</pre>
```

Historical Risk Measures (alpha=0.95)

	CBBCHUSD	CBBTCUSD	CBETHUSD	CBLTCUSD
N	2623	3709	3207	3117
value_at_risk	0.0831	0.0583	0.074	0.0822
expected_shortfall	0.0078	0.0032	0.0055	0.0061
volatility	0.0576	0.0396	0.0505	0.0543
skewness	-0.2394	-1.822	-0.4136	0.7306
excess_kurtosis	13.159	52.3855	6.0638	10.3101
jb_statistic	28562.5232	476116.6693	11069.1899	23285.8936
jb_pvalue	0.0	0.0	0.0	0.0

16.1.6 Stressed VaR method

During periods of market stress, volatility and correlations tend to rise, often leading to *correlation breakdowns* where asset prices move more synchronously. It is sometimes stated that "in stressed markets all correlations go to one." Standard VaR models may not capture these dynamics accurately. **Stressed VaR** is calculated using historical periods of extreme market distress, such as the 2008 Financial Crisis or the 2021–2022 Crypto Winter, as opposed to simply the most recent number of years. Stress testing is designed to identify vulnerabilities, particularly those involving periods of high volatility.

Stressed Risk Measures (2021-11-01 to 2022-11-21)

	CBBCHUSD	CBBTCUSD	CBETHUSD	CBLTCUSD
(alpha=0.05)				
N	386	386	386	386
value_at_risk	0.0818	0.0624	0.0773	0.0911
expected_shortfall	0.0078	0.0058	0.0074	0.0053
volatility	0.0464	0.0348	0.0461	0.0478
skewness	-0.3194	-0.5904	-0.3785	-0.417
excess_kurtosis	-0.5048	0.7985	-0.6065	-1.0258
jb_statistic	106.6976	254.4822	101.3559	73.8708
jb_pvalue	0.0	0.0	0.0	0.0

16.1.7 Bootstrap method

Bootstrap resampling improves historical simulation by repeatedly drawing random samples from the dataset with replacement. Each resampled dataset provides a new VaR or ES estimate, and the distribution of these estimates is used to compute confidence intervals. However, basic bootstrap methods assume that observations are independent over time, which may not hold for financial returns. Modifications such as the **block bootstrap** preserve time dependencies by sampling blocks of consecutive observations.

```
def bootstrap_risk(X: Series, alpha: float, n: int) -> dict:
    """Calculate bootstrap VaR, ES, confidence and plot VaR histogram"""
    X = X.dropna()
    N = len(X)
    bootstraps = []
    for _ in range(n):
        Z = Series(np.random.choice(X, N), index=X.index)
        bootstraps.append(historical_risk(Z, alpha=alpha))
    bootstraps = DataFrame.from_records(bootstraps)
    return bootstraps
```

```
def confidence_intervals(X: Series, confidence: float) -> dict:
    """Extracts confidence intervals and median from a series"""
    lower = (1 - confidence) / 2
    upper = lower + confidence
    return np.quantile(X, [lower, 0.5, upper], method='inverted_cdf')
```

```
# Run and plot bootstrapped VaR and ES
n = 100
confidence = 0.9
intervals = dict()
for measure in ['value_at_risk', 'expected_shortfall']:
    intervals[measure] = dict()
    fig, axes = plt.subplots(2, 2, figsize=(10, 6))
    for label, ax in zip(cryptos, axes.flatten()):
        bootstraps = bootstrap_risk(cryptos[label].dropna(), alpha=alpha, n=n)
        interval = confidence_intervals(bootstraps[measure], confidence=confidence)
        intervals[measure][label] = interval.tolist()
        ax.hist(bootstraps[measure], color='blue', alpha=0.2, bins=int(n/5))
        ax.axvline(x=interval[0], color='red')
        ax.axvline(x=interval[1], color='green')
        ax.legend(['bootstrapped', f"{confidence*100:.0f}% confidence bounds",
                   'median'], fontsize='x-small')
        ax.axvline(x=interval[2], color='red')
        ax.set_title(label)
    plt.tight_layout()
    plt.suptitle('Bootstrapped ' + measure.capitalize())
```


lower	0.078517	0.053589	0.069026	0.076687
median	0.082939	0.058818	0.073875	0.082435
upper	0.091576	0.061019	0.079481	0.085629

```
# display confidence intervals of VaR
DataFrame(intervals['expected_shortfall'], index=['lower', 'median', 'upper'])\
    .rename_axis(index='Expected Shortfall')
```

CBBCHUSD	CBBTCUSD	CBETHUSD	CBLTCUSD
0.006168	0.002339	0.004729	0.004981
0.007616	0.003314	0.005362	0.006072
0.008870	0.003924	0.006546	0.007182
	CBBCHUSD 0.006168 0.007616 0.008870	CBBCHUSD CBBTCUSD 0.006168 0.002339 0.007616 0.003314 0.008870 0.003924	CBBCHUSD CBBTCUSD CBETHUSD 0.006168 0.002339 0.004729 0.007616 0.003314 0.005362 0.008870 0.003924 0.006546

16.2 Conditional volatility models

A return distribution' s characteristics may change over time. A mixture model of normal distributions with varying volatilities produces more peakedness and fatter tails than a simple normal distribution. In a model where returns re conditionally normal, the distribution is normal each day, while the standard deviation of the return varies over time. This leads to an unconditional distribution with fat tails.

16.2.1 EWMA model

Volatility can be estimated using an equal-weighted moving average of squared returns. However, this method suffers from sudden jumps when large returns enter or exit the dataset.

The **Exponentially Weighted Moving Average (EWMA)** model addresses this by applying exponentially decreasing weights to past returns:

$$\sigma_t^2 = (1-\lambda)r_{t-1}^2 + \lambda\sigma_{t-1}^2$$

where λ is a positive value less than 1 which determines the decay rate of past observations. This formula provides a very simple way of implementing EWMA. The new estimate of the variance rate on day t is a weighted average of the estimate of the variance rate made for the previous day t - 1, and the most recent observation of the squared return on day t - 1. In the 1990s, JP Morgan's **RiskMetrics** suggests $\lambda = 0.94$ for daily market volatility estimation.

```
# Helper to plot predicted VaR vs actual returns
def plot_var(X: Series, VaR: Series, ax: plt.Axes):
    """Helper to plot returns and VaR predictions"""
    ax.plot(X, ls='', marker='.', markersize=2)
    ax.plot(-VaR.shift(-1), lw=1, ls='-', c='r')
    ax.plot(VaR.shift(-1), lw=1, ls='-', c='r')
    ax.legend([X.name, 'VaR', '$-$VaR'])
```



```
# Properties of EWMA normalized returns for all cryptos
ewma_hist = dict()
for label in cryptos:
    X = (cryptos[label] / ewma[label].shift(-1))  # normalize by predict vol
    ewma_hist[label] = Series(historical_risk(X, alpha=0.95)).rename(label)
print("Normalized by EWMA predicted volatility (alpha=0.95)")
DataFrame(ewma_hist).round(4)
```

Normalized by EWMA predicted volatility (alpha=0.95)

	CBBCHUSD	CBBTCUSD	CBETHUSD	CBLTCUSD
N	2622.0000	3708.0000	3206.0000	3116.0000
value_at_risk	1.5056	1.4695	1.5831	1.5697
expected_shortfall	0.1241	0.0717	0.0828	0.0896
volatility	0.9269	0.9252	0.9432	0.9425
skewness	0.1035	-0.0464	-0.0177	0.0048
excess_kurtosis	-1.5298	-1.5609	-2.1157	-1.8466
jb_statistic	240.8139	321.2816	104.6335	172.7197
jb_pvalue	0.0000	0.0000	0.0000	0.0000

16.2.2 GARCH model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, developed by Robert Engel and Tim Bollerslev, can be intuitively regarded as an extension of EWMA. In GARCH (1,1), we also give some weight to a long run average variance $\hat{\sigma}$.

$$\sigma_t^2 = \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2 + \gamma \hat{\sigma}$$

where $\alpha + \beta + \gamma = 1$. This introduces **mean reversion**, where the $\hat{\sigma}$ term provides a "pull" toward the long-run average, ensuring that volatility stabilizes over time. And just as with ARMA specifications of time series models, more complex **GARCH(p,q)** models can incorporate additional lags of q squared returns and p variance estimates for improved accuracy.

rugarch package in R

```
# Estimate GARCH(1, 1) by calling R's rugarch library
import rpy2.robjects as ro
from rpy2.robjects.packages import importr
from finds.utils import PyR
def rugarch(X: Series, savefig: str = '', verbose=VERBOSE) -> Series:
    """GARCH(1,1) wrapper over rugarch"""
   rugarch_ro = importr('rugarch') # to use library rugarch
    c_ = ro.r['c']
    list_ = ro.r['list']
    spec = ro.r['ugarchspec'] (mean_model=list_(armaOrder=c_(0,0), include_mean=False))
   model = ro.r['ugarchfit'](spec, data=PyR(X.values).ro)
    if verbose:
       ro.r['show'](model)
    if savefig:
        for which in [4, 5, 10, 11]:
            ro.r['plot'] (model, which=which)
            PyR.savefig(f"{savefig}{which}.png", display=None)
    return Series(PyR(ro.r['sigma'](model)).values.flatten(),
                  index=X.index, name=X.name)
```

```
# Estimate GARCH(1,1) full period model for all cryptos
garch = {label: rugarch(cryptos[label].dropna()) for label in cryptos}
```

```
# Plot daily returns and GARCH predicted VaR
alpha = 0.95  # VaR parameter
```


Daily Returns and GARCH VaR (alpha=0.95)

```
# Properties of GARCH normalized returns
garch_hist = dict()
for label in cryptos:
    X = (cryptos[label] / garch[label].shift(-1)) # normalize by predict vol
    garch_hist[label] = Series(historical_risk(X, alpha=0.95)).rename(label)
print("Normalized by GARCH predicted volatility (alpha=0.95)")
DataFrame(garch_hist).round(4)
```

Normalized	by	GARCH	predicted	volatility	(alpha=0.95)
------------	----	-------	-----------	------------	--------------

	CBBCHUSD	CBBTCUSD	CBETHUSD	CBLTCUSD
N	2622.0000	3708.0000	3206.0000	3116.0000
value_at_risk	1.3382	1.2965	1.4123	1.3956
expected_shortfall	0.1062	0.0504	0.0789	0.0843
volatility	0.7901	0.7740	0.8411	0.8454
skewness	0.0185	-0.0364	-0.0033	0.0350
excess_kurtosis	-2.5903	-2.9028	-2.7553	-1.9190
jb_statistic	18.4912	2.2795	8.0058	152.3519
jb_pvalue	0.0001	0.3199	0.0183	0.0000

16.3 Backtesting VaR

The simplest method for validating a VaR model is failure rate analysis, which counts the proportion of times actual losses exceed the VaR estimate. If the model is accurate, these exceedances should follow a binomial distribution with probability $p = 1 - \alpha$, where α is the VaR confidence level. The VaR model can be rejected in two regions, both when the number of observed violations is too few or too many.

16.3.1 Kupiec Likelihood Ratio test

where S is the number of VaR exceedances in N observations.

```
def kupiec(X: Series, VaR: Series, alpha: float) -> Dict:
    """Kupiec Likelihood Ratio test of VaR
    Returns:
        Dict of likelihood statistic and pvalue
    """
    Z = pd.concat([X, VaR], axis=1).dropna()
    n = len(Z)
    s = np.sum(Z.iloc[:, 0] < -Z.iloc[:, 1])  # number of violations < -VaR
    return kupiec_LR(alpha=alpha, s=s, n=n)</pre>
```

Kupiec LR Test:	CBBCHUSD	CBBTCUSD	CBETHUSD	CBLTCUSD
EWMA(0.94)				
lr	1.9136	3.8477	1.3918	3.0693
violations	116	160	146	135
Ν	2623	3709	3207	3117
pvalue	0.1666	0.0498	0.2381	0.0798

Kupiec LR Test:	CBBCHUSD	CBBTCUSD	CBETHUSD	CBLTCUSD
GARCH(1,1)				
lr	6.8446	5.5607	3.4345	12.3497
violations	103	155	138	115
Ν	2623	3709	3207	3117
pvalue	0.0089	0.0184	0.0638	0.0004

16.3.2 Conditional coverage tests

Value-at-Risk (VaR) violations should occur randomly over time; if violations cluster, it may suggest that the model is misspecified. Conditional coverage tests, which extend Kupiec's test, evaluate not only the frequency but also the independence of exceptions over time.

```
# TODO: conditional likelihood test
```

References:

Jorion, Phillippe. Value at Risk.

P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, "Coherent Measures of Risk", Mathematical Finance 9 (1999): 203–228.

Kupiec, P. (1995). Techniques for Verifying the Accuracy of Risk Measurement Models. Journal of Derivatives, 3, 73-84.

FRM Part I Exam Book Ch. 1-3

FRM Part II Exam Book Market Risk Measurement and Management Ch. 1-2

CHAPTER

SEVENTEEN

COVARIANCE MATRIX

Alone, we can do so little; together, we can do so much - Helen Keller

The covariance matrix quantifies the relationships between asset returns, enabling investors to assess diversification benefits and manage portfolio risk. We begin by exploring risk budgeting, which breaks down a portfolio's overall risk contribution by asset, and specifically risk parity portfolios, which aim to distribute risk evenly across assets. We then cover techniques for covariance matrix estimation, including principal component analysis (PCA), Exponentially Weighted Moving Average (EWMA), and shrinkage methods.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
from sklearn.decomposition import PCA
from pandas import DataFrame
import cvxpy as cp
from tqdm import tqdm
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from sklearn.covariance import LedoitWolf, OAS, EmpiricalCovariance
from sklearn import cluster
from finds.utils import ColorMap
from finds.readers import FFReader
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
# %matplotlib qt
VERBOSE = 0
```

17.1 Portfolio risk

The covariance matrix is essential for portfolio risk analysis, helping investors evaluate diversification benefits and effectively manage overall risk. In this analysis, we use monthly returns from the 49 industry indexes compiled by Ken French.

```
# Retrieve industry returns from Ken French Data Library website
symbol = '49_Industry_Portfolios'
ff = FFReader(symbol)
keep = ff[0].index[(ff[0] > -99).all(axis=1)]
rets = (ff[0] / 100).reindex(keep)
caps = (ff[4] * ff[5] * 10e6).reindex(keep)  # number of firms x avg market cap
weights = caps.iloc[-1] / caps.iloc[-1].sum()
```

```
X = (rets - rets.mean(axis=0))
                                    # demean by industry
sigma = 12 * X.T @ X / len(X)
                                    # annualized covariance matrix
Y = caps.iloc[-1] \setminus
        .rename('cap')\
        .to_frame() \
        .join(DataFrame({'vol': np.sqrt(np.diag(sigma))}, index=X.columns))\
        .sort_values('cap', ascending=False)
```

```
# Plot annualized volatility and market caps of industries
fig, ax = plt.subplots(nrows=2, figsize=(10, 8))
Y['cap'].plot.bar(ax=ax[0], color="C0", width=0.9)
ax[0].set_yscale('log')
ax[0].set_title(f"Market Cap and Volatility of FF49 Industries ({X.index[0]} to {X.

index[-1]})")

ax[0].set_ylabel(f"Log Market Cap")
Y['vol'].plot.bar(ax=ax[1], color="C1", width=0.9)
ax[1].set_ylabel(f"Annualized Volatility")
ax[1].set_xlabel(f"monthly returns ({X.index[0]} to {X.index[-1]})")
```

Text(0.5, 0, 'monthly returns (1969-07 to 2024-12)')

Market Cap and Volatility of FF49 Industries (1969-07 to 2024-12)

17.1.1 Risk budgetting

Risk budgeting breaks down a portfolio' s overall risk contribution by asset.

- Portfolio Risk: The volatility of a market portfolio is given by: \$σ_P = W^TΣWwhere W represents the vector of asset weights in the port folio, and \Sigma \$ is the covariance matrix of asset returns.
- Covariance: The covariance of an individual security *i* with the portfolio *P* is expressed as: $\sigma_{iP} = \rho_{iP} \cdot \sigma_i \cdot \sigma_P where \operatorname{hrb}_{iP}$ is the correlation between the security and the portfolio.
- **Beta** (β): The systematic risk of a security relative to the portfolio, defined as: $\$\beta_i - \frac{\sigma_{iP}}{2}\$$

$$p \rho_i - \overline{\sigma_P^2}$$

This represents the regression slope of the security' s returns against the portfolio' s returns.

• Marginal Contribution to Risk (MCR): Measures the sensitivity of portfolio volatility to small changes in an asset' s weight:

$$\$\frac{\partial \sigma_P}{\partial w_i} = \frac{\sigma_{iP}}{\sigma_P}\$$$

• Percent Contribution to Risk (PCR): Indicates the fraction of total portfolio risk attributable to a security: $\beta_i \cdot w_i$

The sum of all asset contributions equals 1.

• Contribution to Portfolio Risk: The total portfolio risk can also be expressed as:

 $\beta_i \cdot w_i \cdot \sigma_P = w_i \cdot \sigma_i \cdot \rho_{iP}$ This highlights how an asset' s weight, volatility, and correlation with the portfolio drive its risk contribution.

```
# Helper to compute portfolio risk budget
def risk_budget(w, sigma, labels):
    """Compute portfolio risk analytics"""
    sigma_ = np.array(sigma) * 100 * 100 # express as percent returns
    w_ = np.array(w)
    # Portfolio volatility (percent)
    vol = np.sqrt(w_.T @ sigma_ @ w_)
    # Covariance of each security wrt market portfolio
    cov = sigma_ @ w_
    # Beta of each security wrt market portfolio
    beta = cov / (w_.T @ sigma_ @ w_)
    # Marginal Contribution to Risk of each security
    marginal = beta * vol
    # Percent Contribution to Risk
    percent = beta * w_* 100
    # Contribution to Risk
    contrib = marginal * w_
    return DataFrame({'weight': list(w),
                      'Beta': list(beta),
                      'MCR(%)': list(marginal),
                      'PCR(%)': list(percent),
                      'CR': list(contrib) },
                     index=labels)
```

vol = np.sqrt(weights.T @ sigma @ weights) # market portfolio risk
print(f"Market Portfolio Risk Budget (vol={vol*100:.2f}%)")
risk_budget(weights, sigma, weights.index).sort_values('CR', ascending=False)

Market Portfolio Risk Budget (vol=19.34%)

	weight	Beta	MCR(%)	PCR(%)	CR
Softw	0.182276	1.555931	30.097357	28.360924	5.486032
Chips	0.161610	1.184836	22.919038	19.148127	3.703943
Rtail	0.085470	0.828755	16.031140	7.083394	1.370186
Banks	0.059413	0.843213	16.310804	5.009761	0.969070
Fin	0.033877	0.971510	18.792521	3.291171	0.636632
Drugs	0.053875	0.581038	11.239382	3.130335	0.605520
BusSv	0.031733	0.953210	18.438533	3.024847	0.585115
Other	0.028863	0.906179	17.528786	2.615469	0.505927
Insur	0.034341	0.726098	14.045377	2.493480	0.482330
Autos	0.023701	0.997867	19.302368	2.365052	0.457487
Mach	0 022131	0 974029	18 841261	2 155620	0 416975
Trans	0 019526	0 884115	17 101985	1 726316	0 333932
LabEq	0 015992	1 048768	20 286986	1 677156	0 324423
∩il	0.028253	0 592003	11 /51/92	1 672590	0.323540
ModEa	0.020203	0.718659	13 901/68	1 422059	0.275078
Tolom	0.019700	0.597110	11 550276	1 211619	0.275076
Moola	0.020045	0.062770	16 600270	1 222061	0.240700
Fun	0.014180	1 140700	22 067010	1 104470	0.230759
run m+ ÷ 1	0.010471	1.140790	22.007019	1.194470	0.231033
ULII Uandu	0.02/9/6	0.373649	10 112162	1 021721	0.203391
Haruw Whisi	0.010442	0.900000	19.113103	1.031/31	0.199574
WHISI	0.011183	0.869373	17 022076	0.972226	0.188064
Aero	0.009449	0.927079	11.933076	0.8/5994	0.169449
HSNIA	0.012/93	0.598646	11.5/99/8	0.765832	0.148140
Cnstr	0.00/0/2	1.050526	20.320993	0.742934	0.143/10
Chems	0.008270	0.808/18	15.643534	0.668792	0.129369
Hlth	0.005851	0.968313	18./30690	0.566569	0.109595
BldMt	0.005606	0.956894	18.509810	0.536398	0.103759
Clths	0.004255	0.938755	18.158938	0.399468	0.077272
Food	0.007388	0.497495	9.623355	0.367564	0.071100
Soda	0.006012	0.610836	11.815793	0.367218	0.071033
Mines	0.004196	0.870379	16.836284	0.365172	0.070638
Beer	0.005945	0.567434	10.976238	0.337364	0.065259
PerSv	0.003352	0.919656	17.789492	0.308300	0.059636
Smoke	0.005225	0.477864	9.243631	0.249665	0.048294
ElcEq	0.002505	0.982095	18.997290	0.245969	0.047579
Steel	0.002262	1.052579	20.360697	0.238090	0.046055
Guns	0.003317	0.646421	12.504129	0.214389	0.041471
RlEst	0.001590	1.038549	20.089312	0.165107	0.031938
Paper	0.001822	0.736880	14.253940	0.134245	0.025968
Boxes	0.001378	0.731479	14.149461	0.100793	0.019497
Rubbr	0.001124	0.872047	16.868545	0.098007	0.018958
Ships	0.000854	0.858852	16.613317	0.073364	0.014191
Toys	0.000644	0.991057	19.170634	0.063808	0.012343
Agric	0.000859	0.704508	13.627738	0.060501	0.011703
Books	0.000555	0.874586	16.917676	0.048503	0.009382
Gold	0.000960	0.429793	8.313752	0.041262	0.007982
Coal	0.000311	0.879600	17.014650	0.027317	0.005284
FabPr	0.000234	0.912134	17.643973	0.021316	0.004123
Txtls	0.000225	0.946333	18.305513	0.021250	0.004111

17.1.2 Risk parity portfolios

A **risk parity portfolio** (**RPP**) aims to equalize the risk contribution of each asset class before leveraging to reach a target volatility. The allocation can be framed as a convex optimization problem, as proposed by Spinu (2013):

 $min_w \frac{1}{2} w^T \Sigma W - \sum_i b_i \log w_i subject to non - negative asset weights w_i \geq 0, where b_i = 1/N \ represents the desired risk budget for an equally weighted risk-parity portfolio.$

We use the cvxpy convex optimization package. The risk parity portfolio has the greatest weight in the Utilities industry and lowest weight in Software. By contrast, Software has the most weight in the market.

```
# Set up variables and constraints
N = len(sigma)
b = np.ones(N)/N  # risk parity
W = cp.Variable(N)  # portfolio weights to solve for
constraints = [W >= 0]  # non-negative weights constraint
```

```
# Solve objective
obj = 0.5 * cp.quad_form(W, sigma) - cp.sum(cp.multiply(b, cp.log(W)))
prob = cp.Problem(cp.Minimize(obj), constraints)
prob.solve()
```

2.6135631335344156

```
# normalize solution weights
rpp = (W/cp.sum(W)).value
```

```
vol = np.sqrt(rpp.T @ sigma @ rpp)
print(f"Risk Parity Portfolio (vol={vol*100:.2f}%)")
risk_budget(rpp, sigma, weights.index).sort_values('weight', ascending=False)
```

```
Risk Parity Portfolio (vol=16.47%)
```

Oil0.0242890.84021813.8349782.0408160.Guns0.0233800.87289914.3731072.0408750.MedEq0.0233460.87416214.3939002.0408580.Agric0.0229820.88803614.6223562.0408460.	.336040
Insur0.0218250.93499215.3955212.0406120.Rtail0.0214050.95340515.6987102.0407900.Boxes0.0214030.95350315.7003222.0407880.Paper0.0210030.97171916.0002742.0409230.Hardw0.0196361.03932417.1134572.0408000.	.336040 .336029 .336040 .336049 .336045 .336045 .336035 .336035 .336057 .336037

						(continued from previous page)
Banks	0.019318	1.056439	17.395264	2.040815	0.336039	
Whlsl	0.019181	1.063981	17.519442	2.040796	0.336036	
Chems	0.019173	1.064438	17.526974	2.040834	0.336042	
Books	0.018802	1.085413	17.872354	2.040809	0.336038	
Rubbr	0.018759	1.087921	17.913644	2.040859	0.336047	
Other	0.018749	1.088522	17.923535	2.040857	0.336046	
Trans	0.018642	1.094754	18.026153	2.040836	0.336043	
BusSv	0.018231	1.119418	18.432270	2.040768	0.336032	
PerSv	0.018229	1.119511	18.433801	2.040785	0.336035	
Fin	0.017894	1.140526	18.779843	2.040823	0.336041	
Clths	0.017822	1.145101	18.855166	2.040831	0.336042	
Ships	0.017659	1.155699	19.029669	2.040855	0.336046	
Aero	0.017440	1.170157	19.267736	2.040774	0.336033	
Mines	0.017359	1.175643	19.358068	2.040800	0.336037	
FabPr	0.017234	1.184134	19.497876	2.040778	0.336033	
ElcEq	0.017124	1.191811	19.624284	2.040799	0.336037	
LabEq	0.017067	1.195775	19.689563	2.040793	0.336036	
Mach	0.016969	1.202645	19.802683	2.040811	0.336039	
Autos	0.016837	1.212055	19.957625	2.040782	0.336034	
Toys	0.016776	1.216480	20.030489	2.040790	0.336035	
Chips	0.016721	1.220482	20.096388	2.040783	0.336034	
BldMt	0.016630	1.227147	20.206127	2.040795	0.336036	
Hlth	0.016604	1.229089	20.238114	2.040814	0.336039	
Coal	0.016511	1.236048	20.352700	2.040804	0.336038	
Txtls	0.016357	1.247656	20.543830	2.040811	0.336039	
RlEst	0.015599	1.308309	21.542534	2.040793	0.336036	
Cnstr	0.015534	1.313753	21.632185	2.040810	0.336039	
Fun	0.015339	1.330599	21.909558	2.040955	0.336062	
Steel	0.015297	1.334155	21.968126	2.040802	0.336037	
Softw	0.014115	1.445795	23.806377	2.040797	0.336037	

17.2 Covariance matrix estimation

The simplest way to estimate the covariance matrix is to calculate the average product of return deviations for each pair of assets. Additionally, we examine other techniques designed to improve estimation accuracy, particularly in high-dimensional settings.

17.2.1 Principal components

By retaining only the largest principal components, the **Principal Component Analysis (PCA)** method provides a lowerdimensional but more stable approximation of the covariance matrix that captures most of the data's variability.

Each principal component (PC) can be interpreted as a weighted portfolio of industry assets. The projection of industry returns onto a given component effectively computes the returns of the corresponding portfolio.

```
# Fit PCA
pca = PCA().fit(X)
# Retrieve components, and sign flip if necessary
loadings = (np.diag(pca.singular_values_) @ pca.components_).T # compute loadings by_
column
components = DataFrame.from_records(pca.components_.T, index=X.columns)
```

(continues on next page)

. . . .

```
components *= np.sign(components.sum(axis=0))
# Compute projections, can be interpreted as portfolio returns
proj = pca.transform(X)
proj *= np.sign(np.sum(pca.components_, axis=1)) # flip signs if necessary
# Equal weighted market average return
avg = X.mean(axis=1)
```

From the summaries of the weights, the first principal component (PC1) resembles a broadly diversified portfolio, capturing more than half of the total variance. Higher-order principal components represent long-short spread portfolios, which explain incremental variance.

```
K = 20
print(f"Top {K} principal components")
DataFrame({
    'frac weights +ve': np.mean(components.iloc[:, :K].values >= 0, axis=0),
    'sum weights': np.sum(components.iloc[:, :K].values, axis=0),
    'sum sqr weights': np.sum((components.iloc[:, :K].values)**2, axis=0),
    'sum abs weights': np.sum(np.abs(components.iloc[:, :K].values), axis=0),
    'corr avg ret': [np.corrcoef(avg, proj[:, i])[0, 1] for i in range(K)],
    'cumulative expl ratio': np.cumsum(pca.explained_variance_ratio_[:K])},
    index=[f"PC{i+1}" for i in range(K)]).round(4)
```

Top 20 principal components

	frac weights +ve	sum weights	sum sqr weights	sum abs weights	\
PC1	1.0000	6.8350	1.0	6.8350	
PC2	0.2449	0.0942	1.0	4.1476	
PC3	0.5306	0.3638	1.0	3.5694	
PC4	0.6735	0.9018	1.0	5.1037	
PC5	0.4694	0.5504	1.0	5.2080	
PC6	0.5510	0.7125	1.0	5.5172	
PC7	0.5714	0.0807	1.0	5.5623	
PC8	0.5510	0.0678	1.0	4.9024	
PC9	0.5102	0.1727	1.0	5.1930	
PC10	0.4898	0.2090	1.0	4.8891	
PC11	0.4490	0.2954	1.0	5.0131	
PC12	0.5306	0.0517	1.0	5.2657	
PC13	0.6531	0.1003	1.0	4.8573	
PC14	0.5102	0.1026	1.0	4.8301	
PC15	0.4898	0.1416	1.0	4.8642	
PC16	0.5102	0.0216	1.0	5.1350	
PC17	0.4898	0.0855	1.0	5.3457	
PC18	0.5714	0.1669	1.0	5.1840	
PC19	0.5102	0.1752	1.0	5.1187	
PC20	0.4694	0.1086	1.0	5.1526	
	corr ava ret cum	ulative evol	ratio		
PC1	0 9988	aracric capr 0	5590		
PC2	0.0046	0	6218		
PC3	0 0142	0	6620		
PC4	0 0341	0	6994		
PC5	0.0185	0	.72.90		
	110100	0			

		(continued from previous page)
PC6	0.0207	0.7510	
PC7	0.0021	0.7689	
PC8	0.0016	0.7831	
PC9	0.0040	0.7971	
PC10	0.0045	0.8091	
PC11	0.0063	0.8210	
PC12	0.0011	0.8321	
PC13	0.0020	0.8423	
PC14	0.0020	0.8521	
PC15	0.0027	0.8615	
PC16	0.0004	0.8703	
PC17	0.0015	0.8788	
PC18	0.0028	0.8864	
PC19	0.0029	0.8936	
PC20	0.0018	0.9007	

Spectral Clustering

Spectral clustering is a technique that groups data points based on the eigenvalues and eigenvectors of a similarity matrix. From the results, Component 1 primarily appears to capture market-wide beta risk sensitivity. Component 2 appears to reflect exposure to commodity-related factors (e.g. gold, coal and mining)

```
# Spectral clustering
spectral = cluster.SpectralClustering(
   n_clusters=10,
    eigen_solver="arpack",
    #affinity="nearest_neighbors",
    random_state=42,
)
spectral.fit(X.T)
                  # number of features equals the number observations dates
cmap = ColorMap(spectral.n_clusters, colormap='Dark2')
fig, ax = plt.subplots(figsize=(10, 8))
ax.scatter(components.iloc[:, 0], components.iloc[:, 1],
           c=cmap[spectral.labels_], alpha=.8)
for t, c, xy in zip(components.index, spectral.labels_,
                    components.iloc[:, :2].values):
    ax.annotate(text=t, xy=xy, xytext=xy * 1.01, color=cmap[c], fontsize='x-small')
ax.set_xlabel('Component 1')
ax.set_ylabel('Component 2')
ax.set_title(f"Spectral Clustering ({spectral.n_clusters} clusters)")
plt.tight_layout()
plt.show()
```

Chapter 17. Covariance Matrix

	cluste
Fun	(
Toys	(
Txtls	(
Clths	(
Rubbr	(
Autos	(
RlEst	(
Rtail	(
Meals	(
Gold	
BldMt	
ElcEq	, 4
Books	
Telcm	
Cnstr	
Chems	
Boxes	
Paper	
BusSv	

			(continued from previous pag
Other	2		
Fin	2		
Insur	2		
Banks	2		
Trans	2		
PerSv	2		
Mach	2		
Whlsl	2		
Coal	3		
Chips	4		
LabEq	4		
Hardw	4		
Softw	5		
Steel	6		
Mines	6		
Smoke	7		
Food	7		
FabPr	7		
Oil	7		
Agric	7		
Util	7		
Aero	8		
Ships	8		
Guns	8		
Hlth	9		
Hshld	9		
Drugs	9		
Soda	9		
Beer	9		
MedEq	9		

17.2.2 EWMA

The **Exponentially-Weighted Moving Average (EWMA) method** assigns greater importance to recent data when estimating the covariance matrix, which is particularly useful for tracking market risk changes. JP Morgan RiskMetrics (1996) proposed a decay parameter $\lambda = 0.97$, implying a monthly decay rate of 0.03. The **half-life** of the weighting function represents the time required for a weight to decrease by 50%.

```
# Compute half-life of risk metrics' lambda for monthly data
def halflife(decay, half=0.5):
    """Returns halflife (t) from its definition: 0.5 = (1-decay)^t"""
    return -np.log(1/half)/np.log(1 - decay)
```

```
risk_metrics_lambda = 0.97  # for monthly data
print('Half-life: ', halflife(decay=1-risk_metrics_lambda).round(1), 'months')
```

Half-life: 22.8 months

```
def ewma(X, decay):
    """Helper to compute EWMA covariance matrix estimate"""
    weights = (1 - decay)**np.arange(len(X))[::-1]
    return (weights.reshape((1, -1)) * X.T) @ X / weights.sum()
```

. .
17.2.3 Shrinkage methods

Covariance matrix estimates can be regularized using shrinkage. Ledoit and Wolf (1993) proposed shrinking the sample covariance matrix towards an identity matrix, and derived a closed-form formula to compute the asymptotically optimal shrinkage parameter β by minimizing a MSE criterion:

$$(1-\beta)\Sigma+\beta\frac{tr(\Sigma)}{N}I_n$$

Chen et al. (2010) proposed the **Oracle Approximating Shrinkage (OAS) Estimator** whose convergence is significantly better under the assumption that the data are Gaussian.

17.2.4 Volatility of the GMV portfolio

The out-of-sample (OOS) realized volatility of the **Global Minimum Variance Portfolio** (**GMV**) serves as a benchmark for evaluating covariance estimation accuracy. The GMV portfolio is designed to minimize total portfolio volatility. Since it relies on accurate covariance estimates, errors can lead to suboptimal diversification and higher realized volatility.

Beginning in January 2000, we update the covariance matrix estimate monthly using a rolling 30-year data window, and track the month-ahead return of the GMV portfolio. By the end of the test period, we expect the most accurate covariance matrix estimator to achieve the lowest return volatility.

```
# Helper method to compute Minimum Variance Portfolio and realized volatility
def gmv(cov, ret):
    """Compute minimum variance portfolio and return"""
    w = np.linalg.inv(cov) @ np.ones((cov.shape[1], 1))
    return float((np.array(ret) @ w/sum(w)).flatten()[0])
```

```
# Rolling monthly evaluation
decay = 0.03  # risk metrics monthly decay rate for EWMA
n_components = 10  # for PCA
split = '2000-01'  # start rolling OOS prediction tests from this date
```

```
r = {} # collect realized returns
for date in tqdm(rets.index[rets.index >= split]):
    X_train = rets.iloc[rets.index < date, :][-30*12:] # 30 years of training data
    X_test = rets.iloc[rets.index == date, :] # predict one month ahead returns
    r[date] = {}

    # Empirical covariance
    cov = EmpiricalCovariance().fit(X_train).covariance_
        r[date]['Covariance'] = gmv(cov, X_test)
        r[date]['Diagonal'] = gmv(ewma(X_train, decay=decay), X_test)
        r[date][f"PCA-{n_components}"] = gmv(PCA(n_components).fit(X_train).get_
        -covariance(), X_test)
        r[date]['Identity'] = gmv(np.identity(len(cov)), X_test)
        r[date]['Identity'] = gmv(OAS().fit(X_train).covariance_, X_test)
        r[date]['OAS'] = gmv(OAS().fit(X_train).covariance_, X_test)
        r[
```

100%| 300/300 [01:01<00:00, 4.86it/s]

```
ts = DataFrame.from_dict(r, orient='index')
vol = ts.std().rename('realized volatility').to_frame()
print('Realized volatility of minimum variance portfolio')
vol.T
```

Realized volatility of minimum variance portfolio

```
Covariance Diagonal EWMA PCA-10 Identity \
realized volatility 0.035531 0.045541 0.040645 0.036339 0.048569
LW OAS
realized volatility 0.034681 0.035041
```

Plot evaluation period realized volatility of minimum variance portfolios

```
fig, ax = plt.subplots(figsize=(10, 6))
values = vol.values.flatten()
ax.barh(vol.index, width=values, color=list(mcolors.TABLEAU_COLORS.values()))
for row, val in enumerate(values):
    ax.annotate(f"{val:.4f}", xy=(val, row))
ax.set_title(f"Realized Test Volatility of Global MVPs {split} to {rets.index[-1]}")
plt.tight_layout()
```


CHAPTER

EIGHTEEN

MARKET MICROSTRUCTURE

Beware of little expenses. A small leak will sink a great ship - Benjamin Franklin

Market microstructure focuses on the mechanics of how securities are traded, analyzing factors such as price formation, liquidity, and trading costs. The NYSE Trade and Quote (TAQ) dataset is a widely used source of tick data, containing detailed records of executed trades and best bid and offer quotes. We analyze how key liquidity measures vary across market capitalization and during the trading day. We also examine intraday volatility patterns through the variance ratio and high-frequency estimators.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
import time
import os
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from tqdm import tqdm
import multiprocessing
from finds.database import SQL, RedisDB
from finds.structured import CRSP, BusDay
from finds.readers import opentaq, itertaq, bin_trades, bin_quotes, TAQ, \
   clean_trade, clean_nbbo, align_trades, plot_tag
from finds.utils import plot_time, Store, row_formatted
from finds.recipes import weighted average, hl_vol, ohlc_vol
from secret import credentials, paths
import warnings
VERBOSE = 0
if not VERBOSE: # Suppress FutureWarning messages
    warnings.simplefilter(action='ignore', category=FutureWarning)
```

```
%matplotlib inline
```

```
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bday = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bday, rdb=rdb, verbose=VERBOSE)
```

```
taqdir = paths['taq']
storedir = paths['scratch'] / 'ticks'
open_t = pd.to_datetime('1900-01-01T9:30')  # exclude <=
close_t = pd.to_datetime('1900-01-01T16:00')  # exclude >
```

```
EPSILON = 1e-15
dates = [20191007, 20191008, 20180305, 20180306]
```

18.1 Tick data

18.1.1 NYSE TAQ

The NYSE Trade and Quote (TAQ) dataset contains tick-by-tick intraday trading data for U.S. equities, providing information on executed trades and best bid/offer quotes from various exchanges. There are three primary types of TAQ daily files:

- 1. Trades (EQY_US_ALL_TRADE_YYYYMMDD.gz) -containing executed trades data, including price, volume, microsecond timestamps, sale conditions and trade correction indicators
- 2. National Best Bid and Offer NBBO (EQY_US_ALL_NBBO_YYYYMMDD.gz) containing best bid/offer price, size, microsecond timestamps, quote conditions and market center identifiers
- Master (EQY_US_ALL_REF_MASTER_YYYYMMDD.gz) –containing reference information about securities, including symbol, CUSIP, security description, shares outstanding and primary exchange

The taq module in the FinDS package provides tools for processing NYSE TAQ data, with functionalities including:

- File reading & indexing: open_taq, itertaq, taq_from_csv
- Data cleaning & filtering: clean_trades, clean_nbbo
- Tick-level analysis: TAQ class
- Resampling & binning: bin_trades, bin_quotes, align_trades
- Visualization: plot_taq

Bad trades and quotes records, such as invalid prices, duplicate records, and specific sale conditions, can be filtered out to ensure data integrity.

Retrieve and visualize tick-level trades and quotes for a selected stock (e.g., VOO, an ETF tracking the S&P 500).

```
# Plot VOO tick-by-tick
master, trades, quotes = opentaq(dates[0], taqdir)
symbol = "VOO"
t = trades[symbol]
q = quotes[symbol]
ct = clean_trade(t, close_t=close_t + np.timedelta64('5','m'))
cq = clean_nbbo(q)
align_trades(ct, cq, inplace=True)
plot_tag(ct[['Trade_Price', 'Prevailing_Mid']].groupby(level=0).last(),
            ct['Trade_Volume'].groupby(level=0).last(),
            (cq['Best_Offer_Price'] - cq['Best_Bid_Price'])\
            .rename('Quoted Spread').groupby(level=0).last(),
            ((cq['Best_Bid_Size'] + cq['Best_Offer_Size']) / 2)\
            .rename('Depth').groupby(level=0).last(),
            open_t=open_t,
            close_t=close_t + np.timedelta64('5','m'),
            num=1,
            title=f"Tick Prices, Volume, Quotes, Spreads, and Depths ({dates[0]})"
)
```


The data is preprocessed to extract a universe of U.S.-domiciled common stocks, and indexed by ticker symbol for efficient access.

```
for d, date in enumerate(dates):
    store = Store(storedir / str(date), verbose=VERBOSE)
   master, trades, quotes = opentag(date, tagdir)
    # screen on CRSP universe
    univ = crsp.get_universe(date) \
               .join(crsp.get_section(dataset='names',
                                       fields=['ncusip', 'permco', 'exchcd'],
                                       date_field='date',
                                      date=date,
                                      start=0), how='inner')\
               .sort_values(['permco', 'ncusip'])
    # drop duplicate share classes (same permco): keep largest cap
    dups = master['CUSIP'].str\
                          .slice(0, 8)
                          .isin(univ.loc[univ.duplicated(['permco'],keep=False),
                                          'ncusip'])
    #shareclass.extend(master[dups].to_dict(orient='index').values())
    univ = univ.sort_values(['permco', 'cap'], na_position='first')\
               .drop_duplicates(['permco'], keep='last')\
               .reset_index() \
               .set_index('ncusip', drop=False)
    # Iterate by symbol over Daily Taq trades, nbbo and master files
    for ct, cq, mast in itertaq(trades,
                                quotes,
                                master,
                                cusips=univ['ncusip'],
                                open_t=open_t,
                                close_t=None,
                                verbose=VERBOSE):
        header = {'date':date}
        header.update(univ.loc[mast['CUSIP'][:8],
                               ['permno', 'decile', 'exchcd', 'siccd']])
        header.update(mast[['Symbol', 'Round_Lot']])
        store[header['Symbol']] = dict(header=header, ct=ct, cq=cq, mast=mast)
    quotes.close()
    trades.close()
```

18.2 Liquidty measures

- Depth: The average bid and ask size at the best quotes, indicating the available liquidity at the current market price.
- **Quoted Spread**: The difference between the best ask and best bid prices, representing the cost of immediacy for traders.
- Effective Spread: A trade-based measure of execution cost, calculated as twice the absolute difference between the trade price and the midquote.
- Price Impact: The change in the midquote price after a trade, reflecting how much a trade moves the market.
- **Realized Spread**: The difference between the trade price and the midquote price a few minutes later, measuring the profitability of liquidity providers.
- Lee-Ready Tick Test: A method for classifying trades as buyer- or seller-initiated, using trade price movements relative to the prevailing midquote.

• Volume Weighted Average Price (VWAP) –A common trade execution benchmark, though it can be influenced by the trade itself –achieving zero slippage to VWAP while accounting for 100% of market volume does not necessarily indicate good execution.

18.2.1 Intraday liquidity

Intraday liquidity is analyzed computing liquidity measures across various time intervals: 1-second, 2-second, 5-second, 15-second, 30-second, 1-minute, 2-minute, and 5-minute bins.

```
intervals = ([(v, 's') for v in [1, 2, 5, 15, 30]] + [(v, 'm') for v in [1, 2, 5]])
max_num = 100000
bin_keys = ['effective', 'realized', 'impact',
                     'quoted', 'volume', 'offersize', 'bidsize',
                     'ret', 'retq', 'counts']
```

```
# helper call run liquidity calculations by date, parallelizable
def intraday(date):
   """Compute intraday liquidity for a date"""
   store = Store(storedir / str(date), verbose=VERBOSE)
   symbols = sorted(store)
   daily_all = []
   bins_all = {k: [] for k in bin_keys}
   for num, symbol in enumerate(symbols):
        if num >= max_num: # set small max_num for debugging
           break
       header, ct, cq, mast = store[symbol].values()
        # Compute and collect daily and bin statistics at all intervals
        daily = header.copy()  # to collect current stock's daily stats
        # Compute effective spreads by large and small trade sizes
       med_volume = mast['Round_Lot'] * (cq['Best_Bid_Size'].median()
                                          + cq['Best_Offer_Size'].median()) / 2.
        data = ct.loc[(ct.index > open_t) & (ct.index < close_t),</pre>
                      ['Trade_Price', 'Prevailing_Mid', 'Trade_Volume']]
       eff_spr = data['Trade_Price'].div(data['Prevailing_Mid']).sub(1).abs()
       eff_large = eff_spr[data['Trade_Volume'].ge(med_volume).to_numpy()]
        daily['large_trades'] = len(eff_large)
        daily['large_volume'] = data.loc[data['Trade_Volume'].ge(med_volume),
                                'Trade_Volume'].mean()
        daily['large_spread'] = eff_large.mean()
        eff_small = eff_spr[data['Trade_Volume'].lt(med_volume)]
        daily['small_trades'] = len(eff_small)
        daily['small_volume'] = data.loc[data['Trade_Volume'].lt(med_volume),
                                'Trade_Volume'].mean()
        daily['small_spread'] = eff_small.mean()
        v, u = intervals[-1]
        for (v, u) in intervals:
            bt = bin_trades(ct, v, u, open_t=open_t, close_t=close_t)
            bq = bin_quotes(cq, v, u, open_t=open_t, close_t=close_t)
            daily[f"tvar{v}{u}"] = bt['ret'].var(ddof=0) * len(bt)
            daily[f"tvarHL{v}{u}"] = ((hl_vol(bt['maxtrade'], bt['mintrade'])**2)
                                      * len(bt))
            daily[f"tvarOHLC{v}{u}"] = ((ohlc_vol(bt['first'],
```

```
bt['maxtrade'],
                                               bt['mintrade'],
                                               bt['last'])**2)
                                     * len(bt))
        daily[f"qvar{v}{u}"] = bq['retq'].var(ddof=0) * len(bq)
        daily[f"qvarHL{v}{u}"] = ((hl_vol(bq['maxmid'], bq['minmid'])**2)
                                   * len(bq))
        daily[f"qvarOHLC{v}{u}"] = ((ohlc_vol(bq['firstmid'],
                                               bq['maxmid'],
                                               bq['minmid'],
                                               bq['mid'])**2)
                                     * len(bq))
        daily[f"tunch{v}{u}"] = np.mean(np.abs(bt['ret']) < EPSILON)</pre>
        daily[f"qunch{v}{u}"] = np.mean(np.abs(bq['retq']) < EPSILON)</pre>
        daily[f"tzero{v}{u}"] = np.mean(bt['counts'] == 0)
    # Collect final (i.e. 5 minute bins) bt and bq intraday series
    df = bq.join(bt, how='left')
    for s in ['effective', 'realized', 'impact', 'quoted']:
        bins_all[s].append({**header,
                             **(df[s]/df['mid']).to_dict()})
    for s in ['volume', 'offersize', 'bidsize', 'ret', 'retq', 'counts']:
        bins_all[s].append({**header,
                             **df[s].to_dict()})
    # Collect daily means
    daily.update(df[['bidsize', 'offersize', 'quoted', 'mid']].mean())
    daily.update(df[['volume', 'counts']].sum())
    daily.update(weighted_average(df[['effective', 'impact', 'realized',
                                         'vwap', 'volume']],
                                     weights='volume'))
    daily_all.append(daily)
return DataFrame(daily_all), {k: DataFrame(bins_all[k]) for k in bin_keys}
```

To optimize performance, **multiprocessing** package is used to parallelize computations, allowing efficient distribution of input data across multiple processes using its **Pool** API.

```
# Store in scratch folder
store = Store(paths['scratch'])
```

```
store['tick.daily'] = daily_df
store['tick.bins'] = bins_df
```

```
# Fetch extracted data
daily_df = store['tick.daily']
bins_df = store['tick.bins']
```

18.3 By market capitalization

The daily averages of liquidity measures are analyzed across different market capitalization categories.

```
result = groupby[['mid', 'vwap']].mean() # .quantile(), and range
result.columns = ['Midquote Price', "VWAP"]
formats.update({k: '{:.2f}' for k in result.columns})
results.update(result)
```

```
result = groupby[['counts', 'volume']].mean()
result.columns = ['Number of trades', "Volume (shares)"]
formats.update({k: '{:.0f}' for k in result.columns})
results.update(result)
```

```
result = groupby[['offersize', 'bidsize']].mean()
result.columns = [s.capitalize() + ' (lots)' for s in result.columns]
formats.update({k: '{:.1f}' for k in result.columns})
results.update(result)
```

```
spr = ['quoted', 'effective', 'impact', 'realized']
result = groupby[spr].mean()
result.columns = [s.capitalize() + ' $ spread' for s in spr]
```

```
formats.update({k: '{:.4f}' for k in result.columns})
results.update(result)
```

```
rel = [s.capitalize() + ' (% price)' for s in spr]
daily_df[rel] = daily_df[spr].div(daily_df['mid'], axis=0) # scale spreads
result = 100*groupby[rel].mean()
formats.update({k: '{:.4f}' for k in result.columns})
results.update(result)
```

```
# summarize large and small trade effective spreads
spr = ['large_spread', 'small_spread']
result = 100*groupby[spr].mean()
result.columns = ['Large trade (% spread) ', 'Small trade (% spread) ']
formats.update({k: '{:.4f}' for k in result.columns})
results.update(result)
```

```
spr = ['large_trades', 'small_trades']
result = groupby[spr].mean()
result.columns = ['Large trade (# trades) ', 'Small trade (# trades) ']
formats.update({k: '{:.0f}' for k in result.columns})
results.update(result)
```

```
spr = ['large_volume', 'small_volume']
result = groupby[spr].mean()
result.columns = ['Large trade (avg volume) ', 'Small trade (avg volume) ']
formats.update({k: '{:.0f}' for k in result.columns})
results.update(result)
```

display table of results
print("Average Liquidity by Market Cap")
row_formatted(DataFrame(results).T, formats)

Average Liquidity by Market Cap

Size	large	medium	small	tiny
Number of Stock/Days	2063	2572	4297	4618
Midquote Price	128.98	64.91	27.76	7.92
VWAP	128.97	64.92	27.75	7.90
Number of trades	25178	8407	3658	837
Volume (shares)	3031056	995483	533736	254773
Volatility(trade price)	0.0145	0.0211	0.0359	0.0807
Volatility(midquote)	0.0152	0.0223	0.0355	0.0918
Volatility(HL trade price)	0.0176	0.0217	0.0335	0.0690
Volatility(HL midquote)	0.0144	0.0198	0.0288	0.0594
Volatility(OHLC trade price)	0.0184	0.0218	0.0324	0.0612
Volatility(OHLC midquote)	0.0138	0.0183	0.0255	0.0452
Offersize (lots)	8.8	9.8	11.9	13.6
Bidsize (lots)	8.9	17.0	14.1	16.5
Quoted \$ spread	0.0630	0.0672	0.0781	0.0841
Effective \$ spread	0.0379	0.0442	0.0406	0.0457
Impact \$ spread	0.0273	0.0244	0.0248	0.0186

Realized \$ spread Quoted (% price)	0.0106 0.0350	0.0199 0.0834	0.0158 0.2500	0.0270 1.1582
Effective (% price)	0.0200	0.0421	0.1287	0.6638
Impact (% price)	0.0165	0.0345	0.0904	0.2669
Realized (% price)	0.0036	0.0077	0.0384	0.3973
Large trade (% spread)	0.0191	0.0420	0.1310	0.6398
Small trade (% spread)	0.0190	0.0400	0.1304	0.6755
Large trade (# trades)	3133	1140	423	108
Small trade (# trades)	22045	7267	3236	729
Large trade (avg volume)	1734	1608	2635	2324
Small trade (avg volume)	61	57	71	85

18.3.1 By time of day

Market liquidity changes are examined over the trading day.

```
# Plot intraday spreads, depths and volumes
keys = ['effective', 'realized', 'impact', 'quoted',
        'volume', 'counts', 'offersize', 'bidsize']
for num, key in enumerate(keys):
    df = bins_df[key].drop(columns=['Round_Lot', 'Symbol'])
    df.index = list(zip(df['permno'], df['date']))
    # Group by market cap
    df['Size'] = pd.cut(df['decile'],
                        [0, 3.5, 6.5, 9.5, 11],
                        labels=['large', 'medium', 'small', 'tiny'])
    df = df.drop(columns=['date', 'permno', 'decile', 'exchcd', 'siccd'])\
           .dropna() \
           .groupby(['Size'], observed=False) \
           .median().T
    fig, ax = plt.subplots(1, 1, num=num+1, clear=True, figsize=(10, 6))
    plot_time(df.iloc[1:], ax=ax, fontsize=8)
    ax.legend(['large'] + list(df.columns),
              loc='upper left', bbox_to_anchor=(1.0, 1.0),
              fontsize=8)
    ax.set_title('Median ' + key.capitalize())
    plt.subplots_adjust(right=0.8)
    plt.tight_layout()
```


18.4 High frequency sampling

18.4.1 Variance ratio

Tick data often exhibits spurious autocorrelation due to irregularly spaced trades and quotes rather than continuous trading:

- Non-Continuous Trading: Trades and quotes occur discretely, often clustering around news or market events.
- Order Flow Clustering: Market participants submit bursts of orders, creating short-term price autocorrelation.
- Bid-Ask Bounce: Trades alternate between the bid and ask prices, creating an illusion of mean-reverting returns.

The variance ratio test (Lo & MacKinlay, 1988) checks for mean reversion or momentum by comparing **multi-period return variance to single-period return variance, scaled by the number of periods.

```
def plot_helper(result, xticks, keys, legend, xlabel, title, ylim=[],
                figsize=(10, 6), num=1, fontsize=8):
    """helper to plot bar graphs by sampling frequency"""
    fig, ax = plt.subplots(num=num, clear=True, figsize=figsize)
    result.plot(kind='bar',
                fontsize=fontsize,
                rot=0,
                width=0.8,
                xlabel='',
                ax=ax)
    if ylim:
       ax.set_ylim(*ylim)
    ax.set_xticklabels(xticks, fontsize=fontsize)
    ax.legend(keys, loc='upper left', bbox_to_anchor=(1.0, 1.0),
              fontsize=fontsize, title=legend, title_fontsize=8)
    ax.set_xlabel(xlabel, fontsize=fontsize + 2)
    ax.set_title(title, fontsize=fontsize + 2)
    plt.subplots_adjust(right=0.8, bottom=0.15)
    plt.tight_layout()
    return ax
```

xticks = [f" {v} {u}" for v, u in intervals] # x-axis: bin lengths
keys = list(groupby.indices.keys()) # legend labels

xticks=xticks, xlabel="Bin Length",

keys=keys, legend='Size',

num=3)

num=6)

18.4.2 Volatility measures

Parkinson's (HL) Volatility estimator uses the high-low price range to estimate volatility, assuming a geometric Brownian motion without a drift term: $\$\sigma_{HL} = \frac{\sqrt{\ln 2}}{\sqrt{4T \ln 2}} \times \frac{H-L}{\sqrt{\Delta t}} \$$

This method is more efficient than close-to-close volatility but assumes continuous trading and no jumps.

The Klass-Garman (OHLC) Volatility estimator improves on Parkinson's by incorporating open, high, low, and close prices for better accuracy:

 $\$\sigma_{OHLC}^2 = 0.511(H-L)^2 - 0.019(C-O)(H+L-2O) - 0.383(C-O)^2 \$$

This model accounts for both overnight jumps and intra-day movements.

```
# Compare methods of volatility estimates, by interval and market cap
for ifig, (split_label, split_df) in enumerate(groupby):
    vol_df = np.sqrt(split_df[[c for c in daily_df.columns if "qvar" in c or "tvar"_
 →in c]])
    result = []
    for col in [c for c in vol_df.columns if "qvar" in c or "tvar" in c]:
        if col[4] == 'H':
            m = 'HL'
        elif col[4] == 'O':
            m = 'OHLC'
        else:
            m = 'Close'
        result.append({'method': {'t': 'Last Trade', 'q': 'Mid Quote'}[col[0]] + ' '_
 ↔+ m,
                        'interval': (int("".join(filter(str.isdigit, col)))
                                     * (60 if col[-1] == 'm' else 1)),
                        'val': vol_df[col].median()})
```


Median Volatility in small stocks

References:

Andrew W. Lo, A. Craig MacKinlay, Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test, The Review of Financial Studies, Volume 1, Issue 1, January 1988, Pages 41–66, https://doi.org/10. 1093/rfs/1.1.41

Parkinson, M. (1980) The Extreme Value Method for Estimating the Variance of the Rate of Return. Journal of Business, 53, 61-65. http://dx.doi.org/10.1086/296071

CHAPTER

NINETEEN

EVENT RISK

Don' t worry about failure; you only have to be right once -Drew Houston

Event risk refers to the potential for a sudden and significant impact on an asset's price or a portfolio's value due to an unforeseen event. These can be company-specific or broad market events that introduce volatility and uncertainty. For example, a company missing or exceeding analysts' earnings expectations can cause sharp price movements. Other types of event risk in finance include credit defaults and downgrades, mergers and acquisitions, or monetary policy changes. We explore how **Poisson regression**, an example of a **generalized linear model (GLM)** suited for count data, can be used to model the frequency of events such as earnings misses.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from finds.database import SQL, RedisDB
from finds.structured import BusDay, SignalsFrame, CRSP, IBES
from finds.readers import Alfred
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
#%matplotlib qt
```

```
# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
ibes = IBES(sql, bd, verbose=VERBOSE)
LAST_DATE = CRSP_DATE
```

19.1 Earnings expectations

The consensus analyst estimate for a company's quarterly earnings is derived from the average of all the analyst forecasts covering that company. The number of analysts following a particular company typically correlates with the company's size and the liquidity of its stock. Large, well-known companies often have many analysts providing coverage, resulting in a consensus estimate derived from various opinions. In contrast, smaller or less-recognized companies may have only a few analysts covering them, or none at all.

When a company reports earnings that fall below the consensus expectation, this is referred to as an *earnings miss*. On the other hand, if the company's earnings exceed the analysts' expectations, it is called an *earnings beat*.

19.1.1 Standardized unexpected earnings (SUE)

To quantify earnings surprises, the Standardized Unexpected Earnings (SUE) is calculated. This is determined by subtracting the median of the analysts' estimates for a particular fiscal quarter from the company' s reported earnings, then scaling it by the stock price.

```
summ = df.dropna()\
          .sort_values(['permno', 'fpedats', 'statpers'])\
          .drop_duplicates(['permno', 'fpedats'], keep='last')
summ['rebaldate'] = bd.endmo(summ['fpedats'])
summ = summ.set_index(['permno', 'statpers'])
```

```
hist = df.dropna()\
    .sort_values(['permno', 'statpers'])\
    .drop_duplicates(['permno', 'statpers'], keep='last')
hist = hist.set_index(['permno', 'statpers'])
```

```
# calculate sue with ibes surprise and price
summ = summ.join(hist[['price']], how='inner')
summ['sue'] = (summ['actual'] - summ['medest']).div(summ['price'])
```

```
# define large earnings surprises as 5% of price
START = 19841201
signals = SignalsFrame(summ.reset_index(drop=False))
rebaldates = bd.date_range(START, LAST_DATE-100, freq='quarterly')
label = 'sue'
out = []
for rebaldate in rebaldates:
    univ = crsp.get_universe(rebaldate)  # get this quarter's universe
   univ = univ[(abs(univ['prc']) >= 5.0) & (univ['decile'] < 9)] # no small low-</pre>
 ⇔price
    signal = signals(label=label,
                     date=rebaldate,
                     start=bd.endqr(rebaldate, quarters=-1))\
                     .reindex(univ.index)\
                     .dropna() \
                     .reset_index()
    signal['rebaldate'] = rebaldate // 100
    signal['miss'] = signal['sue'] < -0.05</pre>
                                            # large earnings misses
    out.append(signal.set_index('permno').join(univ['decile'], how='inner')\
               .reset_index())
out = pd.concat(out)
```

```
# median quarterly earnings surprise by firm size
fig, axes = plt.subplots(2, 2, figsize=(10, 9), sharex=True, sharey=True)
axes = axes.flatten()
for label, (ax, dec) in enumerate(zip(axes, [[1,2], [3,4], [5,6], [7,8]])):
    y = out[out['decile'].isin(dec)].groupby('rebaldate')['sue'].median()
    y.plot(ax=ax, marker='+', color="C0")
    y.rolling(4).mean().plot(ax=ax, color="C1")
    ax.set_title(f"size quintile {label+1}")
    if not label:
        ax.legend(['sue', '1-year average'])
    ax.axhline(0, color='C2', ls=':')
    ax.set_xticks(y.index[::28])
    ax.minorticks_off()
plt.suptitle('Median quarterly earnings surprises by firm size')
plt.tight_layout()
plt.show()
```


Historically, the median earnings surprise was negative (i.e. estimates were too optimistic), especially for smaller stocks, until the early-1990s, after which the trend generally shifted to positive earnings surprises

19.1.2 Earnings misses

We define earnings misses to be large negative earnings surprises exceeding 5% of stock price.

```
# count number of stocks with large earnings misses
frac = out.groupby('rebaldate')['miss'].mean().rename('frac')
count = out.groupby('rebaldate')['miss'].sum().rename('count')
exposures = out['rebaldate'].value_counts().sort_index().rename('exposures')
Y = pd.concat([exposures, frac, count], axis=1)
Y.index = Y.index.astype(str)
print("Earnings misses")
Y
```

Earnings misses

	exposures	count	
rebaldate			
198412	1327	0.051997	69
198503	1302	0.038402	50
198506	1384	0.040462	56
198509	1384	0.033960	47
198512	1398	0.063662	89
• • •			
202309	1845	0.008672	16
202312	1812	0.009934	18
202403	1764	0.003401	6
202406	1776	0.004505	8
202409	1737	0.005757	10
[160 rows	x 3 columns	1	

19.2 Poisson regression

The Poisson distribution is often used to model count data, or events that occur in a fixed period of time or space. Poisson regression models the expected count of events as a function of certain covariates. Specifically, it is expressed as:

$$\log(E[Y|X]) = \beta X$$

which is equivalent to:

$$E[Y|X] = e^{\beta X}$$

In this model, the interpretation of the coefficient β is that an increase in X_i by one unit is associated with a multiplicative change in the expected value of Y_i by a factor of e^{β_i} . The variance of Y_i under the Poisson model is equal to its expected value, i.e., $Var[Y_i] = E[Y_i]$. Importantly, the Poisson model ensures that the fitted values are non-negative, as it only allows for counts of zero or more.

Poisson regression can also be useful for modeling rates, where the event count is divided by some measure of exposure. For example, when modeling the number of stocks with large earnings misses each quarter, the exposure would be the total number of stocks, denoted N. The log of the total number of stocks, called the *offset* variable, is included in the regression equation with a coefficient constrained to 1.

The modified equation would then look like:

$$\log\left[\frac{E[Y|X]}{\text{exposure}}\right] = X\beta - \log(\text{exposure})$$

19.2.1 Generalized Linear Models

Linear and Poisson regression models are both types of Generalized Linear Models (GLMs). GLMs are a class of models where the response variable is modeled as a function of the predictors through a link function. Specifically, the mean of the response variable Y_i is transformed using the link function, which ensures the mean of the response is related linearly to the predictors.

For linear regression, the link function is the identity function, which simply states that the transformed mean is equal to the expected value: $\nu(E[Y]) = E[Y]$. In Poisson regression, the link function is the log function, so $\nu(E[Y]) = \log(E[Y])$, which transforms the expected count to the log scale. Specifically, Poisson regression models the response as coming from the Poisson distribution (with support 0, 1, 2…,), with its canonical link function being the log function $X\beta = \log E[Y]$, and the mean function being the exponential $E[Y] = e^{X\beta}$

Both linear and Poisson regression are based on the assumption that, conditional on X, the response variable Y comes from a member of the exponential family of distributions. The exponential family includes both discrete and continuous distributions such as the Gaussian, Poisson, Bernoulli, Multinomial, Exponential, Gamma, and Negative Binomial distributions. A GLM links the transformed mean of the distribution to the predictors, enabling flexible modeling of different types of data.

```
# retrieve and transform economics series
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
```

```
INDPRO NASDAQCOM
date
197106 0.014847
                  0.017122
197109 0.007394
                  0.011345
197112 0.023171
                  0.045627
197203 0.040696
                  0.115873
197206 0.012599
                 0.015026
            . . .
. . .
                       . . .
202403 -0.001095
                 0.087222
202406 0.007142
                  0.079377
202409 -0.006472 0.025422
202412 0.003853
                  0.059838
202503 0.005111 -0.024295
[216 rows x 2 columns]
```

Generalized Linear Model Regression Results								
Dep. Variable	e:	count No.Obse			oservations:	:	115	
Model:		GLM Df Re			esiduals: 112			
Model Family	:	Poisson Df Model:			2			
Link Function	n:	Log Scale:				1.0000		
Method:		IRLS Log-Likelihood:				-473.08		
Date:	Mor	n, 03 Mar 2	2025	Deviance:			519.46	
Time:		21:5	7 : 30	Pearson chi2:			622.	
No. Iteration	ons: 5 Pseudo R-squ. (CS):			0.9417				
Covariance T	ype:	nonrobust						
	coef	std err		Z	P> z	[0.025	0.975]	
const INDPRO	-5.3070 -24.3445	0.032	-16 -1'	7.739 7.665	0.000 0.000	-5.369 -27.046	-5.245 -21.643	
NASDAQCOM	-1.4022	0.209	- (6.724	0.000	-1.811	-0.994	

```
# Plot predicted and predictors
fig, ax = plt.subplots(figsize=(10, 6))
bx = ax.twinx()
Z['count'].plot(kind='bar', width=1.0, alpha=0.4, color="C0", ax=ax)
y_pred.plot(ls='', marker='^', color="C0", ax=ax)
ax.set_ylabel('quarterly number of stocks', color="C0")
Z['INDPRO'].cumsum().plot(color="C1", alpha=.5, ax=bx)
Z['NASDAQCOM'].cumsum().plot(color="C2", alpha=.5, ax=bx)
ax.legend(loc='upper left')
bx.legend(loc='upper right')
ax.set_xticks(np.arange(0, len(Z), 12), Z.index[::12])
ax.set_title('Number of stocks with large earnings misses')
plt.tight_layout()
```

Number of stocks with large earnings misses

Credit losses

Suppose a financial institution has a portfolio N loans, and:

- **default risk** p_i is the probability of default of the *i* th loan
- loss severity or loss given default L_i is the portion of the *i* th loan lost in the event of default. This is often assumed known with certainty

Then Expected loss is the sum of Default Probability × Loss given default over all loans = $\sum_{i=1}^{N} p_i L_i$

The standard deviation of the expected loss on an individual loan, by applying the "Bernoulli shortcut" is $\sigma_i = \sqrt{p_i(1-p_i)}L_i$.

The standard deviation of the loss of the portfolio depends on the correlation of defaults between loands $\sigma_P = \sqrt{\sum_i \sum_j \rho_{ij} \sigma_i \sigma_j}$. For tractability, the correlations may be simplified to be constant or determined by a (Gaussian) copula, though neither assumption suffices to model real markets.

Actuarial Loss:

- Severity
- Frequency

References:

https://sites.google.com/site/zoubin019/teaching/math-5639-actuarial-loss-models

Lim, Terence, 2001, "Rationality and Analysts' Forecast Bias", Journal of Finance, Volume 56, Issue 1, Pages 369-385. https://doi.org/10.1111/0022-1082.00329

CHAPTER

TWENTY

SUPPLY CHAIN NETWORK GRAPHS

Forget about your competitors, just focus on your customers - Jack Ma

Supply chain networks comprise the interconnected relationships between suppliers and their customers. An effective way to study these relationships is by constructing graphs that visually and mathematically represent supply chain structures. We introduce key properties of graphical networks, such as degree distribution, clustering coefficients, and path lengths, and explore how to identify central and connected firms.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import math
import numpy as np
import pandas as pd
import networkx as nx
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from finds.database import SQL
from finds.recipes import graph_draw
from secret import credentials
import warnings
# %matplotlib qt
VERBOSE = 0
if not VERBOSE:
    warnings.simplefilter(action='ignore', category=FutureWarning)
sql = SQL(**credentials['sql'], verbose=VERBOSE)
```

20.1 Principal customers

The relationships between upstream suppliers and downstream customers, collectively known as "supply chain" relationships, form a crucial component of economic linkages, representing the movement of goods, services, and financial transactions across industries and individual firms.

Principal customers are those that contribute more than 10% of a firm's total sales, as defined by Regulation S-K and SFAS 131. Under these disclosure requirements, suppliers are often significantly smaller than their corporate principal customers.

Retrieve principal customer relationships from the database:

```
f" where srcdate >= {year}0101 "
f" and srcdate <= {year}1231")</pre>
```

Construct a lookup table to map company tickers to their full names:

20.2 Graph properties

In a **graph**, **nodes** (also called vertices) represent entities, while **edges** denote relationships between them. The **degree** of a node is the number of edges directly connected to it.

Density measures the proportion of existing edges relative to the maximum possible edges:

- In undirected graphs: $\frac{2m}{n(n-1)}$
- In directed graphs: $\frac{m}{n(n-1)}$

where m is the number of edges and n is the number of nodes.

A **simple graph** has no self-loops (edges connecting a node to itself) and does not contain multiple edges between the same pair of nodes.

A **subgraph** is a subset of nodes and the edges that connect them. A **component** is a subgraph in which every node is connected to every other node by some path.

Key graph attributes include:

- Weighted vs. Unweighted: Indicates whether numerical values are assigned to edges.
- Directed vs. Undirected: Determines whether edges have a defined direction.
- Cyclic vs. Acyclic: A cyclic graph contains at least one cycle (a path that starts and ends at the same node), while an acyclic graph does not.
- Connected vs. Disconnected: A graph is connected if a path exists between any two nodes.
- Weakly vs. Strongly Connected Components: Weakly connected components have a path between every pair of nodes when edge direction is ignored, whereas strongly connected components require directed paths between every pair of nodes.

To model supply chains, we construct a directed graph with edges pointing from suppliers to their principal customers and analyze its structural properties.

```
# nodes are companies, with directed edges from supplier to customer
vertices = set(cust['stic']).union(cust['ctic'])
edges = cust[['stic', 'ctic']].values.tolist()  # supplier --> customer
```

```
# Populate networkx directed graph with nodes and edges
DG = nx.DiGraph()
DG.add_nodes_from(vertices)
DG.add_edges_from(edges)
```

Display graph properties:
```
# Helper to display graph properties
def graph_info(G):
   out = dict()
    out['is directed'] = nx.is directed(G)
    out['num_edges'] = nx.number_of_edges(G)
    out['num_nodes'] = nx.number_of_nodes(G)
    out['num_selfloops'] = nx.number_of_selfloops(G)
    out['density'] = nx.density(G)
    out['is_weighted'] = nx.is_weighted(G)
    if nx.is_weighted(G):
        out['is_negatively_weighted'] = nx.is_negatively_weighted(G)
    # Components
    if nx.is_directed(G):
        out['is_weakly_connected'] = nx.is_weakly_connected(G)
        out['weakly_connected_components'] = nx.number_weakly_connected_components(G)
        out['size_largest_weak_component'] = len(max(
           nx.weakly_connected_components(G), key=len))
        out['is_strongly_connected'] = nx.is_strongly_connected(G)
        out['strongly_connected_components'] = nx.number_strongly_connected_
 ⇔components(G)
       out['size_largest_strong_component'] = len(max()
           nx.strongly_connected_components(G), key=len))
    else:
        out['is_connected'] = nx.is_connected(G)
        out['connected_components'] = nx.number_connected_components(G)
        out['size_largest_component'] = len(max(
           nx.connected_components(G), key=len))
    return out
```

Series(graph_info(DG)).rename('Principal Customers Graph').to_frame()

	Principal	Customers Graph
is_directed		True
num_edges		2561
num_nodes		1696
num_selfloops		5
density		0.000891
is_weighted		False
is_weakly_connected		False
weakly_connected_components		111
size_largest_weak_component		1398
is_strongly_connected		False
strongly_connected_components		1692
<pre>size_largest_strong_component</pre>		3

remove self-loops, if any
DG.remove_edges_from(nx.selfloop_edges(DG))

20.2.1 Clustering coefficient

The clustering coefficient measures how nodes in a graph tend to cluster together.

- A triplet consists of three nodes connected by two (open triplet) or three (closed triplet) edges.
- A triangle comprises three closed triplets.
- The clustering coefficient of a node is given by:

$$\frac{2 \times \# \text{ of triangles}}{\text{degree} \times (\text{degree} - 1)}$$

• Graph transitivity is the fraction of all possible triangles that are actually present: $3 \times \frac{\text{\# of triangles}}{\text{\# of triangles}}$

```
transitivity average clustering clustering 0.007702 0.011649
```

20.2.2 Degree analysis

In directed graphs:

- Out-degree represents the number of edges pointing out from a node.
- In-degree represents the number of edges pointing into a node.

20.2.3 Ego network

An **ego** is a focal node in a network. Each node in a network can serve as an ego. A **neighborhood** consists of the ego and all nodes directly connected to it.

For analysis, we select the node with the highest degree as the focal node and construct its one-step neighborhood, capturing immediate suppliers and principal customers.

```
# find node with greatest degree
(ego, degree) = max(G.degree(), key=lambda x: x[1])
# build subgraph of ego and neighbors
all_neighbors = list(nx.all_neighbors(DG, ego)) # predecessors and successors
neighbors = list(nx.neighbors(DG, ego)) # successors only
ego_graph = DG.subgraph([ego] + all_neighbors).copy()
```


20.2.4 Path lengths

The distance or path length between two nodes is the shortest path (fewest number of edges) between them.

- Eccentricity of a node is the maximum distance from that node to any other node in the graph.
- **Diameter** is the maximum eccentricity across all nodes in the graph.

To analyze path lengths, we identify the largest connected component of the graph and compute the longest undirected path within it.

```
# find component with the longest diameter
components = list(nx.weakly_connected_components(DG))
nodes = components[np.argmax([nx.diameter(G.subgraph(c)) for c in components])]
# compute all shortest path lengths, and determine the longest
best_length = 0
```

```
for src, targets in dict(nx.shortest_path(G.subgraph(nodes))).items():
    for tgt, path in targets.items():
        length = len(path)
        if length > best_length:
            best_length = length
            best_path = path
# Archimedean spiral: r = b theta
pos = \{ticker: ((n + 5) * math.cos(n), (n + 5) * math.sin(n))\}
       for n, ticker in enumerate(best_path) }
# Plot nodes in a spiral graph
labels = {ticker: lookup[ticker] for ticker in best_path}
graph_draw(DG.subgraph(best_path), figsize=(10, 8), node_size=300,
           width=3, labels=labels, style='-', pos=pos,
           title=f"Longest Undirected Path")
   {'CGAU': (5.0, 0.0),
    'RGLD': (3.2418138352088386, 5.048825908847379),
    'TECK': (-2.9130278558299967, 6.365081987779772),
    'HL': (-7.919939972803563, 1.1289600644789377),
    'CM': (-5.882792587772507, -6.811222457771354),
    'SSRM': (2.8366218546322624, -9.589242746631385),
    'BMO': (10.561873153154025, -3.0735704801881845),
    'CDE': (9.046827052119655, 7.883839184625469),
    'TD': (-1.8915004395119759, 12.861657206103963),
    'SLG': (-12.755823666385478, 5.769658793384592),
    'SONY': (-12.586072936146786, -8.160316663340547),
    'SYNA': (0.07081116780881257, -15.999843304811256),
    'F': (14.345517298452366, -9.121739606007393),
    'VC': (16.33404206610353, 7.563006662879537),
    'MBGYY': (2.5980071459488383, 18.821539758202537),
    'NPO': (-15.193758257176427, 13.005756803142337),
    'CVX': (-20.110849086791077, -6.045969649966372),
    'MUR': (-6.053593437135133, -21.15074482135025),
    'PSX': (15.187284289613844, -17.272706675748548),
    'SPND': (23.72891083648006, 3.597053031910856),
    'DCP': (10.202051545334799, 22.82363126819069),
    'PDCE': (-14.240960765830978, 21.75304660193746),
    'UNRG': (-26.998942312655203, -0.23898535084090466)}
```


References:

Ling Cen and Sudipto Dasgupta, 2021, The Economics and Finance of Customer-Supplier Relationships, Oxford Research Encyclopedia of Economics and Finance.

Cen, Ling, et al. "Customer–supplier relationships and corporate tax avoidance." Journal of Financial Economics 123.2 (2017): 377-394.

Cohen, Lauren, and Andrea Frazzini. "Economic links and predictable returns." The Journal of Finance 63.4 (2008): 1977-2011.

Wharton Research Data Services.

CHAPTER

TWENTYONE

INDUSTRY COMMUNITY DETECTION

Realize that everything connects to everything else - Leonardo DaVinci

Traditional industry classification systems, such as SIC and NAICS, group firms based on production processes or product similarities. Natural language processing techniques can be leveraged to analyze product descriptions and capture dynamic changes in industry structures over time, as proposed by Hoberg and Phillips (2016). Industry communities can be detected through network analysis, where firms are modeled as nodes in a graph, and connections between them are determined by similarities in their product and market descriptions.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import zipfile
import io
from itertools import chain
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import seaborn as sns
import networkx as nx
from finds.database import SQL
from finds.readers import requests_get, Sectoring
from finds.structured import BusDay, PSTAT
from finds.recipes import graph_info
from secret import credentials
# %matplotlib qt
VERBOSE = 0
```

```
sql = SQL(**credentials['sql'], verbose=VERBOSE)
bd = BusDay(sql)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
```

21.1 Industry taxonomy

Industry classification, or industry taxonomy, organizes companies into groups based on shared characteristics such as production processes, product offerings, or financial market behaviors.

21.1.1 Text-based industry classification

Hoberg and Phillips (2016) developed a text-based measure of firm similarity by analyzing product descriptions in 10-K filings. They construct firm-by-firm similarity scores using word vectors, filtering out common words and focusing on nouns and proper nouns, while excluding geographic terms. The similarity between firms is quantified using cosine similarity, creating a pairwise similarity matrix across firms and years.

Since Item 101 of Regulation S-K mandates that firms accurately describe their key products in their 10-K filings, the TNIC scheme, based on textual similarity, provides a dynamic classification system that evolves with market changes. This method offers a more flexible alternative to traditional classification systems, capturing shifts in product markets over time.

Source: Hoberg and Phillips Industry Classification

The TNIC pair-wise firm similarities are retrieved from the Hoberg and Phillips website:

```
# Retrieve TNIC scheme from Hoberg and Phillips website
tnic_scheme = 'tnic3'
root = 'https://hobergphillips.tuck.dartmouth.edu/idata/'
source = root + tnic_scheme + '_data.zip'
if source.startswith('http'):
    response = requests_get(source)
    source = io.BytesIO(response.content)
# extract the csv file from zip archive
with zipfile.ZipFile(source).open(tnic_scheme + "_data.txt") as f:
    tnic_data = pd.read_csv(f, sep='\s+')
# extract latest year of tnic as data frame
year = max(tnic_data['year']) # [1989, 1999, 2009, 2019]
tnic = tnic_data[tnic_data['year'] == year].dropna()
tnic
```

year gvkey1 gvkey2 score 26307358 2023 1004 1823 0.0127 26307359 2023 1004 4091 0.0087 26307360 2023 1004 5567 0.0063 26307361 2023 1004 9698 0.0075 26307362 2023 10519 0.0191 1004 26973403 2023 351038 329141 0.0684 26973404 2023 351038 331856 0.0769 26973405 2023 351038 332115 0.1036 26973406 2023 351038 347007 0.0731 26973407 2023 351038 349972 0.0871 [666050 rows x 4 columns]

21.1.2 Industry classification

Industry classification systems such as SIC and NAICS follow hierarchical structures to categorize firms based on their economic activities:

- Standard Industrial Classification (SIC): Uses a 2-digit, 3-digit, and 4-digit hierarchy to classify industries.
- North American Industry Classification System (NAICS): Expands classification granularity from 2-digit to 6-digit levels.

lpermno sic naics Non-missing 3829 3829 3827

```
# supplement naics and sic with crosswalks in Sectoring class
naics = Sectoring(sql, 'naics', fillna=0)  # supplement from crosswalk
sic = Sectoring(sql, 'sic', fillna=0)
nodes['naics'] = nodes['naics'].where(nodes['naics'] > 0, naics[nodes['sic']])
nodes['sic'] = nodes['sic'].where(nodes['sic'] > 0, sic[nodes['naics']])
Series(np.sum(nodes > 0, axis=0)).rename('Non-missing').to_frame().T
```

lpermno sic naics Non-missing 3829 3829 3829

21.1.3 Sector groups

Industry taxonomies group detailed classifications into broader sectors for economic analysis:

- Fama and French aggregate 4-digit SIC codes into industry groups consisting of 5, 10, 12, 17, 30, 38, 48, or 49 sectors.
- The Bureau of Economic Analysis (BEA) consolidates 6-digit NAICS codes into summary-level industry groups, with updates in 1947, 1963, and 1997.

```
(continued from previous page)
```

```
sectorings[scheme] = Sectoring(sql, scheme, fillna=fillna)
# apply the sectoring scheme to partition the nodes
nodes[scheme] = sectorings[scheme][nodes[key]]
# keep nodes with non-missing data
nodes = nodes[nodes[scheme].ne(sectorings[scheme].fillna)]
print(len(nodes), scheme)
```

nodes

 3845
 codes5

 3845
 codes12

 3845
 codes17

 3845
 codes30

 3845
 codes38

 3845
 codes48

 3845
 codes49

 3829
 sic2

 3829
 sic3

 3561
 bea1947

 3561
 bea1997

	lpermno	sic	naics	codes5	codes10	codes12	codes17	codes30	codes38	\backslash
gvkey										
1004	54594	5080	423860	Cnsmr	Shops	Shops	Machn	Whlsl	Whlsl	
1045	21020	4512	481111	Other	Durbl	Durbl	Trans	Trans	Trans	
1050	11499	3564	333413	Manuf	Manuf	Manuf	Machn	FabPr	Machn	
1076	10517	6141	522220	Other	Other	Money	Finan	Fin	Money	
1078	20482	3845	334510	Hlth	Hlth	Hlth	Other	Hlth	Instr	
•••		•••		• • •	•••	• • •	•••	•••	• • •	
345980	20333	5961	455110	Cnsmr	Shops	Shops	Rtail	Rtail	Rtail	
347007	15533	2836	325414	Hlth	Hlth	Hlth	Other	Hlth	Chems	
349337	20867	3845	334510	Hlth	Hlth	Hlth	Other	Hlth	Instr	
349972	15642	2836	325414	Hlth	Hlth	Hlth	Other	Hlth	Chems	
351038	16161	2834	325412	Hlth	Hlth	Hlth	Cnsum	Hlth	Chems	
				ada) ha	-1047 1-	- 10(2) -	-1007			
	Codes48	codes49	SICZ	SIC3 DE	eal947 De	eal963 De	ea1997			
gvkey 1004		Wh l = 1	FO	FOO	4.0	10	10			
1004	WHISI	WHISI	5U 4 E	5U8 4E1	42	42	42			
1045	Irans	Irans	45	451	48	481	481			
1050	Mach	Mach	35	356	333	333	333			
1076	Banks	Banks	61	614	52	521CI	521CI			
1078	MedEq	MedEq	38	384	334	334	334			
•••	• • •	•••	• • •	•••	•••	•••	•••			
345980	Rtail	Rtail	59	596	44RT	44RT	4A0			
347007	Drugs	Drugs	28	283	325	325	325			
349337	MedEq	MedEq	38	384	334	334	334			
349972	Drugs	Drugs	28	283	325	325	325			
351038	Drugs	Drugs	28	283	325	325	325			
[2561 -		aalumn	- 1							
[SOOT I										

21.2 Community structure

In network analysis, **community structure** refers to the clustering of nodes (firms) into partitions (groups) based on connectivity patterns. Identifying these communities helps reveal hidden industry relationships and competitive dynamics.

```
# populate undirected graph with tnic edges
edges = tnic[tnic['gvkey1'].isin(nodes.index) & tnic['gvkey2'].isin(nodes.index)]
edges = list(
    edges[['gvkey1', 'gvkey2', 'score']].itertuples(index=False, name=None))
G = nx.Graph()
G.add_weighted_edges_from(edges)
G.remove_edges_from(nx.selfloop_edges(G)) # remove self-loops: not necessary
Series(graph_info(G, fast=True)).rename(year).to_frame()
```

	2023
transitivity	0.877035
average_clustering	0.575643
connected	False
connected_components	9
size_largest_component	3523
directed	False
weighted	True
negatively_weighted	False
edges	320352
nodes	3541
selfloops	0
density	0.051113

21.2.1 Measuring partitions

The quality of graph partitions can be evaluated using modularity, a measure that assesses the strength of community structures by comparing observed connections within clusters to a random network model.

```
# evaluate modularity of sectoring schemes on TNIC graph
def community_quality(G, communities):
    """helper to measure quality of partitions"""
    out = {'communities': len(communities)}
    out['modularity'] = nx.community.modularity(G, communities)
    (out['coverage'],
        out['performance']) = nx.community.partition_quality(G, communities)
    return out
```

Quartcy	OI Sectoring	Schemes on i	Nic graph	(2025)	
	communities	modularity	coverage	performance	
bea1947	40	0.330481	0.779187	0.925859	
bea1963	58	0.324246	0.734745	0.948296	
bea1997	61	0.324169	0.734514	0.948689	
codes10	10	0.335843	0.940503	0.850069	
codes12	12	0.336655	0.938187	0.878268	
codes17	17	0.285847	0.766719	0.794675	
codes30	30	0.335544	0.934385	0.899115	
codes38	36	0.333800	0.793237	0.890785	
codes48	48	0.331168	0.752610	0.944559	
codes49	49	0.331003	0.751526	0.951096	
codes5	5	0.337074	0.945045	0.818984	
sic2	67	0.327541	0.743694	0.942476	
sic3	226	0.288389	0.690952	0.958297	

Quality of sectoring schemes on TNIC graph (2023)

21.2.2 Detecting partitions

Community detection in graphs can be performed using various algorithms, including:

- Label Propagation Algorithm: This method assigns an initial label to each node and iteratively updates labels based on the majority of its neighbors' labels, allowing communities to form dynamically. It is fast and works well for large networks but may produce different results on different runs due to randomness.
- Louvain Method: This hierarchical clustering algorithm optimizes modularity by iteratively merging small communities into larger ones, maximizing intra-community connections while minimizing inter-community edges.
- **Greedy Algorithm**: This algorithm builds communities by iteratively merging pairs of nodes or groups that result in the largest modularity gain, prioritizing locally optimal choices.

```
# Run community detection algorithms
def community_detection(G):
    """"Helper to run community detection algorithms on an undirected graph"""
    out = {}
    out['label'] = nx.community.label_propagation_communities(G)
    out['louvain'] = nx.community.louvain_communities(G, resolution=1)
    out['greedy'] = nx.community.greedy_modularity_communities(G, resolution=1)
    return out
```

```
communities = community_detection(G)
quality = {}
for key, community in communities.items():
    quality[key] = community_quality(G, community)
```

```
df = DataFrame.from_dict(quality, orient='index').sort_index()
print(f"Modularity of community detection algorithms on TNIC graph ({year})")
df
```

Modularity of community detection algorithms on TNIC graph (2023)

	communities	modularity	coverage	performance
greedy	51	0.323848	0.989711	0.689093
label	101	0.347795	0.990485	0.909486
louvain	19	0.354818	0.824855	0.838868

```
# Visualize Fama-French 49-industries in the detected communities
key = 'codes49'
for ifig, detection in enumerate(communities.keys()):
    # count industries represented in each partition
    industry = []
    communities_sequence = sorted(communities[detection], key=len, reverse=True)
    for i, community in enumerate(communities_sequence):
        industry.append(nodes[key][list(community)].value_counts().rename(i+1))
    names = sectorings[key].sectors['name'].drop_duplicates(keep='first')
    df = pd.concat(industry, axis=1) \
           .dropna(axis=0, how='all') \
           .fillna(0) \
           .astype(int) \
           .reindex(names)
    # display as heatmap
    fig, ax = plt.subplots(num=ifig+1, clear=True, figsize=(6, 8))
    sns.heatmap(df.iloc[:,:10],
                square=False,
                linewidth=.5,
                ax=ax,
                yticklabels=1,
                cmap="YlGnBu",
                robust=True)
    if scheme.startswith('bea'):
       ax.set_yticklabels(Sectoring._bea_industry[df.index], size=10)
    else:
       ax.set_yticklabels(df.index, size=10)
    ax.set_title(f'{detection.capitalize()} Community Detection {year}')
    ax.set_xlabel(f"Industry representation in communities")
    ax.set_ylabel(f"{key} industry")
    fig.subplots_adjust(left=0.4)
    plt.tight_layout(pad=0)
```


Label Community Detection 2023

Other -70 Agric -BldMt -Toys -Mines -Gold -Coal -Oil -- 60 Cnstr -Food -Hshld -Soda -Beer -Smoke -Txtls -- 50 Autos -Clths -Boxes -Paper -Books -BusSv codes49 industry Chems -- 40 Drugs -Rubbr -Steel -FabPr -Guns -Mach -Hardw -30 ElcEq -Chips -MedĖq -Aero -Ships -LabÈq -Trans -- 20 Telcm -Util -Whisi -Rtail -Meals -Banks -- 10 Fin -Insur -RIEst -PerSv -Softw -Fun -Hlth -- 0 1 2 6 3 4 5 7 8 9 10 Industry representation in communities

Greedy Community Detection 2023

References

Gerard Hoberg and Gordon Phillips, 2016, Text-Based Network Industries and Endogenous Product Differentiation.Journal of Political Economy 124 (5), 1423-1465. Gerard Hoberg and Gordon Phillips, 2010, Product Market Synergies and Competition in Mergers and Acquisitions: A Text-Based Analysis. Review of Financial Studies 23 (10), 3773-3811.

CHAPTER

TWENTYTWO

INPUT-OUTPUT GRAPH CENTRALITY

And so we all matter - maybe less then a lot but always more than none - John Green

Input-output analysis in economics models the interdependencies between sectors by tracking the flow of goods and services. Graph centrality measures are valuable tools for analyzing the structure and dynamics of such networks. By representing input-output data published by the Bureau of Economic Analysis (BEA) as a directed graph (with sectors as nodes and transactions as edges from producers to consumers), we can apply centrality metrics to identify the most influential sectors driving overall economic activity.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import pandas as pd
from pandas import DataFrame, Series
import networkx as nx
from finds.database import RedisDB
from finds.readers import BEA
from finds.recipes import graph_info, graph_draw
from secret import credentials
# %matplotlib qt
VERBOSE = 0
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', 200)
```

```
rdb = RedisDB(**credentials['redis'])
bea = BEA(rdb, **credentials['bea'], verbose=VERBOSE)
years = [1947, 2023]
vintages = [1997, 1963, 1947]  # when sectoring schemes were revised
vintage = min(vintages)
```

22.1 Centrality measures

Graph centrality measures help quantify the importance of nodes within a network, providing insight into their roles and influence.

- Degree Centrality measures the number of edges connected to a node, indicating its direct level of activity.
- Betweenness Centrality quantifies the extent to which a node lies on the shortest paths between other nodes, capturing its role in network connectivity.
- Closeness Centrality assesses how close a node is to all other nodes based on shortest path distances, highlighting its accessibility.
- Eigenvector Centrality evaluates a node's importance based on the centrality of its neighbors, giving higher scores to nodes connected to other influential nodes.

- PageRank Centrality was originally developed to rank web pages and operates as a random walk process, estimating the long-term likelihood of visiting each node by following edges.
- Hubs are nodes with many outgoing edges, acting as facilitators of flow to other parts of the network.
- Authorities are nodes with many incoming edges, representing highly influential entities that are frequently referenced by other nodes.

```
# Helper to compute centrality measures
def nodes_centrality(G, weight='weight', cost=False, alpha=0.99):
    """Return dict of vertex centrality measures
    Args:
       G: Graph may be directed or indirected, weighted or unweighted
        weight: name of edge attribute for weights, Set to None for unweighted
       cost: If True, then weights are costs; else weights are importances
    .. .. ..
    out = \{\}
    # Degree centrality, for directed and undirected graphs
    if nx.is_directed(G):
        out['in_degree'] = nx.in_degree_centrality(G)
        out['out_degree'] = nx.out_degree_centrality(G)
    else:
        out['degree'] = nx.degree_centrality(G)
    # Hubs and Authorities
    out['hub'], out['authority'] = nx.hits(G)
    # if weights are costs, then Eigenvector and Pagerank ignore weights
    if not cost and nx.is_weighted(G):
        out['eigenvector'] = nx.eigenvector_centrality(G, weight=weight, max_
 →iter=1000)
       out['pagerank'] = nx.pagerank(G, weight=weight, alpha=alpha)
    else:
        out['eigenvector'] = nx.eigenvector_centrality(G, max_iter=1000)
        out['pagerank'] = nx.pagerank(G, alpha=alpha)
    # if weights are importances, then Betweeness and Closeness ignore weights
    if cost and nx.is_weighted(G):
        out['betweenness'] = nx.betweenness_centrality(G, weight=weight)
        out['closeness'] = nx.closeness_centrality(G, distance=weight)
    else:
        out['betweenness'] = nx.betweenness_centrality(G)
        out['closeness'] = nx.closeness_centrality(G)
    return out
```

22.2 BEA Input-Output Use Tables

Input-output analysis is an economic modeling technique used to study interdependencies among different sectors. It involves constructing input-output tables that track the flow of goods and services between industries, quantifying how changes in one sector impact others.

```
# Read IOUse tables from BEA website
ioUses = {year: bea.read_ioUse(year=year, vintage=vintage) for year in years}
```

To analyze these relationships, we construct a directed graph from the latest BEA input-output flows, where edges flow from user sectors to make sectors. This allows us to visualize sectoral interactions and determine the most influential industries.

Series(graph_info(G)).rename('Properties').to_frame()

	Properties
transitivity	0.903811
average_clustering	0.849259
weakly_connected	True
weakly_connected_components	1
size_largest_weak_component	47
strongly_connected	False
strongly_connected_components	4
<pre>size_largest_strong_component</pre>	44
directed	True
weighted	True
negatively_weighted	False
edges	1689
nodes	47
selfloops	0
density	0.781221

Vizualise graphs of input-output flows for the earliest and latest years available, highlighting the top five sectors with the highest PageRank centrality scores.

```
(continued from previous page)
```

```
.rename(columns={'datavalue': 'self'})
   # extract cross data; generate and load edges (as tuples) to graph
  data = data[(data['colcode'] != data['rowcode'])]
  data['weights'] = data['datavalue'] / data['datavalue'].sum()
  edges = data.loc[data['weights'] > 0, [tail, head, 'weights']]\
               .values\
               .tolist()
  G = nx.DiGraph()
  G.add_weighted_edges_from(edges, weight='weight')
  nx_labels = BEA.short_desc[list(G.nodes)].to_dict()
   # update master table industry flow values
  master = master.join(data.groupby(['colcode'])['datavalue'].sum(), how='outer')\
                  .rename(columns={'datavalue': 'user'})
  master = master.join(data.groupby(['rowcode'])['datavalue'].sum(), how='outer')\
                  .rename(columns={'datavalue': 'maker'})
  master = master.fillna(0).astype(int)
  # inweight~supply~authority~eigenvector~pagerank, outweight~demand~hub
  centrality = DataFrame(nodes_centrality(G))
                                                # compute centrality metrics
  master = master.join(centrality, how='left')
  master['bea'] = BEA.short_desc[master.index].to_list()
  # visualize graph
  score = centrality['pagerank']
  node_size = score.to_dict()
  node_color = {node: colors[0] for node in G.nodes() }
  if ifig == 0:
      center_name = score.index[score.argmax()]
  else:
      node_color.update({k: colors[2] for k in top_color})
  top_color = list(score.index[score.argsort()[-5:]])
  node_color.update(dict.fromkeys(top_color, colors[1]))
  pos = graph_draw(G,
                    num=ifig+1,
                    figsize=(10, 10),
                    center_name=center_name,
                    node_color=node_color,
                    node_size=node_size,
                    edge_color='r',
                    k=3,
                    pos=(pos if ifig else None),
                    font_size=10,
                    font_weight='semibold',
                    labels=master['bea'].to_dict(),
                    title=f"Top 5 Nodes By Pagerank in {year} ({vintage}-sectoring_
⇔scheme)")
```


Top 5 Nodes By Pagerank in 1947 (1947-sectoring scheme)

Top 5 Nodes By Pagerank in 2023 (1947-sectoring scheme)

Display centrality scores for all BEA sectors based on the latest year's input-output data:

```
# show industry flow values and graph centrality measures
master = pd.concat(
    (data[data['rowcode'] == data['colcode']][['rowcode', 'datavalue']]\
    .set_index('rowcode')\
    .rename(columns={'datavalue': 'self'}),
    data.groupby(['colcode'])['datavalue'].sum().rename('user'),
    data.groupby(['rowcode'])['datavalue'].sum().rename('maker')),
    join='outer', axis=1).fillna(0).astype(int)
master = master.join(DataFrame(nodes_centrality(G)), how='left')
master['bea'] = BEA.short_desc[master.index].to_list()
print(f"Node Centrality of BEA Input-Output Use Table {year}")
master.drop(columns=['self']).round(3)
```

	user	maker	in_degree	out_degree	hub	authority	\
111CA	183083	413260	0.478	0.783	0.005	0.008	
113FF	4764	83642	0.543	0.652	0.000	0.001	
211	189659	491570	0.674	0.674	0.008	0.004	
212	43330	125323	0 870	0 804	0 002	0 003	
213	29107	23233	0 087	0.652	0 002	0 000	
210	1/0266	126540	1 000	0.052	0.002	0.000	
22	1100514	420349	1.000	0.717	0.000	0.020	
23	1108514	381314	1.000	0.761	0.037	0.027	
311FT	610392	3/8/16	0.630	0.804	0.013	0.022	
313TT	22726	46617	0.848	0.761	0.001	0.002	
315AL	9831	7442	0.435	0.674	0.000	0.000	
321	64039	187546	0.957	0.804	0.002	0.010	
322	72249	177891	0.978	0.717	0.002	0.007	
323	42407	84936	0.739	0.804	0.002	0.007	
324	514797	537972	1.000	0.761	0.005	0.026	
325	207051	659545	1.000	0.804	0.009	0.031	
32.6	174402	358413	1.000	0.761	0.006	0.018	
327	612.98	227005	0.957	0.739	0.002	0.010	
327	81903	335633	0 891	0.735	0 003	0 004	
222	105622	501561	1 000	0.761	0.005	0.001	
222	193032	201201	1.000	0.701	0.000	0.017	
333	203600	266998	1.000	0.761	0.005	0.009	
334	53901	3/3613	0.978	0.696	0.003	0.020	
335	74954	201230	1.000	0.717	0.002	0.008	
3361MV	333656	199393	0.978	0.783	0.008	0.010	
3364OT	129087	85122	0.391	0.717	0.005	0.003	
337	44645	54948	0.522	0.717	0.001	0.003	
339	69034	113798	0.935	0.804	0.003	0.010	
42	1134476	73996	0.848	0.848	0.085	0.003	
44RT	992525	0	0.000	0.913	0.080	-0.000	
48	532651	399454	1.000	0.848	0.030	0.031	
493	55326	180519	0.913	0.696	0.004	0.014	
51	715155	648393	1.000	0.848	0.062	0.043	
52	714298	1199853	1 000	0 674	0 070	0 092	
531	1209091	1565039	1 000	0 739	0 096	0 113	
52201	275722	500000	1 000	0.735	0.021	0.113	
552KL	272720	2100220	1 000	0.090	0.021	0.029	
54	772709	2100310	1.000	0.933	0.045	0.152	
55	279051	/54/56	0.891	0.848	0.025	0.051	
56	496066	1206168	1.000	0.913	0.033	0.099	
61	155822	31243	0.413	0.848	0.013	0.002	
62	1211742	24110	0.130	0.848	0.090	0.002	
71	182097	135112	1.000	0.913	0.016	0.010	
721	127238	104038	0.978	0.826	0.008	0.008	
722	614168	322353	1.000	0.826	0.038	0.028	
81	350192	348957	1.000	0.913	0.029	0.024	
GFE	40482	73578	0.761	0.739	0.002	0.006	
GFG	479004	0	0.000	0.848	0.030	0.000	
GSLE	296865	42462	0.891	0.783	0.016	0.003	
GSLG	1162737		0 000	0 870	0 066	-0.000	
0010	1102/07	0	0.000	0.070	0.000	0.000	
	eigenzoa	tor page	rank hotur	anness alor	anass	\	
11107	erdennec	oso o	015	0 001	0 657	1	
112DD	0.	007 0	.015	0.001	0.007		
11355	0.	007 0	.007	0.001	0.68/		
211	0.	0/2 0	.032	0.004	0./54		
212	0.	019 0	.019	0.008	0.885		

Node Centrality of BEA Input-Output Use Table 2023

					(continued from previous page
213	0.003	0.005	0.000	0.523	
22	0.085	0.029	0.002	1.000	
23	0.111	0.020	0.004	1.000	
311FT	0.039	0.013	0.002	0.730	
313TT	0.004	0.002	0.002	0.868	
315AL	0.001	0.000	0.000	0.639	
321	0.037	0.007	0.003	0.958	
322	0.030	0.012	0.002	0.979	
323	0.022	0.004	0.003	0.793	
324	0.081	0.028	0.003	1.000	
325	0.140	0.051	0.003	1.000	
326	0.057	0.019	0.003	1.000	
327	0.046	0.010	0.002	0.958	
331	0.043	0.039	0.001	0.902	
332	0.090	0.034	0.002	1.000	
333	0.051	0.021	0.003	1.000	
334	0.076	0.022	0.001	0.979	
335	0.043	0.013	0.002	1.000	
3361MV	0.041	0.014	0.004	0.979	
3364OT	0.004	0.001	0.000	0.622	
337	0.014	0.002	0.001	0.676	
339	0.009	0.003	0.004	0.939	
42	0.010	0.007	0.004	0.868	
44RT	0.000	0.000	0.000	0.000	
48	0.097	0.021	0.005	1.000	
493	0.021	0.007	0.001	0.920	
51	0.212	0.040	0.005	1.000	
52	0.400	0.079	0.002	1.000	
531	0.368	0.081	0.003	1.000	
532RL	0.14/	0.036	0.001	1.000	
54	0.531	0.118	0.018	1.000	
55	0.1/2	0.048	0.009	0.902	
56	0.449	0.076	0.012	1.000	
61	0.002	0.001	0.001	0.630	
0∠ 71	0.000	0.000	0.000	0.535	
71	0.053	0.009	0.012	1.000	
721	0.052	0.009	0.004	1 000	
122	0.110	0.020	0.004	1.000	
OL	0.099	0.020	0.012	1.000	
GFE	0.014	0.003	0.004	0.000	
GEUF	0.000	0.000	0.000	0.000	
GSLE	0.012	0.005	0.004	0.902	
9219	0.000	0.000	0.000	0.000	
			hea		
11104			Farms		
113FF		Forest	rv.fishing		
211		101000	Oil. gas		
212			Mining		
213		Supr	ort mining		
22		Dupp	Utilities		
23		Co	onstruction		
311FT		00	Food		
313TT			Textile		
315AL			Apparel		
321			Wood		

322	Paper
323	Printing
324	Petroleum, coal
325	Chemical
326	Plastics, rubber
327	Nonmetallic
331	Metals
332	Fabricated metal
333	Machinery
334	Computer
335	Electrical
3361MV	Motor vehicles
33640T	Transport equip
337	Furniture
339	Manufacturing
42	Wholesale
44RT	Retail
48	Transportation
493	Warehousing, storage
51	Information
52	Finance, insurance
531	Real estate
532RL	Rental
54	Professional services
55	Management
56	Administrative and waste management
61	Educational
62	Healthcare
71	Arts, entertain, rec
721	Accommodation
722	Food services
81	Other services
GFE	Federal enterprises
GFG	General government
GSLE	State local enterprises
GSLG	State local general

Compare the 1947 and 1997 sectoring schemes to examine how BEA' s industry groupings have evolved over time.

```
# Compare 1947 and 1997 sector schemes (BEA "summary"-level industry groups)
v1947 = BEA.sectoring(1947).rename(columns={'description': '1947'})
v1997 = BEA.sectoring(1997).rename(columns={'description': '1997'})
df = v1947[['title', '1947']].join(v1997['1997'])
df[df['1947'] != df['1997']]  # changes in the sectoring scheme
```

```
    → title \
    code
    441000
    →vehicle and parts dealers
    442000
    → All other retail
    443000
    → All other retail
    444000
```

Motor

Building material and garden

(continued from previous page) equipment and supplies dealers 445000 ↔Food and beverage stores 446000 Health. ⇔and personal care stores 447000 ↔ Gasoline stations 448000 Clothing and_ ⇔clothing accessories stores 451000 _ ↔ All other retail 452000 →General merchandise stores 453000 ↔ All other retail 454000 → Nonstore retailers 481000 → Air transportation 482000 → Rail transportation 483000 → Water transportation 484000 \hookrightarrow Truck transportation 485000 Transit and ground →passenger transportation 486000 ____ →Pipeline transportation 487000 Scenic and sightseeing transportation_ \hookrightarrow and support activities 488000 Scenic and sightseeing transportation_ →and support activities 492000 ⇔Couriers and messengers 511000 Publishing industries, except_ internet (includes software) 511110 ↔ Newspaper publishers 511120 ⇔Periodical publishers 511130 → Book publishers 511140 Directory, mailing list, → and other publishers 511190 Directory, mailing list, → and other publishers 511210 ↔ Software publishers 512000 Motion picture and ⇔sound recording industries 512100 Motion \rightarrow picture and video industries 512200 ⇔Sound recording industries 513000 Broadcasting_ (continues on next page)

(continued from previous page) →and telecommunications 514000 Data processing, internet publishing, and_ ⇔other information services 515100 Radio and →television broadcasting 515200 Cable and other ⇔subscription programming 517100 Wired 517200 Wireless telecommunications_ ⇔carriers (except satellite) 517400 Satellite, telecommunications resellers, and all_ ⇔other telecommunications 518200 Data processing, hosting, ↔ and related services 519110 News syndicates, libraries, archives and all_ ⇔other information services 519130 Internet publishing and broadcasting_ ⇔and Web search portals 521000 Monetary authorities and depository_ ⇔credit intermediation 522100 Monetary authorities and depository_ ⇔credit intermediation Nondepository credit intermediation_ 522200 →and related activities 523000 Securities, commodity_ ⇔contracts, and investments Securities and commodity contracts_ 523100 ⇔intermediation and brokerage 523900 Other financial →investment activities 524000 Insurance carriers. ⇔and related activities 524113 Direct ⇔life insurance carriers 524114 Insurance_ ⇔carriers, except direct life 524120 Insurance_ ⇔carriers, except direct life 524130 Insurance_ ⇔carriers, except direct life 524200 Insurance agencies, brokerages, →and related activities 525000 Funds, trusts, and_ →other financial vehicles 541100 4 Legal services 541200 Accounting, tax preparation, bookkeeping, ↔ and payroll services 541300 Architectural, engineering, \hookrightarrow and related services 541400 ↔Specialized design services 541500 Computer systems_ ⇔design and related services 541511 Custom (continues on next page)

(continued from previous page) ⇔computer programming services 541512 Computer_ ⇔systems design services 541513 Other computer related services, including_ ⇔facilities management 541519 Other computer related services, including_ \hookrightarrow facilities management 541610 →Management consulting services Environmental and other_ 541620 →technical consulting services 541690 Environmental and other →technical consulting services Scientific research 541700 →and development services 541800 Advertising, public relations, ↔ and related services 541910 All other miscellaneous professional, scientific, →and technical services 541920 →Photographic services 541930 All other miscellaneous professional, scientific, →and technical services 541940 ↔ Veterinary services 541990 All other miscellaneous professional, scientific, →and technical services 561000 ↔Administrative and support services 561100 Office_ →administrative services 561200 →Facilities support services 561300 → Employment services 561400 →Business support services 561500 Travel arrangement_ →and reservation services 561600 Investigation_ ⇔and security services 561700 Services to_ ⇔buildings and dwellings 561900 ⇔Other support services 562000 Waste management. →and remediation services 621000 →Ambulatory health care services 621100 ⇔Offices of physicians 621200 ↔ Offices of dentists 621300 Offices of ⇔other health practitioners 621400

(continued from previous page) →Outpatient care centers 621500 Medical and →diagnostic laboratories 621600 ↔Home health care services 621900 Other. →ambulatory health care services 622000 Hospitals \hookrightarrow 623000 Nursing and ⇔residential care facilities 623100 Nursing and ⇔community care facilities 623200 Residential mental health, substance abuse, and other_ ⇔residential care facilities 623300 Nursing and ⇔community care facilities 623900 Residential mental health, substance abuse, and other_ ⇔residential care facilities 624000 \hookrightarrow Social assistance 624100 →Individual and family services 624200 Community food, housing, and other relief services, including vocational-⇔rehabilitation services 624400 →Child day care services 711000 Performing arts, spectator sports, museums, _ →and related activities 711100 →Performing arts companies 711200 4 Spectator sports 711300 Promoters of performing arts and sports and_ →agents for public figures 711500 Independent artists, ⇔writers, and performers 712000 Museums, historical_ ⇔sites, zoos, and parks 713000 Amusements, gambling, and_ ⊖recreation industries 713100 ↔Amusement parks and arcades 713200 Gambling industries_ →(except casino hotels) 713900 Other amusement and ⇔recreation industries 1947 \ code 441000 RETAIL TRADE 442000 RETAIL TRADE 443000 RETAIL TRADE RETAIL TRADE 444000 445000 RETAIL TRADE 446000 RETAIL TRADE

447000		RETAIL TRADE
448000		RETAIL TRADE
451000		RETAIL TRADE
452000		RETATI, TRADE
453000		RETAIL TRADE
454000		RETAIL TRADE
191000		Transport at ion
401000		
482000		Iransportation
483000		Transportation
484000		Transportation
485000		Transportation
486000		Transportation
487000		Transportation
488000		Transportation
492000		Transportation
511000		INFORMATION
511110		INFORMATION
511120		INFORMATION
511130		INFORMATION
511140		INFORMATION
511190		TNFORMATION
511210		TNFORMATION
512000		TNFORMATION
512100		TNEODWATION
512200		
512200		INFORMATION
513000		INFORMATION
514000		INFORMATION
515100		INFORMATION
515200		INFORMATION
517100		INFORMATION
517200		INFORMATION
517400		INFORMATION
518200		INFORMATION
519110		INFORMATION
519130		INFORMATION
521000		FINANCE AND INSURANCE
522100		FINANCE AND INSURANCE
522200		FINANCE AND INSURANCE
523000		FINANCE AND INSURANCE
523100		FINANCE AND INSURANCE
523900		FINANCE AND INSURANCE
524000		FINANCE AND INSUMANCE
524000		TINANCE AND INSURANCE
524113		FINANCE AND INSURANCE
524114		FINANCE AND INSURANCE
524120		FINANCE AND INSURANCE
524130		FINANCE AND INSURANCE
524200		FINANCE AND INSURANCE
525000		FINANCE AND INSURANCE
541100	PROFESSIONAL	AND TECHNICAL SERVICES
541200	PROFESSIONAL	AND TECHNICAL SERVICES
541300	PROFESSIONAL	AND TECHNICAL SERVICES
541400	PROFESSIONAL	AND TECHNICAL SERVICES
541500	PROFESSIONAL	AND TECHNICAL SERVICES
541511	PROFESSIONAL	AND TECHNICAL SERVICES
541512	PROFESSIONAL	AND TECHNICAL SERVICES
5/1513	DBUEESCIONAT	AND TECHNICAL SERVICES
J41J13	L KOL ESSTONAT	AND IECHNICAL SERVICES

541519 541610 541620 541690 541700	PROFESSIONALANDTECHNICALSERVICESPROFESSIONALANDTECHNICALSERVICESPROFESSIONALANDTECHNICALSERVICESPROFESSIONALANDTECHNICALSERVICESPROFESSIONALANDTECHNICALSERVICES	
541800	PROFESSIONAL AND TECHNICAL SERVICES	
541910	PROFESSIONAL AND TECHNICAL SERVICES	
541920	PROFESSIONAL AND TECHNICAL SERVICES	
541930 E41040	PROFESSIONAL AND TECHNICAL SERVICES	
541940 541990	PROFESSIONAL AND TECHNICAL SERVICES	
561000	ADMINISTRATIVE AND WASTE SERVICES	
561100	ADMINISTRATIVE AND WASTE SERVICES	
561200	ADMINISTRATIVE AND WASTE SERVICES	
561300	ADMINISTRATIVE AND WASTE SERVICES	
561400	ADMINISTRATIVE AND WASTE SERVICES	
561500	ADMINISTRATIVE AND WASTE SERVICES	
561600	ADMINISTRATIVE AND WASTE SERVICES	
561700	ADMINISTRATIVE AND WASTE SERVICES	
561900	ADMINISTRATIVE AND WASTE SERVICES	
562000	ADMINISTRATIVE AND WASTE SERVICES	
621000	HEALTH CARE AND SOCIAL ASSISTANCE	
621100	HEALTH CARE AND SOCIAL ASSISTANCE	
621200	HEALTH CARE AND SOCIAL ASSISTANCE	
621300	HEALTH CARE AND SOCIAL ASSISTANCE	
621400	HEALTH CARE AND SOCIAL ASSISTANCE	
621500	HEALIH CARE AND SOCIAL ASSISTANCE	
621000	HEALIH CARE AND SOCIAL ASSISTANCE	
622000	HEALTH CARE AND SOCIAL ASSISTANCE	
623000	HEALTH CARE AND SOCIAL ASSISTANCE	
623100	HEALTH CARE AND SOCIAL ASSISTANCE	
623200	HEALTH CARE AND SOCIAL ASSISTANCE	
623300	HEALTH CARE AND SOCIAL ASSISTANCE	
623900	HEALTH CARE AND SOCIAL ASSISTANCE	
624000	HEALTH CARE AND SOCIAL ASSISTANCE	
624100	HEALTH CARE AND SOCIAL ASSISTANCE	
624200	HEALTH CARE AND SOCIAL ASSISTANCE	
624400	HEALTH CARE AND SOCIAL ASSISTANCE	
711000	ARTS, ENTERTAINMENT, AND RECREATION	
711100	ARTS, ENTERTAINMENT, AND RECREATION	
/11200	ARTS, ENTERTAINMENT, AND RECREATION	
711300	ARIS, ENTERTAINMENT, AND RECREATION	
712000	ARIS, ENIERIAINMENI, AND RECREATION	
713000	ARTS ENTERTAINMENT AND RECREATION	
713100	ARTS, ENTERTAINMENT, AND RECREATION	
713200	ARTS, ENTERTAINMENT, AND RECREATION	
713900	ARTS, ENTERTAINMENT, AND RECREATION	
	,	
		1997
code		
441000		Motor vehicle and parts dealers
442000		Other retail
443000		Other retail
444000		Other retail

445000	Food and beverage stores
446000	Other retail
447000	Other retail
448000	Other retail
451000	Other retail
452000	General merchandise stores
452000	denerar merchandrse scores
453000	
404000	
481000	Air transportation
482000	Rall transportation
483000	Water transportation
484000	Truck transportation
485000	Transit and ground passenger transportation
486000	Pipeline transportation
487000	Other transportation and support activities
488000	Other transportation and support activities
492000	Other transportation and support activities
511000	Publishing industries, except internet (includes software)
511110	Publishing industries, except internet (includes software)
511120	Publishing industries, except internet (includes software)
511130	Publishing industries, except internet (includes software)
511140	Publishing industries, except internet (includes software)
511190	Publishing industries, except internet (includes software)
511210	Publishing industries, except internet (includes software)
512000	Motion picture and sound recording industries
512100	Motion picture and sound recording industries
512200	Motion picture and sound recording industries
513000	Broadcasting and telecommunications
514000	Data processing, internet publishing, and other information services
515100	Broadcasting and telecommunications
515200	Broadcasting and telecommunications
517100	Broadcasting and telecommunications
517200	Broadcasting and telecommunications
517400	Broadcasting and telecommunications
510200	Data processing internet publishing and other information convises
510200	Data processing, internet publishing, and other information services
519110	Data processing, internet publishing, and other information services
519150	Data processing, incernet publishing, and other information services
521000	Federal Reserve banks, credit intermediation, and related activities
522100	Federal Reserve banks, credit intermediation, and related activities
522200	receral Reserve banks, credit intermediation, and related activities
523000	Securities, commodity contracts, and investments
523100	Securities, commodity contracts, and investments
523900	Securities, commodity contracts, and investments
524000	Insurance carriers and related activities
524113	Insurance carriers and related activities
524114	Insurance carriers and related activities
524120	Insurance carriers and related activities
524130	Insurance carriers and related activities
524200	Insurance carriers and related activities
525000	Funds, trusts, and other financial vehicles
541100	Legal services
541200	Miscellaneous professional, scientific, and technical services
541300	Miscellaneous professional, scientific, and technical services
541400	Miscellaneous professional, scientific, and technical services
541500	Computer systems design and related services
5/1511	Computer systems design and related services

541512	Computer systems design and related services
541513	Computer systems design and related services
541519	Computer systems design and related services
541610	Miscellaneous professional, scientific, and technical services
541620	Miscellaneous professional, scientific, and technical services
541690	Miscellaneous professional, scientific, and technical services
541700	Miscellaneous professional, scientific, and technical services
541800	Miscellaneous professional, scientific, and technical services
541910	Miscellaneous professional, scientific, and technical services
541920	Miscellaneous professional, scientific, and technical services
541930	Miscellaneous professional, scientific, and technical services
541940	Miscellaneous professional scientific and technical services
5/1990	Miscellaneous professional scientific, and technical services
561000	Miscerialeous professionar, sciencific, and comport services
561100	Administrative and support services
561100	Administrative and support services
561200	Administrative and support services
561300	Administrative and support services
561400	Administrative and support services
561500	Administrative and support services
561600	Administrative and support services
561700	Administrative and support services
561900	Administrative and support services
562000	Waste management and remediation services
621000	Ambulatory health care services
621100	Ambulatory health care services
621200	Ambulatory health care services
621300	Ambulatory health care services
621400	Ambulatory health care services
621500	Ambulatory health care services
621600	Ambulatory health care services
621900	Ambulatory health care services
622000	Hospitals
623000	Nursing and residential care facilities
623100	Nursing and residential care facilities
623200	Nursing and residential care facilities
623200	Nursing and residential care facilities
623300	Nursing and residential care facilities
623900	Nursing and residential care facilities
624000	Social assistance
624100	Social assistance
624200	Social assistance
624400	Social assistance
711000	Performing arts, spectator sports, museums, and related activities
711100	Performing arts, spectator sports, museums, and related activities
711200	Performing arts, spectator sports, museums, and related activities
711300	Performing arts, spectator sports, museums, and related activities
711500	Performing arts, spectator sports, museums, and related activities
712000	Performing arts, spectator sports, museums, and related activities
713000	Amusements, gambling, and recreation industries
713100	Amusements, gambling, and recreation industries
713200	Amusements, gambling, and recreation industries
713900	Amusements, gambling, and recreation industries

References:

Jason Choi & Andrew T. Foerster, 2017. "The Changing Input-Output Network Structure of the U.S. Economy," Economic Review, Federal Reserve Bank of Kansas City, issue Q II, pages 23-49

https://www.bea.gov/industry/input-output-accounts-data

https://www.bea.gov/information-updates-national-economic-accounts
CHAPTER

TWENTYTHREE

PRODUCT MARKET LINK PREDICTION

A hidden connection is stronger than an obvious one - Heraclitus

Link prediction in network analysis seeks to infer missing or future connections between nodes based on observed relationships. In the context of product markets, firms are interconnected through shared product similarities and competitive interactions. We construct firm networks from text-based product market similarity data, and explore the application of several link prediction algorithms. Additionally, accuracy metrics such as precision-recall and ROC curves are examined to assess the performance of these predictions.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import zipfile
import io
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
from sklearn import metrics
import matplotlib.pyplot as plt
import networkx as nx
from finds.database import SQL, RedisDB
from finds.structured import CRSP, BusDay, PSTAT
from finds.readers import requests_get
from finds.recipes import graph_info
from secret import credentials, paths
# %matplotlib qt
VERBOSE = 0
```

```
sql = SQL(**credentials['sql'], verbose=VERBOSE)
bd = BusDay(sql, verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
pstat = PSTAT(sql, bd, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
```

23.1 Product market linkages

Hoberg and Phillips (2016) developed a text-based measure of firm similarity by analyzing product descriptions in 10-K filings. Their methodology constructs firm-by-firm similarity scores using word vectors, filtering out common words and focusing on nouns and proper nouns while excluding geographic terms. This approach captures shifts in product markets over time, as revealed by their business descriptions in annual company filings.

The **TNIC-3** dataset is calibrated to align with the granularity of three-digit SIC codes, providing a structured industry classification. The **TNIC-2** dataset represents a more comprehensive version, including all firm pairs, even those with weak relationships.

Source: Hoberg and Phillips Industry Classification

The TNIC-2 and TNIC-3 datasets are retrieved from the Hoberg and Phillips website.

```
root = 'https://hobergphillips.tuck.dartmouth.edu/idata/'
tnic_data = {}
for scheme in ['tnic2', 'tnic3']:
    source = root + scheme + '_data.zip'
    if source.startswith('http'):
        response = requests_get(source)
        source = io.BytesIO(response.content)
    with zipfile.ZipFile(source).open(scheme + "_data.txt") as f:
        tnic_data[scheme] = pd.read_csv(f, sep='\s+')
for k,v in tnic_data.items():
    print(k, v.shape)
```

```
tnic2 (52812348, 4)
tnic3 (27161830, 4)
```

```
# extract last year of both tnic schemes, merge in permno, and require in univ
year = max(tnic_data['tnic2']['year'])
capsize = 10 # large cap (large than NYSE median)
univ = crsp.get_universe(bd.endyr(year))
univ = univ[univ['decile'] <= capsize]</pre>
lookup = pstat.build_lookup('gvkey', 'lpermno', fillna=0)
nodes = \{\}
tnic = \{\}
edges = \{\}
for scheme in ['tnic2', 'tnic3']:
    tnic[scheme] = tnic_data[scheme][tnic_data[scheme].year == year].dropna()
    gvkeys = sorted(set(tnic[scheme]['gvkey1']).union(tnic[scheme]['gvkey2']))
    df = DataFrame(index=qvkeys, data=lookup(qvkeys), columns=['permno'])
    nodes[scheme] = df[df['permno'].gt(0)
                       & df['permno'].isin(univ.index)].drop_duplicates()
nodes['tnic2'] = nodes['tnic2'][nodes['tnic2'].index.isin(nodes['tnic3'].index)]
nodes['tnic3'] = nodes['tnic3'][nodes['tnic3'].index.isin(nodes['tnic2'].index)]
```

Using the TNIC-2 and TNIC-3 datasets, undirected graphs are constructed where nodes represent firms and edges indicate product market similarities based on the chosen granularity of the classification schemes.

```
results = {}
G = {}
for (scheme, node), (_, edge) in zip(nodes.items(), edges.items()):
    print(scheme, 'nodes =', len(node), 'edges =', len(edge))
    # populate graph
    g = nx.Graph()
    g.add_nodes_from(node.index)
```

(continued from previous page)

```
g.add_weighted_edges_from(edge)
# remove self-loops: not necessary
g.remove_edges_from(nx.selfloop_edges(g))
# graph info
results[scheme] = Series(graph_info(g, fast=True))
# Plot degree distribution
fig, ax = plt.subplots(clear=True, figsize=(10, 6))
degree = nx.degree_histogram(g)
degree = DataFrame(data={'degree': degree[1:]},
                                                 # exclude degree 0
                   index=np.arange(1, len(degree)))
degree['bin'] = (degree.index // (2*capsize) + 1) * (2*capsize)
degree.groupby('bin').sum().plot(kind='bar', ax=ax, fontsize=6)
ax.set_title(f'Degree Distribution of {scheme.upper()} links {year}')
plt.tight_layout()
G[scheme] = g
```

tnic2 nodes = 3296 edges = 819984 tnic3 nodes = 3296 edges = 528012

23.1. Product market linkages

print(f"Graph properties of TNIC schemes {year}")
DataFrame(results)

Graph properties of TNIC schemes 2023

	tnic2	tnic3
transitivity	0.834713	0.881587
average_clustering	0.592383	0.571318
connected	True	False
connected_components	1	25
size_largest_component	3296	3255
directed	False	False
weighted	True	True
negatively_weighted	False	False
edges	409992	264006
nodes	3296	3296
selfloops	0	0
density	0.075503	0.048618

23.2 Link prediction algorithms

Link prediction aims to identify missing or future connections between nodes in a network. Given a partially observed network, these algorithms infer which links are most likely to be added or missing based on existing connections and network structure.

Common link prediction algorithms include:

• Jaccard Coefficient: Measures the similarity between two nodes by comparing their shared neighbors relative to their total number of neighbors.

- Resource Allocation: Assigns a higher likelihood of connection between nodes that share many common neighbors, emphasizing smaller-degree nodes.
- Adamic-Adar: Enhances the Resource Allocation approach by weighting common neighbors based on their overall connectivity.
- **Preferential Attachment**: Predicts new links based on the idea that nodes with higher degrees are more likely to form new connections.

```
# helper to call link prediction algorithms
def link_prediction(G):
    """Predict link scores for all nonexistent edges in graph"""
    def links(links):
        """returns list of edge-score 3-tuples sorted by highest score"""
        return sorted(links, key=lambda x: x[2], reverse=True)

    resource = links(nx.resource_allocation_index(G))
    jaccard = links(nx.adamic_adar_index(G))
    preferential = links(nx.preferential_attachment(G))
    return {'resource_allocation': resource,
               'jaccard_coefficient': jaccard,
               'adamic_adar': adamic,
               'preferential_attachment': preferential}
```

links = link_prediction(G['tnic3'])

23.3 Accuracy metrics

Common metrics to assess the accuracy of link prediction (or any binary classification) models:

- Precision: The fraction of predicted links that are actual links.
- Recall: The fraction of actual links that were correctly predicted.
- Accuracy: The overall correctness of predictions.
- Confusion Matrix: A summary of prediction outcomes.
- F1 Score: A balanced measure between precision and recall, useful for imbalanced datasets. It is calculated as:

$$2\frac{precision \cdot recall}{precision + recall} = \frac{TP}{TP + (FP + FN)/2}$$

where

- False Positive (FP): Incorrectly predicted links.
- False Negative (FN): Missed actual links.
- True Positive (TP): Correctly predicted links.
- True Negative (TN): Correctly identified non-links.

23.3.1 ROC Curve

The **Receiver Operating Characteristic (ROC) curve** and the **Area Under the Curve (AUC)** evaluates model performance by measuring the trade-off between true positive and false positive rates at various classification score thresholds.

The ROC curve plots the following metrics on the two axes:

- True Positive Rate (TPR) (or Sensitivity) = $\frac{TP}{TP+FN}$: Measures how many actual positives are correctly identified.
- False Positive Rate (FPR) = $\frac{FP}{FP+TN}$: Measures how many negative cases are incorrectly classified as positive.

The AUC measures the area under the ROC curve and provides a single number to quantify model performance. A higher AUC means the model is better at distinguishing between positive and negative classes.

```
report = {}
for ifig, (method, pred) in enumerate(links.items()):
    # extract predicted scores and gold labels of nonexistent edges
#
    y, scores, names = make_sample(pred, G['tnic2'].edges)
   names = [e[:2] for e in pred]
                                                   # node-pairs of nonexistent edges
   scores = [e[-1] for e in pred]
                                                   # predicted scores of edge
   y = [e[:2] in G['tnic2'].edges for e in pred] # gold labels of nonexistent edges
   # plot roc curve
   metrics.RocCurveDisplay.from_predictions(y_true=y, y_pred=scores,
                                            plot_chance_level=True)
   plt.title(f"ROC Curve: {method}")
   plt.tight_layout()
   # set classification threshold at class proportion
   thresh = scores[sum(y)]
   y_pred = [score >= thresh for score in scores]
    # generate and plot confusion matrix
   cm = metrics.confusion_matrix(y_true=y, y_pred=y_pred, normalize='all')
   disp = metrics.ConfusionMatrixDisplay(confusion_matrix=cm)
   disp.plot()
   plt.title(f"Confusion Matrix: {method}")
   plt.tight_layout()
   # generate classification report
   report[method] = metrics.classification_report(y_true=y, y_pred=y_pred)
   print(f"Classification Report: {method}")
   print(report[method])
```

```
Classification Report: resource_allocation
precision recall f1-score support
```

(continued	from	previous	page)

False True	0.99 0.62	0.99 0.62	0.99 0.62	5020168 145986
			0.00	
accuracy	0 80	0 80	0.98	5166154
weighted avg	0.80	0.00	0.98	5166154
5 5				
Classificatio	on Report: ja	accard_coe	fficient	
	precision	recall	f1-score	support
False	0.99	0.99	0.99	5020168
True	0.60	0.60	0.60	145986
			0 00	
accuracy	0 79	0 79	0.98	5166154
macro avg	0.79	0.79	0.79	5166154
wergniced avg	0.90	0.90	0.90	5100154
Classificatio	on Report: ac	lamic_adar		
	precision	recall	f1-score	support
_ 1	0.00	0.00	0.00	50004.00
False	0.99	0.99	0.99	5020168
True	0.60	0.60	0.60	145986
accuracy			0.98	5166154
accuracy macro avg	0.79	0.79	0.98 0.79	5166154 5166154
accuracy macro avg weighted avg	0.79 0.98	0.79 0.98	0.98 0.79 0.98	5166154 5166154 5166154
accuracy macro avg weighted avg	0.79 0.98	0.79 0.98	0.98 0.79 0.98	5166154 5166154 5166154
accuracy macro avg weighted avg Classificatio	0.79 0.98 on Report: pr	0.79 0.98	0.98 0.79 0.98 1_attachmer	5166154 5166154 5166154
accuracy macro avg weighted avg Classificatio	0.79 0.98 on Report: pr precision	0.79 0.98 referentia recall	0.98 0.79 0.98 l_attachmer f1-score	5166154 5166154 5166154 nt support
accuracy macro avg weighted avg Classificatio False	0.79 0.98 on Report: pr precision 0.97	0.79 0.98 referentia recall 0.97	0.98 0.79 0.98 1_attachmer f1-score 0.97	5166154 5166154 5166154 nt support 5020168
accuracy macro avg weighted avg Classificatic False True	0.79 0.98 on Report: pr precision 0.97 0.09	0.79 0.98 referentia recall 0.97 0.09	0.98 0.79 0.98 1_attachmer f1-score 0.97 0.09	5166154 5166154 5166154 nt support 5020168 145986
accuracy macro avg weighted avg Classificatio False True	0.79 0.98 on Report: pr precision 0.97 0.09	0.79 0.98 referentia recall 0.97 0.09	0.98 0.79 0.98 1_attachmer f1-score 0.97 0.09	5166154 5166154 5166154 nt support 5020168 145986
accuracy macro avg weighted avg Classificatio False True accuracy	0.79 0.98 on Report: pr precision 0.97 0.09	0.79 0.98 referentia recall 0.97 0.09	0.98 0.79 0.98 1_attachmer f1-score 0.97 0.09 0.95	5166154 5166154 5166154 support 5020168 145986 5166154
accuracy macro avg weighted avg Classificatio False True accuracy macro avg	0.79 0.98 on Report: pr precision 0.97 0.09 0.53	0.79 0.98 referentia recall 0.97 0.09 0.53	0.98 0.79 0.98 1_attachmer f1-score 0.97 0.09 0.95 0.53	5166154 5166154 5166154 support 5020168 145986 5166154 5166154

References:

Gerard Hoberg and Gordon Phillips, 2016, Text-Based Network Industries and Endogenous Product Differentiation.Journal of Political Economy 124 (5), 1423-1465.

Gerard Hoberg and Gordon Phillips, 2010, Product Market Synergies and Competition in Mergers and Acquisitions: A Text-Based Analysis. Review of Financial Studies 23 (10), 3773-3811.

CHAPTER

TWENTYFOUR

EARNINGS SPATIAL REGRESSION

Everything is related to everything else. But near things are more related than distant things - Waldo Tobler

Earnings surprises occur when a company reports earnings that are significantly different from what analysts had predicted. Spatial regression models help analyze how these surprises propagate through interconnected firms, particularly when firms operate within related industries. By using text-based firm similarity scores as spatial weights, we examine how earnings surprises cluster and spread across firms with similar product market characteristics.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from pandas import DataFrame, Series
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import io
import zipfile
from libpysal.weights import W
from esda.moran import Moran
import spreg
import networkx as nx
import statsmodels.formula.api as smf
import warnings
import requests
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, PSTAT
from finds.readers import Alfred
from finds.recipes import remove_outliers
from finds.utils import Store
from secret import credentials, paths, CRSP_DATE
#pd.set_option('display.max_rows', 50)
VERBOSE = 0
#%matplotlib qt
```

```
# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
store = Store(paths['scratch'])
```

```
LAST_DATE = CRSP_DATE
scheme = 'tnic3'
# fetch NBER recession dates
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
vspans = alf.date_spans('USREC') # to indicate recession periods in the plots
# create table to lookup gvkey by permno
lookup = pstat.build_lookup(source='lpermno', target='gvkey', fillna=0)
```

24.1 Earnings surprise

An earnings surprise, or unexpected earnings, is the difference between the reported earnings and expected earnings. The unexpected earnings per share when scaled by the stock price, at the fiscal end date, is more comparable across stocks of different market size and price levels.

```
fund = df.dropna(subset=['ibq'])\
        .sort_values(['permno', 'datadate', 'cshoq'])\
        .drop_duplicates(['permno', 'datadate'])\
        .reset_index()
fund['rebaldate'] = bd.endmo(fund['datadate'])

# calculate sue with lag(4) difference in compustat quarterly and price
lag = fund.shift(4, fill_value=0)
keep = ((lag['permno'] == fund['permno']) &
                  (fund['prccq'] > 5)).values
fund.loc[keep, 'sue'] = ((fund.loc[keep, 'ibq'] - lag.loc[keep, 'ibq']) /
                        abs(fund.loc[keep, 'prccq'] * fund.loc[keep, 'cshoq']))
print('with pstat earnings', np.sum(~fund['sue'].isna()))
```

with pstat earnings 740370

```
sue = fund.loc[~fund['sue'].isna(), ['permno', 'rebaldate', 'sue']]\
    .reset_index(drop=True)
sue['rebaldate'] //= 100
```

24.2 Spatial dependence models

24.2.1 Moran's I

Moran' s I is a statistical measure that quantifies spatial autocorrelation, assessing whether earnings surprises exhibit clustering across firms. The expected value of Moran' s I under a random distribution is:

$$E(I) = \frac{-1}{N-1}$$

A positive Moran' s I value suggests earnings surprises tend to cluster among similar firms, while a negative value indicates dispersion. This test provides a conservative benchmark by comparing results to a null hypothesis of zero spatial dependence, which helps identify significant deviations from randomness.

More details: Moran' s I (Wikipedia)

24.2.2 Spatial lag model

The **spatial lag model** extends traditional regression analysis by incorporating the influence of neighboring observations. The model is expressed as:

The **spatial lag model** extends traditional regression analysis by incorporating the influence of neighboring observations. The model is expressed as:

$$Y_i = \beta X_i + \rho W Y_i + \epsilon_i$$

where:

- Y_i is the dependent variable (e.g., earnings surprise) for firm i,
- Y_i represents the corresponding values from other firms,
- W is a matrix of spatial weights that assigns higher values to firms that are more closely related to firm i,
- ho captures the strength of spatial dependence, and
- ϵ_i is the error term.

Further reading:

- Spatial Lag Model (Lost Stats)
- spreg.ML_Lag (PySAL)

We use text-based firm similarity scores as spatial weights: the TNIC-3 scores, developed by Hoberg and Phillips (2016), are derived from product descriptions in 10-K filings. Their methodology constructs firm-by-firm similarity scores using word vectors while filtering out common words and focusing on nouns and proper nouns, excluding geographic terms.

```
# Retrieve TNIC linkages from Hoberg and Phillips website
root = 'https://hobergphillips.tuck.dartmouth.edu/idata/'
source = root + scheme + '_data.zip'
if source.startswith('http'):
    response = requests.get(source)
    source = io.BytesIO(response.content)
with zipfile.ZipFile(source).open(scheme + "_data.txt") as f:
    tnic_df = pd.read_csv(f, sep='\s+')
store['spatial'] = (fund, tnic_df)
tnic_df['year'].value_counts().sort_index().to_frame()
```

		count	
	year		
	1988	311616	
	1989	640221	
	1990	663746	
	1991	699152	
	1992	788029	
	1003	940368	
	1001	1027776	
	1994	1027776	
	1995	1095721	
	1996	119/991	
	1997	1138937	
	1998	1093821	
	1999	1174065	
	2000	1121918	
	2001	956591	
	2002	843735	
	2003	781521	
	2004	719787	
	2005	699340	
	2006	709914	
	2007	683662	
	2007	615445	
	2000	620160	
	2009	552159	
	2010	100007	
	2011	499007	
	2012	484441	
	2013	513159	
	2014	579649	
	2015	597923	
	2016	580988	
	2017	591097	
	2018	644292	
	2019	669597	
	2020	700725	
	2021	861057	
	2022	823596	
	2023	670149	
# ou ye fc	<i>Comput</i> t = di ars = r year	e quarte ct(moran range(19 in tqdm	<pre>rly spatial regression coefficients ={}, rho={}, beta={}) 88, 2024) (years):</pre>
	tnic	= tnic_	<pre>df[tnic_df.year == year].dropna() # extract the year's thic links</pre>
	# pc	pulate g	raph from tnic edges, with gvkey as nodes
	grap	h = nx.G	raph()
	grap	h.add_ed	<pre>ges_from(tnic[['gvkey1', 'gvkey2']].values)</pre>
	grap	h.remove	_edges_from(nx.selfloop_edges(graph)) # not necessary
	for	qtr in [12, 103, 106, 109]: # loop over next four quarters of sue
		reparual	e - Year IOO I der
		# extrac	t sue's with in this fiscal quarter
		W = cuol	sue['rebaldate]] == rebaldate] set index(!normno!)[[!sue!]]
		y - sue[pro[reparance] reparance].sec_rudex(beruno)[[sue]]

(continued from previous page)

```
# lookup gvkeys
y['gvkey'] = lookup(y.index, date=bd.endmo(rebaldate))
# merge in stock returns in the quarter
y = y.join(crsp.get_ret(bd.begmo(rebaldate, months=-2),
                       bd.endmo(rebaldate)),
           how='left')
     .set_index('gvkey')
# require available and not outlier
y = remove_outliers(y[~y.index.duplicated() & (y.index > 0)]).dropna()
# extract subgraph, its nodes and their neighbors
G = graph.subgraph(y.index)
G = G.subgraph(max(nx.connected_components(G), key=len))
neighbors = {node: list(G.neighbors(node)) for node in G.nodes()}
w = W(neighbors)
y = y.loc[sorted(neighbors.keys())]
# compute Moran's I and spatial lag model of sue on past stock returns
mi = Moran(y['sue'].values, w)
with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    spatial = spreg.ML_Lag(y=y['sue'].values, x=y[['ret']].values, w=w,
                          name_x=['ret'], name_y='sue', name_w=scheme,
                          name_ds=str(rebaldate))
out['moran'][rebaldate] = mi.I
out['rho'][rebaldate] = float(spatial.rho)
out['beta'][rebaldate] = float(spatial.betas[1][0])
```

100%| 36/36 [17:49<00:00, 29.70s/it]

Show latest quarter's results
print(spatial.summary)

```
REGRESSION
_____
SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL)
_____
              :
                    202409
Data set
Weights matrix :
                  tnic3
Dependent Variable :
                      sue
                                     Number of Observations:
⇔2177
Mean dependent var :
                   -0.0003
                                     Number of Variables :
S.D. dependent var :
                    0.0242
                                     Degrees of Freedom
                                                       :
⇔2174
Pseudo R-squared :
                    0.0204
Spatial Pseudo R-squared: 0.0040
                                     Log likelihood : 5026.
Sigma-square ML :
                    0.001
S.E of regression : 0.024
                                     Akaike info criterion : -10047.
<u>→</u>360
                                                      : -10030.
                                      Schwarz criterion
```

```
(continued from previous page)
  ⇔303
  4-
         Variable Coefficient Std.Error z-Statistic
  ⇔Probability
 _____
                                         -1.5602720
         CONSTANT -0.0008998
                              0.0005767
                                                     Ο.
  →1186956
            ret 0.0067306 0.0022802
                                          2.9516958 0.
  ⇔0031603
            W_sue 0.2247160 0.0440540 5.1009164 0.
  \hookrightarrow
 ====== END OF REPORT
  ц-----
# Show spatial regression results
```

print(ols.summary)

```
REGRESSION
_____
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES
_____
Data set :
Weights matrix :
                   202409
Dependent Variable : sue
                                      Number of Observations:
⇔2177
Mean dependent var : -0.0003
                                      Number of Variables :
⇔2
S.D. dependent var :
                    0.0242
                                      Degrees of Freedom :
⇔2175
R-squared
              :
                    0.0042
Adjusted R-squared : 0.0037
Sum squared residual: 1.273
                     1.273
                                      F-statistic :
                                                            9.
→0806
Sigma-square :
                    0.001
                                      Prob(F-statistic)
                                                       :
                                                           0.
→002613
S.E. of regression :
                    0.024
                                     Log likelihood :
                                                           5014.
<u>⇔</u>003
Sigma-square ML :
                    0.001
                                     Akaike info criterion : -10024.
→005
S.E of regression ML: 0.0242
                                     Schwarz criterion : -10012.
<u></u>
→634
White Standard Errors
                 _____
_____
        Variable Coefficient Std.Error t-Statistic
```

(continued from previous page)

↔- CONSTANT	-0.0011401	0.0006542	-1.7428829	0.
↔0814954	0.0011101	0.0000012	1.7120020	•••
ret ⇔0356221	0.0069264	0.0032943	2.1025231	0.
 ب_				
EGRESSION DIAGNOSTICS				
ULTICOLLINEARITY CONDITIO	N NUMBER	1.628		
EST ON NORMALITY OF ERROR	S			
EST	DF	VALUE	PROB	
arque-Bera	2	4787.738	0.0000	
IAGNOSTICS FOR HETEROSKED	ASTICITY			
ANDOM COEFFICIENTS				
EST	DF	VALUE	PROB	
reusch-Pagan test	1	63.692	0.0000	
oenker-Bassett test	1	13.760	0.0002	
IAGNOSTICS FOR SPATIAL DE	PENDENCE			
EST	MI/DF	VALUE	PROB	
loran's I (error)	0.0516	5.283	0.0000	
agrange Multiplier (lag)	1	26.684	0.0000	
obust LM (lag)	1	0.627	0.4285	
agrange Multiplier (error) 1	27.229	0.0000	
lobust LM (error)	1	1.172	0.2790	
agrange Multiplier (SARMA) 2	27.856	0.0000	
	===== END OF	REPORT_		
ч========================				
now Moran's I ht(f"Ouarter: {rebaldate}")			
aFrame({"Moran's I": mi.I,	"Expected":	mi.EI, "p_norm":	mi.p_norm},	
index=["under assum	ption of norm	ality"])		
uarter: 202409				
nder assumption of normal	Moran's 1	I Expected 9 -0.00046 1.4	p_norm 01822e-07	
	10, 0,00101.		010220 07	
now ordinary regression re	sults			
ults = DataFrame(out)				
and the second	ie (ba.endmo(re	suits.index))		
ults.index = bd.to_datetim				
<pre>alts.index = bd.to_datetim mary = dict() col im recults column</pre>				

(continued from previous page)

```
Tests of statistical significance
```

	moran	rho	beta
mean	0.053146	0.224189	0.011726
stderr	0.002577	0.009331	0.000690
t	20.623401	24.027336	17.006094
nw_stderr	0.004606	0.017202	0.000952
nw_t	11.538987	13.032706	12.323118

To track changes over time, we plot the strength of spatial coefficients on a quarterly basis. Additionally, we highlight U.S. recession periods in blue, as times of economic stress may amplify the strength of linkages.

```
# Visualize autoregressive coefficients by quarter
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(results['rho'])
ax.set_title("Spatial autoregressive coefficients, by quarter")
for a,b in vspans:
    if a >= min(results.index):
        ax.axvspan(a, min(b, max(results.index)), alpha=0.4)
plt.legend(['rho', 'recessions'])
plt.tight_layout()
plt.show()
```


CHAPTER TWENTYFIVE

FOMC TOPIC MODELING

Our discussions of the economy may sometimes ring in the ears of the public with more certainty than is appropriate - Jerome Powell

The Federal Open Market Committee (FOMC) meeting minutes may reveal the Federal Reserve' s economic outlook, policy decisions, and potential future actions. Analyzing these minutes can help identify key topics discussed over time, shedding light on trends in monetary policy and their implications for financial markets. We review methods for accessing and pre-processing textual data, including the use MongoDB for storing and retrieving unstructured data. Several topic modeling algorithms, including Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), Non-negative Matrix Factorization (NMF), and Probabilistic Latent Semantic Indexing (PLSI), are applied to uncover patterns within the minutes.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import os
import sklearn.feature extraction, sklearn.decomposition
from sklearn.decomposition import TruncatedSVD, LatentDirichletAllocation, NMF
from sklearn.cluster import KMeans
from scipy.special import softmax
from wordcloud import WordCloud
import wordcloud
import matplotlib.pyplot as plt
from finds.database import MongoDB
from finds.unstructured import Unstructured
from finds.utils import Store
from finds.readers import FOMCReader, Alfred
from pprint import pprint
from secret import credentials, paths
# %matplotlib qt
VERBOSE = 0
```

```
## retrieve recessions dates for plotting
alf = Alfred(api_key=credentials['fred']['api_key'])
vspans = alf.date_spans(series_id='USREC')
```

25.1 FOMC meeting minutes

The FOMC holds eight scheduled meetings per year, with additional meetings as necessary. The minutes from these meetings are released three weeks after the policy decision, offering crucial insights into the Federal Reserve' s economic stance and possible future monetary policy actions. These insights can influence interest rates, inflation expectations, and overall market conditions.

For official meeting schedules and minutes, visit: Federal Reserve FOMC Calendar.

25.1.1 FinDS fomcreader module

The fomcreader module in the FinDS packages offers functions for searching and retrieving meeting minutes from the Federal Reserve website.

```
100%| 27/27 [00:16<00:00, 1.66it/s]
```

dates start end FOMC minutes 256 19930203 20250129

25.1.2 MongoDB

MongoDB is a NoSQL ("not only SQL") document-oriented database designed to efficiently manage unstructured and semi-structured data. Unlike traditional relational databases, MongoDB does not enforce a fixed schema, allowing for greater flexibility in handling diverse data formats. Each document (record) within a collection (table equivalent) can contain different fields and structures, including key-value pairs, arrays, and embedded subdocuments.

```
# store unstructured minutes text data in MongoDB
from pprint import pprint
mongodb = MongoDB(**credentials['mongodb'], verbose=VERBOSE)
print('uptime:', mongodb.client.admin.command("serverStatus")['uptime'])
fomc = Unstructured(mongodb, 'FOMC')
```

177.0

```
# retrieve keys (dates) of minutes previously retrieved and stored locally
dates = fomc['minutes'].distinct('date')
```

```
# fetch new minutes from FOMC site
docs = {d: minutes[d] for d in minutes if d not in dates}
print("New minutes:")
pprint([f"{k}: {len(v)} chars" for k,v in docs.items()])
```

```
New minutes:
['20250129: 54324 chars',
'20240612: 43860 chars',
'20240731: 44839 chars',
'20240918: 44372 chars',
'20241107: 49178 chars',
'20241218: 45712 chars']
```

Preprocessing Meeting Minutes

- 1. Extract relevant sections of the minutes, starting from:
 - "Review of Monetary Policy Strategy, Tools, and Communications"
 - "Developments in Financial Markets"
 - "Discussion of Guidelines for Policy Normalization"
 - "Financial Developments and Open Market Operations"
 - "Discussion of the Economic Outlook"
 - "The information reviewed at this meeting"
 - "The staff presented several briefings"
- 2. Remove text following the adjournment line or the date scheduled for the next meeting. Exclude:
 - · Notation votes, approvals of minutes, signatures, and footnotes
 - Intermeeting conference call discussions

Once extracted, store and retrieve all meeting minutes from MongoDB for further processing.

```
# Helper function to trim minutes text
def edit(text: str) -> str:
    """helper to spawn editor and write/edit/read to tempfile"""
    import subprocess
    import tempfile
    with tempfile.NamedTemporaryFile(suffix=".tmp") as f: # save temp file
        f.write(text.encode("utf-8"))
        f.flush()
        subprocess.call([os.environ.get('EDITOR','emacs'), "-nw", f.name])
        f.seek(0)
        return f.read().decode("utf-8")  # keep edited text
```

```
if docs:
    # to edit out head and tail of each document
    results = list()
    for date, initial_message in docs.items():
        edited_text = edit(initial_message)
        results.append({'date': date, 'text' : edited_text})
    results = sorted(results, key = lambda x: x['date'])  # sort by date

    # save edited docs
    Store(paths['scratch'] / 'fomc', ext='gz').dump(results, f"{max(docs.keys())}.json
    '')
    for doc in results: # store docs for new dates
        fomc.insert('minutes', doc, keys=['date'])
```

Retrieve all minutes that were stored locally in MongoDB

```
minutes

19930203 The Manager of the System Open Market Account ...

19930323 The Deputy Manager for Domestic Operations rep...

19930518 The Manager of the System Open Market Account ...

19930707 The Deputy Manager for Domestic Operations rep...

19930817 The Deputy Manager for Domestic Operations rep...

20240731 Developments in Financial Markets and Open Mar...

20240918 Developments in Financial Markets and Open Mar...

20241107 Developments in Financial Markets and Open Mar...

20241218 Developments in Financial Markets and Open Mar...

20250129 Developments in Financial Markets and Open Mar...

[256 rows x 1 columns]
```

25.2 Text pre-processing

Text preprocessing involves cleaning and preparing raw text data by removing noise, standardizing formats, and converting text into a structured form suitable for analysis. This process typically includes tokenization, removing stop words, and vectorizing the text.

25.2.1 Tokenization

Tokenization splits text into smaller units called **tokens**, typically words, though they may also be phrases or subwords. The pattern of tokenization is often defined using regular expressions.

The original **casing** of words may be preserved if it carries meaningful information, such as distinguishing proper nouns, acronyms, or sentence boundaries. Some models may interpret all uppercase words as organizations.

25.2.2 Regular expressions

Regular expressions (**regex**) define search patterns for text processing, often used in tokenization to find word boundaries and remove unwanted characters.

Basic Regular Expressions

Expression	Description
∖d	Matches a digit (0-9)
\w	Matches a word character (ASCII letter, digit, or underscore)
\s	Matches a whitespace character (space, tab, newline)
\D	Matches a non-digit character
$\setminus W$	Matches a non-word character
\S	Matches a non-whitespace character
[]	Matches one of the characters in the brackets
[a-zA-Z]	Matches any letter (uppercase or lowercase)
[^a]	Matches any character except a
\b	Matches a word boundary
•	Matches any character except a line break
\.	Matches a period character
^	Matches the start of a string
\$	Matches the end of a string
+	Matches one or more occurrences
*	Matches zero or more occurrences
?	Matches zero or one occurrence
1	Acts as an OR operator
()	Defines a capturing group

25.2.3 Stopwords

Common, uninformative words (e.g., "the," "is," "and") can be removed to focus on meaningful content in the analysis. Corpus-specific uninformative words (such as calendar-related terms in FOMC minutes) can also be excluded.

```
# ignore these stop words
StopWords = [w for w in set(wordcloud.STOPWORDS) if "'" not in w]
StopWords += ['january', 'february', 'march', 'april', 'may', 'june',
                     'july', 'august', 'september', 'october', 'november',
                     'december', 'first', 'second', 'third', 'fourth', 'twelve',
                    'participants', 'members', 'meeting']
```

25.2.4 Vectorization

Vectorization transforms text into numerical representations suitable for analysis.

- Bag-of-Words (BoW): Represents a document by the frequency of its words, ignoring grammar and word order.
- N-grams: Treats consecutive words as distinct items rather than isolated words.
- Indexing: Assigns unique integer indexes to words in the corpus.
- **TF-IDF** (**Term Frequency-Inverse Document Frequency**): Measures word importance based on its frequency in a document relative to its occurrence across all documents.

- The scikit-learn package provides TfidfVectorizer for TF-IDF vectorization and CountVectorizer for raw word counts.

```
# To vectorize the input words
#ngram_range = (1, 1) # unigrams
#ngram_range = (2, 2) # bigrams
ngram_range = (1, 2) # unigrams and bigrams
max_df, min_df, max_features = 0.5, 6, 5000 # some reasonable constraints
tfidf_vectorizer = sklearn.feature_extraction.text.TfidfVectorizer(
    strip_accents='unicode',
    lowercase=True,
    stop words=StopWords,
    ngram_range=ngram_range,
   max_df=max_df,
    min_df=min_df,
    max_features=max_features,
    token_pattern=r"\b[^\d\W][^\d\W]+\b") \#r' b[^ dW]+b''
tf_vectorizer = sklearn.feature_extraction.text.CountVectorizer(
    strip_accents='unicode',
    lowercase=True,
    stop_words=StopWords,
    ngram_range=ngram_range,
                             # (2, 2) for bigrams
    max_df=max_df,
    min_df=min_df,
    max_features=max_features,
    token_pattern=r"\b[^\d\W][^\d\W][^\d\W]+\b")
```

25.3 Topic Modeling

Topic modeling applies statistical techniques to discover latent topics within a collection of documents.

25.3.1 Latent Semantic Analysis (LSA)

LSA uses singular value decomposition (SVD) to analyze relationships between terms and documents. By reducing dimensionality, it groups terms and documents that frequently co-occur in a lower-dimensional space, revealing underlying topics.

25.3.2 Latent Dirichlet Allocation (LDA)

LDA assumes each document is a mixture of topics, and each topic is a mixture of words. It iteratively assigns words to topics based on probability distributions, refining topic assignments over multiple iterations.

25.3.3 Non-negative Matrix Factorization (NMF)

NMF decomposes a term-document matrix into two non-negative matrices:

- A basis matrix representing topics
- A coefficient matrix representing the distribution of topics in documents

By optimizing these matrices, NMF extracts meaningful topics from the text.

25.3.4 Probabilistic Latent Semantic Indexing (PLSI)

PLSI models documents as mixtures of topics, estimating probability distributions of words and topics iteratively until convergence. It can be implemented using NMF with generalized Kullback-Leibler divergence as the loss function.

- scikit-learn decomposition documentation
- · Example of topic extraction with NMF & LDA

```
# Define models
n\_components = 4
                    # fix number of latent topics
algos = {
    'LSA': (TruncatedSVD(n_components=n_components),
            tfidf_vectorizer),
    'LDA': (LatentDirichletAllocation(n_components=n_components,
                                       learning_method='batch', #'online',
                                       # learning_offset = 50.0,
                                       max_iter = 40,
                                       random_state = 42),
            tf_vectorizer),
    'PLSI': (NMF(n_components=n_components,
                 beta_loss='kullback-leibler',
                 solver='mu',
                 alpha_W=0.00005,
                 alpha_H=0.00005,
                 11_ratio=0.5,
                 max_iter=1000,
                 random_state = 42),
             tfidf_vectorizer),
    'NMF': (NMF(n_components=n_components,
                random_state=42,
                beta_loss='frobenius',
                alpha_W=0.00005,
                alpha_H=0.00005,
                11_ratio=0.5),
            tfidf_vectorizer) }
```

Once topics are extracted, they can be visualized over time to observe trends in FOMC discussions.

```
# Fit and plot models
scores = dict()  # to save model coefficients
topics = dict()  # to save dates of primary topic
for ifig, (name, (base, vectorizer)) in enumerate(algos.items()):
    # vectorize the input words
    vectorized = vectorizer.fit_transform(docs.to_list())
    feature_names = vectorizer.get_feature_names_out()
    # fit model and transform inputs
    model = base.fit(vectorized)
    transformed = model.transform(vectorized)
    # save the model fitted coefficients
    if name == 'LSA': # Additional step for LSA
        kmeans = KMeans(n_clusters=n_components, n_init=5, random_state=37)
           .fit (transformed) # find centroids of the latent factors
        transformed = kmeans.transform(transformed) # distance to centroid
        transformed = -(transformed / transformed.sum(axis=1, keepdims=True))
        scores[name] = softmax(model.components_, axis=1) # scale word scores
    else:
        scores[name] = model.components_
    # plot topic scores over time
    fig, ax = plt.subplots(num=1 + ifig, clear=True, figsize=(10, 6))
    dates = pd.DatetimeIndex(docs.index.astype(str))
    ax.step(dates, transformed, where='pre')
    for a,b in vspans:
       if b >= min(dates):
            ax.axvspan(a, min(b, max(dates)), alpha=0.3, color='grey')
    ax.set_title(name)
    ax.legend([f"{i+1}" for i in range(n_components)] + ['Recession'],
              loc='center left', title='Topic label')
    plt.tight_layout(pad=2)
    # save dates of primary topic
    for topic in range(transformed.shape[1]):
        arg = DataFrame({'t': np.argmax(transformed, axis=1),
                         'dt': docs.index})
        dates = (arg!=arg.shift()).cumsum().groupby('t').agg(['first', 'last']) - 1
        dates['topic'] = arg.loc[dates.iloc[:,1], 't'].values
        topics[name] = {topic: [(arg['dt'].iloc[row[0]], arg['dt'].iloc[row[1]])
                                for row in dates.itertuples(index=False, name=None)
                                if row[2] == topic]
                        for topic in range(transformed.shape[1])}
```


25.3.5 Feature importance

The most significant words for each topic are identified and visualized using the WordCloud package, providing an intuitive representation of key themes.

```
# Display word cloud of top n features, by model and topic
figsize = (10, 8)
for ifig, (name, score) in enumerate(scores.items()):
    wc = WordCloud(height=300, width=500, colormap='cool')
    top_n = 20
    fig, axes = plt.subplots(2, 2, num=ifig+5, figsize=figsize, clear=True)
    for topic, components in enumerate(score):
        words = {feature_names[i].replace(' ','_') : components[i]
                 for i in components.argsort()[:-top_n - 1:-1]}
        #print("Topic", topic+1, topics[name])
        #print(list(words.keys()))
        ax = axes[topic//2, topic % 2]
        ax.imshow(wc.generate_from_frequencies(words))
        ax.axes.yaxis.set_visible(False)  # make axes ticks invisible
        ax.xaxis.set_ticks([])
        ax.xaxis.set_ticklabels([])
        ax.set_title(f"{name} Topic {topic+1}", fontsize=10)
        regime = ", ".join([f"{d[0]}-{d[1]}" if d[0] != d[1] else f"{d[0]}"
                            for d in topics[name][topic]])
        ax.set_xlabel(regime if len(regime) < 75 else '-- many --',
                      fontsize=8,
                      loc='left')
        plt.tight_layout()
```


19990824, 19991116-19991221, 20000321-20081216, 20090318-20090429

20200315-20250129

CHAPTER

TWENTYSIX

MANAGEMENT SENTIMENT ANALYSIS

Life is a math equation. In order to gain the most, you have to know how to convert negatives into positives - Anonymous

Sentiment analysis helps quantify the tone of financial disclosures, revealing whether a company's management expresses optimism, caution, or concern. This analysis can be conducted using dictionary-based methods, which rely on predefined sentiment word lists, or more sophisticated machine learning models, such as large language models (LLMs). We explore the application of sentiment analysis in financial documents, focusing on the Loughran-MacDonald dictionary and the SEC' s EDGAR system for retrieving company filings. Specifically, we analyze sentiment trends in 10-K Management Discussion and Analysis (MD&A) sections and their relationship with stock returns.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from sklearn.feature extraction.text import CountVectorizer
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, Signals
from finds.unstructured import Edgar
from finds.readers import Alfred
from finds.recipes import weighted_average, fractile_split
from finds.utils import Store
from secret import credentials, paths, CRSP_DATE
# %matplotlib qt
VERBOSE = 0
LAST_YEAR = CRSP_DATE // 10000
```

```
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql=sql, bd=bd, rdb=rdb, verbose=VERBOSE)
signals = Signals(user)
store = Store(paths['scratch'], ext='pkl')
```

26.1 Sentiment analysis

Dictionary-based (or lexicon-based) sentiment analysis relies on predefined word lists, where words are assigned sentiment scores along with intensity levels. While this approach is straightforward and computationally efficient, it struggles with complex linguistic phenomena such as negations, irony, and sarcasm, which can lead to reduced accuracy. On the other hand, large language models excel at understanding context, syntax, and semantics, making them more effective for sentiment analysis of intricate financial texts. However, despite their limitations, dictionary-based methods remain popular due to their ease of implementation and transparent results.

26.1.1 Loughran-MacDonald dictionary

Loughran and McDonald (2011) found that general-purpose sentiment lexicons were not well-suited for financial statement analysis. To address this, they developed a dictionary based on company 10-K filings, categorizing words into seven sentiment-related groups relevant to finance: "negative," "positive," "litigious," "uncertainty," "constraining," and "superfluous." This domain-specific approach provides a more accurate reflection of sentiment in financial disclosures.

• Loughran-MacDonald Master Dictionary

The dictionary includes:

- · A list of positive sentiment words
- · A list of negative sentiment words
- · A set of stop words to ignore

Positive sentiment words

DataFrame(words['positive'], columns=['Positive Words'])

Positive Words 0 outperform 1 rebounded 2 efficiency 3 honored 4 leadership 349 improves 350 collaborations 351 innovators 352 advantageous 353 honoring [354 rows x 1 columns]

Negative sentiment words

```
DataFrame(words['negative'], columns=['Negative Words'])
```

```
Negative Words
0
      threatening
1
          immature
2
    falsifications
3
      uncontrolled
4
             panic
. . .
                . . .
2350
        objections
2351
         coercion
2352
        extenuating
     extenuating
lying
2353
2354 contradiction
[2355 rows x 1 columns]
```

List of stop words to ignore

```
# stopwords
generic = ['ME', 'MY', 'MYSELF', 'WE', 'OUR', 'OURS', 'OURSELVES',
             'YOU', 'YOUR', 'YOURS', 'YOURSELF', 'YOURSELVES',
             'HE', 'HIM', 'HIS', 'HIMSELF', 'SHE', 'HER', 'HERS',
             'HERSELF', 'IT', 'ITS', 'ITSELF', 'THEY', 'THEM',
             'THEIR', 'THEIRS', 'THEMSELVES', 'WHAT', 'WHICH',
             'WHO', 'WHOM', 'THIS', 'THAT', 'THESE', 'THOSE',
             'AM', 'IS', 'ARE', 'WAS', 'WERE', 'BE', 'BEEN',
             'BEING', 'HAVE', 'HAS', 'HAD', 'HAVING', 'DO',
'DOES', 'DID', 'DOING', 'AN', 'THE', 'AND', 'BUT',
             'IF', 'OR', 'BECAUSE', 'AS', 'UNTIL', 'WHILE', 'OF',
             'AT', 'BY', 'FOR', 'WITH', 'ABOUT', 'BETWEEN',
            'INTO', 'THROUGH', 'DURING', 'BEFORE', 'AFTER',
'ABOVE', 'BELOW', 'TO', 'FROM', 'UP', 'DOWN', 'IN',
'OUT', 'ON', 'OFF', 'OVER', 'UNDER', 'AGAIN',
             'FURTHER', 'THEN', 'ONCE', 'HERE', 'THERE', 'WHEN',
             'WHERE', 'WHY', 'HOW', 'ALL', 'ANY', 'BOTH', 'EACH',
             'FEW', 'MORE', 'MOST', 'OTHER', 'SOME', 'SUCH',
             'NO', 'NOR', 'NOT', 'ONLY', 'OWN', 'SAME', 'SO',
             'THAN', 'TOO', 'VERY', 'CAN', 'JUST', 'SHOULD',
             'NOW', 'AMONG']
```

26.2 10-K Management discussion and analysis

A 10-K is a comprehensive annual report that publicly traded companies must file with the SEC. It provides an in-depth view of the company's financial health and operational performance. Key sections include the business description, management discussion and analysis (**MD&A**), risk factors, and financial statements.

26.2.1 SEC Edgar website

The SEC EDGAR (Electronic Data Gathering, Analysis, and Retrieval) system is an online database managed by the U.S. Securities and Exchange Commission (SEC). It provides public access to financial filings, including annual and quarterly reports (Forms 10-K and 10-Q), significant event disclosures (Form 8-K), beneficial ownership reports (Schedule 13D), insider sales reports (Form 144), proxy statements, and registration statements (S-1).

• SEC EDGAR Search and Access

Additionally, the SEC has recently released an EDGAR Application Programming Interface (API): EDGAR API

Loughran and MacDonald have also made SEC EDGAR data files and other textual resources available in their research repository: SEC EDGAR Data

26.2.2 FinDS edgar module

The edgar module in the FinDS package provides functions for

- · Searching and retrieving company filings from the SEC Edgar website
- · Storing and indexing data locally
- · Identifying and extracting specific sections of text, such as MD&A

Retrieve MD&A section text from 10-K' s:

```
# open 10-K archive of MD&A text
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
item, form = 'mda10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
Series((rows['date'] // 10000).astype(int)).value_counts().sort_index().to_frame()
```

2001	4168	
2002	4400	
2003	5478	
2004	5203	
2005	5090	
2006	4999	
2007	4954	
2008	5033	
2009	5273	
2010	5050	
2011	4863	
2012	4730	
2013	4617	
2014	4643	
2015	4720	
2016	4612	
2017	4488	
2018	4431	
2019	4417	
2020	4388	
2021	4615	
2022	4766	
2023	4641	
2024	4501	

For all investment universe stocks between 1993 through the present, compute the average sentiment, and change in sentiment, of 10-K' s

permnos documents first last 10K-mdas 14696 137691 19931129 20241231

We assume up to a 3-month lag when the 10-Ks are made available. For example, filings submitted between January and March of 2024 are assigned to fiscal year 2023.

```
# Compute average sentiment and change in sentiment for all companies and years
results = []
for permno in tqdm(permnos): # Loop over all permnos

# retrieve all valid mda's for this permno by year
mdas, dates = {}, {} # to collect mdas and doc dates for this permno
docs = rows[rows['permno'].eq(permno)].to_dict('records')
for doc in docs:
    year = bd.endmo(doc['date'], -3) // 10000 # assign fiscal year
    if (year in univs and (year not in mdas or doc['date'] < dates[year])):
        tokens = ed[doc['pathname']]</pre>
```

```
if len(tokens):
            mdas[year] = tokens
            dates[year] = doc['date']
# compute sentiment as net sentiment word counts divided by doc length
if len(mdas):
   X = sentiment_vectorizer.transform(list(mdas.values())) \
                            .dot(sentiment_points)
   X = np.divide(X, vectorizer.fit_transform(list(mdas.values())).sum())
    sentiment = {k:x for k, x in zip(mdas.keys(), X)}
# derive sentiment change and similarity scores by year
for year in sorted(mdas.keys()):
    result = {'year': year, 'permno': permno, 'date': dates[year]}
    result['mdasent'] = sentiment[year]
    result['currlen'] = len(mdas[year])
    if year-1 in mdas:
        result['prevlen'] = len(mdas[year-1])
        result['mdachg'] = sentiment[year] - sentiment[year-1]
        corpus = [mdas[year], mdas[year-1]]
    results.append(result)
```

```
0%|
             | 0/14696 [00:00<?, ?it/s]/home/terence/env3.11/lib/python3.11/site-
--packages/sklearn/feature_extraction/text.py:408: UserWarning: Your stop_words_-
-may be inconsistent with your preprocessing. Tokenizing the stop words generated.
otokens ['about', 'above', 'after', 'again', 'all', 'among', 'and', 'any', 'are',
-because', 'been', 'before', 'being', 'below', 'between', 'both', 'but', 'can',
_{\ominus}', 'had', 'has', 'have', 'having', 'her', 'here', 'hers', 'herself', 'him',

y'himself', 'his', 'how', 'into', 'its', 'itself', 'just', 'more', 'most', 'myself
-, 'nor', 'not', 'now', 'off', 'once', 'only', 'other', 'our', 'ours', 'ourselves

y 'out', 'over', 'own', 'same', 'she', 'should', 'some', 'such', 'than', 'that',

_{
m e} 'the', 'their', 'theirs', 'them', 'themselves', 'then', 'there', 'these', 'they
_{
m o}', 'this', 'those', 'through', 'too', 'under', 'until', 'very', 'was', 'were',
-, what', 'when', 'which', 'while', 'who', 'whom', 'why', 'with', 'you',
-your', 'yours', 'yourself', 'yourselves'] not in stop_words.
warnings.warn(
```

100%| 14696/14696 [13:49<00:00, 17.71it/s]

131045 107665

```
.reset_index()
    for year, univ in univs.items() if year < LAST_YEAR],
    ignore_index=True)
# store temporary
store['sentiment'] = data</pre>
```

data = store['sentiment']

Exploratory analysis

Universe coverage by year:

When are 10-K's filed?

10-K Filings by Month and Day-of-Week

Median sentiment and change in sentiment vs total corporate profits (of all US companies), by year:

```
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
series_id = 'CP' # Corporate Profits
econ = alf(series_id).to_frame()
econ = econ.assign(year=econ.index // 10000).groupby('year').sum()
for sent, ylab in {'mdasent': 'sentiment', 'mdachg': 'sentiment change'}.items():
    print(sent, ylab)
    g = data[data['currlen'].gt(500)].dropna().groupby('year')
    iq1, iq2, iq3 = [g[sent].quantile(p) for p in [.25, .5, .75]]
    y = iq2.index.astype(int)
    fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 6))
    ax.step(y, iq2, ls='-', color='C1', where='pre')
    ax.fill_between(y, iq1, iq3, alpha=0.2, color='C1', step='pre')
    ax.set_title(f"{sent.upper()} by Fiscal Year of 10-K Filing")
    ax.set_xlabel("Fiscal Year")
    ax.set_ylabel(ylab)
    ax.legend([f"{sent.upper()} median", f"inter-quartile range"],
```

```
fontsize='small', loc='upper left')
bx = ax.twinx()
econ[(econ.index >= min(y)) & (econ.index <= max(y))].plot(ls='--', ax=bx)
bx.legend([alf.header(series_id)[:27]], fontsize='small', loc='lower right')
bx.set_ylabel(alf.header(series_id)[:27])
bx.set_yscale('log')
plt.tight_layout()</pre>
```

```
mdasent sentiment
mdachg sentiment change
```



```
26.2. 10-K Management discussion and analysis
```


26.2.3 Management sentiment and stock returns

We analyze the relationship between sentiment in 10-K filings and subsequent stock returns by constructing cap-weighted decile-spread returns. These are calculated for two periods:

- 1. The same calendar year (January–December) to examine contemporaneous relationships between sentiment and stock performance.
- 2. The following year (April–March) to explore an investable strategy based on sentiment changes after the release of 10-K reports for the prior fiscal year.

```
for ifig, key in enumerate(['mdasent', 'mdachg']):
              # to collect year-ahead spread returns
   ret1 = {}
              # to collect current-year spread returns
   ret0 = {}
    for year in tqdm(range(1999, max(data['year'])+1)): # loop over years
        # compute current year average spread returns
       begyr = bd.begyr(year)
        endyr = bd.endyr(year)
        univ = data[data['year'] == year]\
                   .dropna(subset=[key]) \
                   .set_index('permno')\
                   .join(crsp.get_cap(bd.offset(begyr, -1)), how='inner') \
                   .join(crsp.get_ret(begyr, endyr), how='left')
        if len(univ):
            sub = fractile_split(univ[key], [10, 90])
            pos = weighted_average(univ.loc[sub==1, ['cap', 'ret']], 'cap')['ret']
            neg = weighted_average(univ.loc[sub==3, ['cap', 'ret']], 'cap')['ret']
            ret0[endyr] = { 'ret': pos-neg, 'npos': sum(sub==1), 'nneg': sum(sub==3) }
        # compute year ahead average spread returns
```

```
(continued from previous page)
```

```
beg = bd.begmo(endyr, 4)
    end = bd.endmo(endyr, 15)
   univ = data[data['year'] == year]\
               .dropna(subset=[key]) \
               .set_index('permno')\
               .join(crsp.get_cap(bd.offset(beg, -1)), how='inner') \
               .join(crsp.get_ret(beg, end), how='left')
    if len(univ):
        sub = fractile_split(univ[key], [10, 90])
        pos = weighted_average(univ.loc[sub==1, ['cap', 'ret']], 'cap')['ret']
        neg = weighted_average(univ.loc[sub==3, ['cap', 'ret']], 'cap')['ret']
        ret1[end] = {'ret': pos-neg, 'npos': sum(sub==1), 'nneg': sum(sub==3)}
# collect same-year and year-ahead average spread returns
r0 = DataFrame.from_dict(ret0, orient='index').sort_index()
r0.index = r0.index // 10000
r1 = DataFrame.from_dict(ret1, orient='index').sort_index()
r1.index = (r1.index // 10000) - 2
# plot same-year average spread returns
fig, ax = plt.subplots(nrows=2, clear=True, figsize=(10, 8), sharey=True)
r0['ret'].plot(kind='bar', ax=ax[0], width=.85, color="C0")
ax[0].axhline(r0['ret'].median(), linestyle=':', color='C0')
ax[0].axhline(r0['ret'].mean(), linestyle='-.', color='C0')
ax[0].set_title(f"Same Year (Jan-Dec) Returns")
ax[0].set_ylabel('annual returns')
ax[0].legend(['mean', 'median', 'Annual Spread Returns'])
# plot year-ahead average spread returns
r1['ret'].plot(kind='bar', ax=ax[1], width=.85, color="C1")
ax[1].axhline(r1['ret'].median(), linestyle=':', color='C1')
ax[1].axhline(r1['ret'].mean(), linestyle='-.', color='C1')
ax[1].set_title(f"Next Year (Apr-Mar) Returns")
ax[1].set_ylabel('annual returns')
ax[1].legend(['mean', 'median', 'Annual Spread Returns'])
ax[1].set_xlabel('fiscal year')
plt.suptitle(f"{key.upper()} Annual Cap-weighted Decile Spread Portfolios")
plt.tight_layout()
0%| | 0/25 [00:00<?, ?it/s]
```

100%	25/25	[06:21<00:00,	15.26s/it]
100%	25/25	[00:48<00:00,	1.92s/it]

MDASENT Annual Cap-weighted Decile Spread Portfolios

MDACHG Annual Cap-weighted Decile Spread Portfolios

References:

Tim Loughran and Bill McDonald, 2011, When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks, Journal of Finance, 66:1, 35-65.

Cohen, Malloy and Nguyen (2020), Lazy Prices, Journal of Finance, Volume 75, Issue3, June 2020, Pages 1371-1415

CHAPTER

TWENTYSEVEN

BUSINESS TEXTUAL ANALYSIS

You shall know a word by the company it keeps - J. R. Firth

Text mining techniques allow new insights to be extracted from unstructured text documents. We retrieve business descriptions text from 10-K filings, and use the **Spacy** NLP package for syntactic analysis, including part-of-speech tagging, named entity recognition and dependency parsing. Additionally, we explore dimentionality reduction techniques to visualize and cluster companies based on the relationships between business descriptions, represented as word embeddings, in a lower-dimensional space.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import re
import numpy as np
from scipy import spatial
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import spacy
from sklearn import cluster
from sklearn.decomposition import PCA
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.structured import CRSP, BusDay
from finds.unstructured import Edgar
from finds.utils import Store, Finder, ColorMap
from secret import credentials, paths
# %matplotlib qt
VERBOSE = 0
```

```
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
store = Store(paths['scratch'])
find = Finder(sql)
begdate, enddate = 20240101, 20241231
```

Retrieve the usual investment universe and retain only the largest size decile (based on NYSE market cap breakpoints).

```
# Retrieve universe of stocks
univ = crsp.get_universe(bd.endmo(begdate, -1))
```

```
comnam = crsp.build_lookup('permno', 'comnam', fillna="") # company name
univ['comnam'] = comnam(univ.index)
ticker = crsp.build_lookup('permno', 'ticker', fillna="") # tickers
univ['ticker'] = ticker(univ.index)
```

Extract Business Description text from 10-K filings.

27.1 Syntactic analysis

Syntactic analysis examines the roles of words in sentences and how they combine to form phrases and larger linguistic structures. This process helps model relationships such as subject-verb-object dependencies, which are fundamental for NLP tasks like dependency and constituent parsing.

27.1.1 SpaCy

spaCy is a widely used open-source Python library for advanced NLP tasks, including POS tagging, named entity recognition (NER), and dependency parsing. It provides pre-trained models for various languages and domains, as well as customizable pipelines for processing text data.

```
    spaCy Models
```

```
# ! python -m spacy download en_core_web_sm
nlp = spacy.load("en_core_web_lg")
```

27.1.2 Lemmatization

Lemmatization reduces a word to its base or dictionary form (lemma), representing its morphological root.

	text	lemma	alpha	stop	punct	
0	item	item	True	False	False	
1	1	1	False	False	False	
2	•	•	False	False	True	
3	business	business	True	False	False	
4	\n\n	\n\n	False	False	False	
5	our	our	True	True	False	
6	company	company	True	False	False	
7	\n\n	\n\n	False	False	False	
8	nvidia	nvidia	True	False	False	
9	pioneered	pioneer	True	False	False	
10	accelerated	accelerate	True	False	False	
11	computing	computing	True	False	False	
12	to	to	True	True	False	
13	help	help	True	False	False	
14	solve	solve	True	False	False	
15	the	the	True	True	False	
16	most	most	True	True	False	
17	challenging	challenging	True	False	False	
18	computational	computational	True	False	False	
19	problems	problem	True	False	False	
20			False	False	True	
21	nvidia	nvidia	True	False	False	
22	is	be	True	True	False	
23	now	now	True	True	False	
24	a	a	True	True	False	
25	full	full	True	True	False	
26	-	-	False	False	True	
27	stack	stack	True	False	False	
28	computing	computing	True	False	False	
29	infrastructure	infrastructure	True	False	False	

27.1.3 Part-of-speech

Part-of-speech (POS) tagging assigns grammatical categories (e.g., noun, verb, adjective) to words in a text corpus. This aids in understanding sentence structure and extracting meaning by identifying the roles of words within sentences.

text pos tag dep item NOUN NN ROOT 0 1 NUM CD nummod 1 . PUNCT . punct business NOUN NN nsubj 2 3 our PRON PRP\$ poss company NOUN NN appos 4 5 6 \n\n SPACE _SP dep nvidia PROPN NNP appos 7 nvidia PROPN NNP 8

9	pioneered	VERB	VBD	ROOT
10	accelerated	VERB	VBD	xcomp
11	computing	NOUN	NN	dobj
12	to	PART	ТО	aux
13	help	VERB	VB	advcl
14	solve	VERB	VB	xcomp
15	the	DET	DT	det
16	most	ADV	RBS	advmod
17	challenging	ADJ	JJ	amod
18	computational	ADJ	JJ	amod
19	problems	NOUN	NNS	dobj
20		PUNCT	•	punct
21	nvidia	PROPN	NNP	nsubj
22	is	AUX	VBZ	ROOT
23	now	ADV	RB	advmod
24	a	DET	DT	det
25	full	ADJ	JJ	amod
26	-	PUNCT	HYPH	punct
27	stack	NOUN	NN	compound
28	computing	NOUN	NN	compound
29	infrastructure	NOUN	NN	compound

27.1.4 Named entity recognition

Named Entity Recognition (NER) identifies and categorizes named entities (e.g., people, organizations, locations, dates) in text. This process helps classify textual data into meaningful categories.

ents.head(20)

	text	label	start	end
0	1	CARDINAL	5	6
1	nvidia	PERSON	133	139
2	as well as hundreds	CARDINAL	352	371
3	healthcare	ORG	853	863
4	tens of thousands	CARDINAL	1012	1029
5	gpu	ORG	1033	1036
6	gpu	ORG	1239	1242
7	today	DATE	1347	1352
8	thousands	CARDINAL	1498	1507
9	gpu	ORG	1771	1774
10	thousands	CARDINAL	1819	1828
11	gpus	GPE	2594	2598
12	multi-billion-dollar	MONEY	2708	2728
13	third	ORDINAL	2849	2854
14	over 45.3 billion	MONEY	3100	3117
15	gpu	ORG	3248	3251
16	1999	DATE	3255	3259
17	2006	DATE	3391	3395

18	gpu	ORG	3451	3454
19	2012	DATE	3557	3561

```
# Entity Visualizer
from spacy import displacy
displacy.render(doc[:300], style="ent", jupyter=True)
```

<IPython.core.display.HTML object>

27.1.5 Dependency parsing

Dependency parsing determines grammatical relationships between words in a sentence, representing these relationships as a tree structure where each word (except the root) depends on another word (its head). This technique helps identify syntactic roles, such as subjects, objects, and modifiers.

Transition-based parsing algorithms uses a set of transition operations (e.g. shift, reduce) to incrementally build a dependency tree from an input sentence.

Unlike dependency parsing, **constituent parsing** focuses on identifying and representing the hierarchical structure of phrases in a sentence based on formal grammar rules. It groups words into nested syntactic units (e.noun phrases and verb phrases) and represents them in a tree structure.

The **CKY** (**Cocke-Kasami-Younger**) **algorithm** is a dynamic programming technique used for parsing sentences and constructing parse trees.

Probabilistic Context-Free Grammar (PCFG) extends standard Context-Free Grammar (CFG) by assigning probabilities to production rules, indicating the likelihood of specific grammatical structures. Each rule defines how non-terminal symbols (e.g., NP for noun phrase) expand into words or other non-terminals, guiding sentence generation and parsing.

Models for automatic tagging and parsing rely on labeled datasets known as **treebanks**, which contain syntactically annotated sentences. The **Penn Treebank** is a widely used treebank for English, providing annotations for POS tags and parse trees.

<IPython.core.display.HTML object>

27.2 Semantic similarity

27.2.1 Word vectors

Word vectors are numerical representations of words in a multidimensional space, learned from their co-occurrence patterns in large text corpora. Words with similar syntactic and semantic meanings tend to have vector representations that are close together in this space.

For example, spaCy' s en_core_web_lg model represents over 500,000 words using 300-dimensional vectors.

Extract lemmatized noun forms from business descriptions using spaCy's POS tagger:

100%| 192/192 [03:12<00:00, 1.00s/it]

```
bus = store.load('business')
permnos = list(bus.keys())
tickers = univ.loc[permnos, 'ticker'].to_list()
```

Compute the average word vector for NVIDIA' s business description text:

```
# example of word vector
vec1 = nlp(bus[nvidia]).vector
vec1
```

array([-0.5495549 ,	0.0522468 ,	-0.70095205,	1.1134154 ,	2.659689 ,
0.29627848,	1.3154105 ,	3.8272932 ,	-2.232087 ,	-1.3053178 ,
6.069174 ,	2.0604212 ,	-4.542866 ,	2.3177896 ,	-1.1287518 ,
2.3917935 ,	3.1968606 ,	1.5996909 ,	-2.3438275 ,	0.03434967,
0.22686806,	1.7824569 ,	-2.384547 ,	0.8608239 ,	-1.2319311 ,
-1.774604 ,	-1.8425854 ,	-1.7403452 ,	-0.7102895 ,	1.0869901 ,
1.2046682 ,	1.2530138 ,	-1.1417824 ,	-0.4984767 ,	0.34321743,
-0.37546915,	1.4804035 ,	0.8114897 ,	1.3119912 ,	0.38791072,
0.25189775,	-0.1770816 ,	0.1785395 ,	1.0146813 ,	-1.4704382 ,
1.6199547 ,	2.021769 ,	-1.9505422 ,	0.4602281 ,	-1.281002 ,
0.07107421,	2.3507724 ,	-0.18837918,	-3.80177 ,	-0.54604673,
0.5786306 ,	-1.7812697 ,	1.5003949 ,	0.40720284,	-1.5742034 ,
2.2474368 ,	1.2563457 ,	-2.2915537 ,	-1.2388986 ,	2.408017 ,
1.9807013 ,	-2.2583349 ,	-3.3942797 ,	0.5241013 ,	3.0477126 ,
-0.97571445,	0.7010974 ,	-1.2003129 ,	0.38448045,	-0.30499592,
1.3931054 ,	-1.3777359 ,	0.99693114,	-1.8231292 ,	-0.1508515 ,
-2.595402 ,	-0.6554817 ,	0.96918464,	1.4329529 ,	-0.2420673 ,
-0.08297056,	-1.2713333 ,	-1.8489853 ,	0.77105236,	-0.235054 ,
-1.2015461 ,	1.0783287 ,	1.5740684 ,	-2.2493582 ,	0.43573543,
-0.56152374,	0.58803385,	-0.5924455 ,	0.8756682 ,	1.2502667 ,
3.0838132 ,	0.3415912 ,	1.887193 ,	1.8639498 ,	0.2804779 ,
4.218261 ,	-1.1121116 ,	-1.805579 ,	-0.22270828,	-2.56832 ,
2.4099169 ,	-0.22422643,	-1.1543158 ,	0.06765282,	0.83664316,
1.7835015 ,	-2.6237123 ,	-1.3570241 ,	-0.46247697,	-2.476458 ,
-1.9124763 ,	-2.6474092 ,	0.44025388,	1.1519567 ,	-0.42653838,
-2.8462713 ,	0.2980864 ,	-2.9798195 ,	2.9588706 ,	-1.819657 ,
-2.464192 ,	0.32522804,	3.3010955 ,	0.7937097 ,	-0.15216802,
-0.42828757,	-0.9942988 ,	-0.44921628,	1.9312432 ,	0.28458852,
-0.6386989 ,	-0.87969756,	-0.13129689,	0.85792863,	1.7823339 ,
0.16759728,	-3.5592077 ,	-0.2112106 ,	0.06164274,	3.368905 ,
-0.3132938 ,	1.2434231 ,	0.21065742,	1.2389091 ,	-0.66589624,
0.5398899 ,	2.8091311 ,	1.7358444 ,	-0.91453594,	-2.6195803 ,

-0.9402572 ,	-1.2330531 ,	0.71588945,	1.699086 ,	-1.72446 ,
-1.1087135 ,	-2.044233 ,	0.5116665 ,	0.7511035 ,	-1.510701 ,
-1.5667175 ,	-0.22543517,	-0.37966043,	0.95050013,	2.100138 ,
1.966492 ,	0.6108724 ,	-0.31808442,	-1.9397378 ,	-1.2919445 ,
-1.7783433 ,	1.7884035 ,	1.1175009 ,	-1.9068832 ,	-1.0304377 ,
0.6533309 ,	-0.94094557,	-1.4831365 ,	1.5252017 ,	1.73394 ,
0.05441582,	-1.1678139 ,	0.10588835,	-1.8394533 ,	1.820474 ,
0.70712596,	-2.8049684 ,	-0.1084957 ,	0.5009497 ,	-0.05614741,
-0.74415725,	-1.0815455 ,	-0.28300503,	-1.0312603 ,	3.5577624 ,
0.81285644,	-3.4548876 ,	1.3007482 ,	-0.0527516 ,	-1.5823797 ,
0.94375974,	0.01696876,	-1.1761798 ,	2.141124 ,	0.8728857 ,
1.7190704 ,	2.6591263 ,	-4.227103 ,	-0.5748424 ,	0.36368647,
-1.838823 ,	1.3353976 ,	-1.5363356 ,	-0.98404247,	-0.64337295,
-2.6795921 ,	0.4494206 ,	2.0296626 ,	1.1337993 ,	-0.15482494,
2.2946403 ,	-2.6738138 ,	-1.2725773 ,	1.763216 ,	2.8063855 ,
0.46778396,	-0.36578366,	-0.26262623,	0.9403954 ,	1.0015386 ,
-2.0167701 ,	-1.1006184 ,	-0.1618742 ,	0.9444055 ,	-0.27051136,
0.33339593,	-1.7367964 ,	1.3408182 ,	0.32765946,	1.1382856 ,
0.6616231 ,	-1.8980618 ,	-3.5863128 ,	-2.049999 ,	0.11113743,
-2.0100012 ,	0.91014284,	-1.1377766 ,	0.30864185,	0.8823487 ,
-1.5351313 ,	4.9388237 ,	1.6379622 ,	1.251249 ,	1.8976227 ,
-0.77638566,	-0.17837228,	1.8998926 ,	-0.8797592 ,	-0.77389985,
-0.19354557,	-0.14190447,	0.15318388,	-1.0070832 ,	0.3741701 ,
-2.8941076 ,	0.9670155 ,	-1.7984045 ,	-1.1186454 ,	1.0722593 ,
3.4040382 ,	0.38004097,	1.4921545 ,	-0.0391783 ,	3.8353264 ,
0.2084171 ,	1.266672 ,	1.8079621 ,	-2.3702457 ,	-0.04794558,
0.3776366,	-0.42777508,	-0.809167 ,	0.7592459,	-1.5167016 ,
0.2553154 ,	1.1878173 ,	-2.2171407 ,	-0.76328766,	2.2422533],
dtype=float32)			

Compute the average word vector for all companies' business descriptions:

```
# Compute sentence vectors
vecs = np.array([nlp(bus[permno]).vector for permno in bus.keys()])
store['vectors'] = vecs
```

```
vecs = store['vectors']
```

```
# Distance matrix
n = len(bus)
distances = np.zeros((n, n))
for row in range(n):
    for col in range(row, n):
        distances[row, col] = spatial.distance.cosine(vecs[row], vecs[col])
        distances[col, row] = distances[row, col]
```

Identify companies with the most similar business descriptions:

```
def most_similar(p):
    dist = distances[permnos.index(p)]
    dist[permnos.index(p)] = max(dist)  # to ignore own distance
    return univ.loc[permnos[np.argmin(dist)]]
for name in ['NVIDIA', 'APPLE COMPUTER', 'JNJ', 'EXXON MOBIL', 'AMERICAN EXPRESS']:
    p = find(name)['permno'].iloc[-1]
```

```
print(f"{most_similar(p)['comnam']}' is most similar to '{name}'")
```

QUALCOMM INC' is most similar to 'NVIDIA' SALESFORCE INC' is most similar to 'APPLE COMPUTER' PFIZER INC' is most similar to 'JNJ' PIONEER NATURAL RESOURCES CO' is most similar to 'EXXON MOBIL' U S BANCORP DEL' is most similar to 'AMERICAN EXPRESS'

27.3 Dimensionality reduction

27.3.1 t-SNE visualization

T-distributed Stochastic Neighbor Embedding (t-SNE) visualizes high-dimensional data by converting similarities between points into joint probabilities and minimizing the Kullback-Leibler divergence between the high-dimensional and lower-dimensional representations. t-SNE preserves local structures, making it effective for clustering and uncovering hidden patterns in business descriptions.

t-SNE in scikit-learn

```
from sklearn.manifold import TSNE
Z = TSNE(n_components=2, perplexity=10, random_state=42)\
    .fit_transform(vecs)
```

Reduce business description vectors to 2D using t-SNE and label points with ticker symbols:

```
fig, ax = plt.subplots(figsize=(10, 8))
ax.scatter(Z[:, 0], Z[:, 1], color="CO", alpha=.3)
for text, x, y in zip(tickers, Z[:, 0], Z[:, 1]):
    ax.annotate(text=text, xy=(x, y), fontsize='small')
ax.set_title(f"t-SNE visualization of largest decile stocks ({enddate//10000})")
plt.tight_layout()
```


27.3.2 DBSCAN clustering

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an unsupervised clustering algorithm that detects clusters of varying densities and identifies outliers. Unlike k-means, it does not require a predefined number of clusters. Instead, it uses two parameters: epsilon (ϵ) and the minimum number of points required to form a dense region.

```
# eps is the most important parameter for DBSCAN
eps = 4
db = cluster.DBSCAN(eps=eps)  # default eps
db.fit(Z)
n_clusters = len(set(db.labels_).difference({-1}))
n_noise = np.sum(db.labels_ == -1)
DataFrame(dict(clusters=n_clusters, noise=n_noise, eps=eps), index=['DBSCAN'])
```

```
clusters noise eps
DBSCAN 12 19 4
```

Visualize DBSCAN clusters in 2D space. Display outlier ticker symbols with larger font sizes:

```
cmap = ColorMap(n_clusters)
fig, ax = plt.subplots(figsize=(10, 8))
# plot core samples with larger marker size
ax.scatter(Z[db.core_sample_indices_, 0],
           Z[db.core_sample_indices_, 1],
           c=cmap[db.labels_[db.core_sample_indices_]],
           alpha=.1, s=100, edgecolors=None)
# plot non-core samples with smaller marker size
non_core = np.ones_like(db.labels_, dtype=bool)
non_core[db.core_sample_indices_] = False
non_core[db.labels_ < 0] = False</pre>
ax.scatter(Z[non_core, 0], Z[non_core, 1], c=cmap[db.labels_[non_core]],
           alpha=.1, s=20, edgecolors=None)
# plot noise samples
ax.scatter(Z[db.labels_ < 0, 0], Z[db.labels_ < 0, 1], c="darkgrey",</pre>
           alpha=.5, s=20, edgecolors=None)
# annotate with tickers not in core samples
for i, (t, c, xy) in enumerate(zip(tickers, db.labels_, Z)):
    if i in db.core_sample_indices_:
       ax.annotate(text=t, xy=xy+.5, color=cmap[c], fontsize='xx-small')
    elif c == -1:
        ax.annotate(text=t, xy=xy+.5, color='black', fontsize='medium')
    else:
        ax.annotate(text=t, xy=xy+.5, color=cmap[c], fontsize='medium')
ax.set_title(f"Largest decile stocks ({enddate//10000})")
plt.tight_layout()
```


List companies tagged as noisy samples:

```
print("Samples tagged as noise:")
univ.loc[np.array(permnos)[db.labels_ < 0]].sort_values('naics')</pre>
```

Samples tagged as noise:

	cap	capco	decile	nyse	siccd	prc	naics	\
permno								
75241	5.246653e+07	5.246653e+07	1	True	1311	224.88	211120	
21207	4.770164e+07	4.770164e+07	1	True	1041	41.39	212220	
81774	6.104440e+07	6.104440e+07	1	True	1021	42.57	212230	
82800	6.654158e+07	6.654158e+07	1	True	1021	86.07	212230	
69796	4.440053e+07	4.440053e+07	1	True	2084	241.75	312130	
11850	4.005332e+08	4.005332e+08	1	True	2911	99.98	324110	
78975	1.749684e+08	1.749684e+08	1	False	7370	625.03	513210	
26403	1.652592e+08	1.652592e+08	1	True	4833	90.29	516120	
44644	9.568078e+07	9.568078e+07	1	False	7374	232.97	518210	
47896	4.917605e+08	4.917605e+08	1	True	6021	170.10	522110	
90993	7.350871e+07	7.350871e+07	1	True	6231	128.43	523210	
89626	7.565405e+07	7.565405e+07	1	False	6200	210.60	523210	
17478	1.395567e+08	1.395567e+08	1	True	6282	440.52	523930	
61621	4.285840e+07	4.285840e+07	1	False	8700	119.11	541219	

							(continued from previous pa	age)
13628	5.769654e+07	5.769654e+07	1	False	7372	276.06	541511	
48506	7.147248e+07	7.147248e+07	1	True	7323	390.56	561450	
92402	4.473782e+07	4.473782e+07	1	True	7389	565.65	561499	
85913	6.551968e+07	6.551968e+07	1	False	7011	225.51	721110	
14338	4.669516e+07	4.669516e+07	1	True	7011	182.09	721110	
		comnam	ı ti	cker				
permno								
75241	PIONEER N	ATURAL RESOURCES CO)	PXD				
21207		NEWMONT CORP		NEM				
81774	F	REEPORT MCMORAN INC	:	FCX				
82800	S	OUTHERN COPPER CORF		SCCO				
69796	CONST	ELLATION BRANDS INC	:	STZ				
11850		EXXON MOBIL CORF		XOM				
78975		INTUIT INC	:	INTU				
26403		DISNEY WALT CC)	DIS				
44644	AUTOMATIC	DATA PROCESSING INC	:	ADP				
47896		JPMORGAN CHASE & CC)	JPM				
90993	INTERCONTINEN	TALEXCHANGE GRP INC	:	ICE				
89626		C M E GROUP INC	:	CME				
17478		S & P GLOBAL INC	:	SPGI				
61621		PAYCHEX INC	:	PAYX				
13628		WORKDAY INC	:	WDAY				
48506		MOODYS CORF		MCO				
92402		M S C I INC		MSCI				
85913	MARRIOTT IN	TERNATIONAL INC NEW	I	MAR				
14338	HILTON WOR	LDWIDE HOLDINGS INC		HLT				

27.3.3 UMAP vizualization

UMAP (Uniform Manifold Approximation and Projection) is a dimensionality reduction technique that constructs a high-dimensional graph of data points and optimizes a lower-dimensional representation while preserving essential relationships. Compared to t-SNE, UMAP is faster, scales better for large datasets, and retains more global structure.

UMAP Documentation

```
import umap
Z = umap.UMAP(n_components=2, n_jobs=1, min_dist=0.0, random_state=42)\
    .fit_transform(vecs)
```

```
fig, ax = plt.subplots(figsize=(10, 8))
ax.scatter(Z[:, 0], Z[:, 1], color="C0", alpha=.3)
for text, x, y in zip(tickers, Z[:, 0], Z[:, 1]):
    ax.annotate(text=text, xy=(x, y), fontsize='small')
ax.set_title(f"UMAP visualization of largest decile stocks ({enddate//10000})")
plt.tight_layout()
```


UMAP visualization of largest decile stocks (2024)

27.3.4 HDBSCAN clustering

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) extends DBSCAN by varying the epsilon parameter and optimizing cluster stability. This makes it more robust to variations in density and parameter selection.

```
# eps is the most important parameter for DBSCAN
hdb = cluster.HDBSCAN()
hdb.fit(Z)
n_clusters = len(set(hdb.labels_).difference({-1}))
n_noise = np.sum(hdb.labels_ == -1)
DataFrame(dict(clusters=n_clusters, noise=n_noise), index=['HDBSCAN'])
```

```
clusters noise
HDBSCAN 14 32
```

Visualize HDBSCAN clusters in 2D space. Display outlier ticker symbols with larger font sizes.

```
cmap = ColorMap(n_clusters)
fig, ax = plt.subplots(figsize=(10, 8))
# plot core samples with larger marker size
```


List companies tagged as noisy samples

```
print("Samples tagged as noise:")
univ.loc[np.array(permnos)[hdb.labels_ < 0]].sort_values('naics')</pre>
```

Samples tagged as noise:

	cap	capco	decile	nyse	siccd	prc	naics	\backslash
permno								
69796	4.440053e+07	4.440053e+07	1	True	2084	241.75	312130	
11850	4.005332e+08	4.005332e+08	1	True	2911	99.98	324110	
36468	7.983580e+07	7.983580e+07	1	True	2851	311.90	325510	
70578	5.655752e+07	5.655752e+07	1	True	2841	198.35	325611	
18163	3.453781e+08	3.453781e+08	1	True	2844	146.54	325620	
18729	6.563098e+07	6.563098e+07	1	True	2844	79.71	325620	
22103	5.548783e+07	5.548783e+07	1	True	3491	97.33	332911	
19350	1.120656e+08	1.120656e+08	1	True	3523	399.87	333111	
14702	1.345954e+08	1.345954e+08	1	False	3550	162.07	333248	
41355	5.918889e+07	5.918889e+07	1	True	3593	460.70	333995	
56573	7.881408e+07	7.881408e+07	1	True	3569	261.94	333999	
12490	1.493406e+08	1.493406e+08	1	True	3571	163.55	334111	
77338	5.827867e+07	5.827867e+07	1	False	3823	545.17	334513	
22592	6.037929e+07	6.037929e+07	1	True	3841	109.32	339112	
66181	3.449080e+08	3.449080e+08	1	True	5211	346.55	444110	
84788	1.556169e+09	1.556169e+09	1	False	7370	151.94	454110	
48725	1.497292e+08	1.497292e+08	1	True	4011	245.62	482111	
64311	5.345403e+07	5.345403e+07	1	True	4731	236.38	488510	
60628	6.321543e+07	6.321543e+07	1	True	4513	252.97	492110	
26403	1.652592e+08	1.652592e+08	1	True	4833	90.29	516120	
47896	4.917605e+08	4.917605e+08	1	True	6021	170.10	522110	
92108	9.302455e+07	9.302455e+07	1	True	6282	130.92	523940	
87842	4.894876e+07	4.894876e+07	1	True	6311	66.13	524113	
57904	4.821135e+07	4.821135e+07	1	True	6321	82.50	524114	
59459	4.350773e+07	4.350773e+07	1	True	6331	190.49	524126	
64390	9.318533e+07	9.318533e+07	1	True	6331	159.28	524126	
66800	4 756321e+07	4 756321e+07	1	True	6331	67 75	524126	
38093	4 855159e+07	4 855159e+07	1	True	6411	224 88	524210	
45751	9 342235e+07	9 342235e+07	1	True	6411	189 47	524210	
89393	2 107022e+08	2 1070220+08	1	False	7841	486 88	532282	
13511	9 297566e+07	9 297566e+07	1	False	7371	294 88	541511	
11955	7 2137000+07	7 2137000+07	1	True	1953	179 10	562219	
11999	1.213/00000/07	1.213/00010/	T	IIUC	4955	1/0.10	502215	
		C	omnam t	icker				
permno		-						
69796	CONST	ELLATION BRAND	S INC	ST7				
11850	001101	EXXON MOBIL	CORP	XOM				
36468		SHERWIN WILLIA	MS CO	SHW				
70578		ECOLAI	B INC	ECL				
18163		PROCTER & GAMB	LE CO	PG				
18729	C	OLCATE DALMOLT	VE CO	CT				
22102	C	EMEDSON FLECTD		EMD				
10250		DEEDE						
14702	כו ע	DITED MATEDIAL	& CO	DE				
14702	AP	PLIED MAIERIAL	SINC	AMAI				
41355	P 	AKKEK HANNIFIN	CORP	PH				
262/3		NOIS TOOL WORK	5 INC	TIM				
12490	INTERNATIONAL	BUSINESS MACH	S COR	TRW				
//338	ROP	ER TECHNOLOGIE	S INC	ROP				
22592			3M CO	MMM				
66181		HOME DEPO	I INC	HD				
84788		AMAZON CO	M INC	AMZN				
48725		UNION PACIFIC	CORP	UNP				

64311	NORFOLK SOUTHERN CORP	NSC
60628	FEDEX CORP	FDX
26403	DISNEY WALT CO	DIS
47896	TPMORGAN CHASE & CO	.TPM
92108	BLACKSTONE INC	BX
87842	METLIFE INC	MET
57904	AFLAC INC	AFT.
59459	TRAVELERS COMPANIES INC	TRV
64390	PROGRESSIVE CORP OH	PGR
66800	AMERICAN INTERNATIONAL GROUP INC	AIG
38093	GALLAGHER ARTHUR J & CO	AJG
45751	MARSH & MCLENNAN COS INC	MMC
89393	NETFLIX INC	NFLX
13511	PALO ALTO NETWORKS INC	PANW
11955	WASTE MANAGEMENT INC DEL	WM

References:

Greg Durrett, 2023, "CS388 Natural Language Processing course material", retrieved from https://www.cs.utexas.edu/~gdurrett/courses/online-course/materials.html

Text-Based Network Industries and Endogenous Product Differentiation. Gerard Hoberg and Gordon Phillips, 2016, Journal of Political Economy 124 (5), 1423-1465.

Product Market Synergies and Competition in Mergers and Acquisitions: A Text-Based Analysis. Gerard Hoberg and Gordon Phillips, 2010, Review of Financial Studies 23 (10), 3773-3811.

(continued from previous page)

CHAPTER

TWENTYEIGHT

MACHINE LEARNING: CLASSIFICATION

When you come to a fork in the road, take it - Yogi Berra

We apply supervised learning models to a text classification task, using natural language processing (NLP) techniques to analyze business descriptions from the latest 10-K filings. Our goal is to predict firms ' industry classifications, evaluating models such as Naive Bayes, Perceptron, Support Vector Machine (SVM), and Logistic Regression. We assess model performance using metrics like the confusion matrix and examine interpretability by visualizing feature importances.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import time
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.feature_extraction import text
from sklearn.linear_model import LogisticRegression, Perceptron
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics
from nltk.tag import pos_tag
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.unstructured import Edgar
from finds.structured import BusDay, CRSP, PSTAT
from finds.readers import Sectoring
from finds.utils import Store
from secret import paths, credentials, CRSP_DATE
# %matplotlib qt
VERBOSE = 0
store = Store('assets', ext='pkl')
```

```
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
```

28.1 Text classification

Hoberg and Phillips (2016) proposed a system for classifying firms based on their business descriptions in 10-K filings, using these descriptions to measure firm similarity. We extend their analysis for text-based industry classification, focusing on U.S.-domiciled common stocks. The text data for each firm is drawn from the most recent year's Business Description section of their 10-K filings.

```
# Retrieve universe of stocks, as of beginning of latest year
univ = crsp.get_universe(bd.endyr(CRSP_DATE, -1))
```

```
# Construct table to lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)
```

```
# Construct table to lookup ticker symbols
ticker = crsp.build_lookup(source='permno', target='ticker', fillna="")
univ['ticker'] = ticker(univ.index)
```

```
# Construct table to lookup sic codes from Compustat, and map to FF 10-sector code
sic = pstat.build_lookup(source='lpermno', target='sic', fillna=0)
industry = Series(sic[univ.index], index=univ.index)
industry = industry.where(industry > 0, univ['siccd'])
sectors = Sectoring(sql, scheme='codes10', fillna='')  # supplement from crosswalk
univ['sector'] = sectors[industry]
```

28.1.1 Text pre-processing

The pre-processing step involves several key operations to clean and prepare the text for analysis. We begin by extracting the Business Description text from the most recent 10-K filings of all stocks in our dataset.

• The text is then **lemmatized** using WordNet's built-in morphy function, which reduces words to their base or root form. This step helps standardize the text by consolidating variations of words into their common form.

```
# !nltk.download('averaged_perceptron_tagger')
lemmatizer = WordNetLemmatizer()
```

```
100%| 4488/4488 [11:25<00:00, 6.55it/s]
```

• Next, we apply the **part-of-speech** (**POS**) **tagger** from the nltk library, retaining only nouns, which are the most informative about for industry classification tasks.

```
bus = {}
for permno in tqdm(found.index):
```

```
bus = store.load('nouns')
permnos = list(bus.keys())
labels = univ.loc[permnos, 'sector']
data = [" ".join(list(nouns)) for nouns in bus.values()]
classes = sorted(np.unique(labels))
```

• Finally, we split the corpus into training and testing samples, stratifying the data is to maintain the distribution of class labels in both sets.

Stratified Train/Test Split by Event

	n_train	n_test	frac_train	frac_test
sector				
Hlth	657	164	0.24	0.24
Other	612	153	0.22	0.22
HiTec	554	139	0.20	0.20
Manuf	275	69	0.10	0.10
Shops	246	62	0.09	0.09
Durbl	131	33	0.05	0.05
NoDur	114	28	0.04	0.04
Enrgy	81	20	0.03	0.03
Utils	72	18	0.03	0.03
Telcm	37	9	0.01	0.01

28.1.2 Text vectorization

After pre-processing the text, we convert the textual data into numerical features that can be fed into machine learning models. This is achieved through the **Term Frequency-Inverse Document Frequency (TF-IDF)** method. TF-IDF weights terms based on their importance in a document relative to their frequency in a collection of documents (corpus).

- Term Frequency (TF) measures how often a word appears in a document. A higher frequency suggests the word is more important within that document.
- **Inverse Document Frequency (IDF)** adjusts the weight of a term based on its rarity across the entire corpus. Terms that appear frequently across many documents are given less weight, while terms that appear less frequently are given greater importance.

To focus on the most relevant and informative words, we filter out extremely common words that appear in more than 50% of the documents (using $max_df=0.5$), exclude rare words that appear in fewer than 200 documents (using $min_df=200$), and limits the vocabulary to the 10,000 most frequent remaining terms ($max_features=10000$).

```
# Tfidf vectorizor
max_df, min_df, max_features = 0.5, 10, 20000
tfidf_vectorizer = text.TfidfVectorizer(
    encoding='latin-1',
    strip_accents='unicode',
    lowercase=True,
    #stop_words=stop_words,
    max_df=max_df,
    min_df=min_df,
    max_features=max_features,
    token_pattern=r'\b[a-z_]+\b',
)
x_train = tfidf_vectorizer.fit_transform(X_train)
                                                     # sparse array
x_test = tfidf_vectorizer.transform(X_test)
feature_names = tfidf_vectorizer.get_feature_names_out()
print("n_sample x n_features")
DataFrame([[x_train.shape, x_test.shape]],
          index=['data shape:'],
          columns=['train', 'test'])
```

n_sample x n_features

train test data shape: (2779, 10060) (695, 10060)

28.2 Classification models

In machine learning, there are generally two types of approaches for classification tasks:

- Generative models estimate a probability distribution and define the classifier based on these estimates. An example of this is the Naive Bayes classifier.
- **Discriminative models** directly define a decision boundary between classes. Examples of discriminative models include Logistic Regression, Perceptron, and Support Vector Machines (SVM).

Define a helper function to compute and save accuracy scores for both the training and testing samples.
```
results = dict()
```

28.2.1 Naive Bayes

The Naive Bayes classifier is a simple yet effective method for text classification. It assumes that the features (words) are conditionally independent given the class, meaning that the occurrence of one word in a document does not affect the occurrence of another. Despite this strong assumption, Naive Bayes performs surprisingly well on many real-world classification tasks.

- **Binomial Naive Bayes** is used for binary classification problems, where each document is assigned to one of two classes.
- Multinomial Naive Bayes is typically used for multi-class classification, where documents can belong to more than two classes.

Since Naive Bayes relies on the multiplication of probabilities for each feature, it can encounter problems when a feature has a zero probability in the training set. This is addressed through **Laplace smoothing**, which adds a small constant to all feature counts to avoid zero probabilities.

The basic formula for Naive Bayes classification is: $P(f_1, f_2, ..., f_n | c) = P(f_1 | c) \cdot P(f_2 | c) \cdot ... \cdot P(f_n | c)$

where $P(f_i|c)$ is the probability of feature f_i occurring in class c. The classification decision is made by selecting the class that maximizes the likelihood of the observed features, i.e.: $\hat{c} = \arg \max_c \left(\log P(c) + \sum_{i=1}^n \log P(f_i|c)\right)$

where the maximum likelihood estimate of the probability of frequency of word w_i is $P(w_i|c) = \frac{\operatorname{count}(w_i,c)}{\sum_{w \in V} \operatorname{count}(w,c)}$

```
clf = MultinomialNB(alpha=1.0)
tic = time.time()
clf.fit(x_train, y_train)
toc = time.time() - tic
update_results('naivebayes', clf, toc)
```

Accuracy

	train_score	test_score	test_time	train_time
naivebayes	0.751709	0.738129	0.002441	0.013695

28.2.2 Perceptron

The Perceptron is a linear classifier that updates weights based on classification errors. It uses a 0-1 loss function, which assigns a loss of zero for correct classifications and a loss of one for incorrect ones. The update rule for the Perceptron is as follows:

• If the predicted label \hat{y} is different from the true label y, the weight vector w is updated: $w \leftarrow w + \alpha x(y - \hat{y})Where$ \alpha is the learning rate and x \$ is the feature vector of the document.

In multiclass classification, the **One-vs-Rest** (**OVR**) approach is used, where the Perceptron is trained to distinguish between each class and the rest of the classes.

Accuracy

	train_score	test_score	test_time	train_time
naivebayes	0.751709	0.738129	0.002441	0.013695
perceptron	0.949982	0.761151	0.004099	0.866820

28.2.3 Support Vector Machine

Support Vector Machines (SVM) are powerful classifiers that work by finding the decision boundary that maximizes the margin between classes. The decision boundary is chosen to minimize classification errors, and SVM uses **hinge loss** to penalize misclassifications: $Loss = max(0, 1 - y(w \cdot x))$

SVM can handle both linear and non-linear decision boundaries by using different kernel functions. In this analysis, we use the **LinearSVC** kernel, which optimizes the classification with a linear decision boundary. For multiclass classification, SVM uses the One-vs-Rest (OVR) method.

Accuracy

	train_score	test_score	test_time	train_time
naivebayes	0.751709	0.738129	0.002441	0.013695
perceptron	0.949982	0.761151	0.004099	0.866820
linearsvc	0.990284	0.831655	0.002280	0.348787

28.2.4 Logistic Regression

Logistic Regression is a widely used model for binary and multi-class classification tasks. It uses **cross-entropy loss** to measure the difference between predicted probabilities and actual class labels. The logistic regression model updates weights iteratively based on the gradient of the loss function:

• For a binary classification problem, the probability of class 1 is given by: $P(y=1|x) = \frac{1}{1+e^{-wx}}$

The update step is:

- $P(y=1|x) \leftarrow 1/(1+e^{-wx})$
- $w \leftarrow w + \alpha x (1 P(y = 1|x))$ if y = 1

•
$$w \leftarrow w - \alpha x (1 - P(y = 0|x))$$
 if $y = 0$

 $\Leftrightarrow w \leftarrow w + \alpha \; x \; (y - P(y = 1|x)) \text{ where } y \in \{0, 1\}$

In multiclass problems, **softmax** is used to generalize logistic regression, providing a probability distribution over all classes. The model's weights are updated using gradient descent to minimize the cross-entropy loss.

Accuracy

train_score	test_score	test_time	train_time
0.751709	0.738129	0.002441	0.013695
0.949982	0.761151	0.004099	0.866820
0.990284	0.831655	0.002280	0.348787
0.896366	0.833094	0.005731	3.705192
	train_score 0.751709 0.949982 0.990284 0.896366	train_score test_score 0.751709 0.738129 0.949982 0.761151 0.990284 0.831655 0.896366 0.833094	train_score test_score test_time 0.751709 0.738129 0.002441 0.949982 0.761151 0.004099 0.990284 0.831655 0.002280 0.896366 0.833094 0.005731

28.3 Evaluation

28.3.1 Overfitting

Evidence of overfitting can be observed when a model performs well on the training data but poorly on the test data. In such cases, the model may have learned to memorize the training data instead of generalizing to new examples. Overfitting can be mitigated by using techniques like cross-validation and regularization.

28.3.2 Accuracy Metrics

To evaluate model performance, we consider several metrics:

- Precision: The proportion of true positive predictions among all positive predictions.
- Recall: The proportion of true positive predictions among all actual positive cases.
- **F1 Score**: The harmonic mean of precision and recall, which balances the two metrics and provides a single score for model performance.

In multiclass and multilabel scenarios, the F1 score is computed as a weighted average of the F1 scores for each class.

```
# Compute precision, recall, f1 and confusion matrix
res = DataFrame.from_dict(results, orient='index')
models = {k: v['model'] for k, v in results.items()}
scores, cf_test, cf_train = {}, {}, {}
for ifig, (name, clf) in enumerate(models.items()):
    train_pred = clf.predict(x_train)
    test_pred = clf.predict(x_test)
    scores[name] = {
        'train': metrics.precision_recall_fscore_support(
           y_train, train_pred, average='macro')[:3],
        'test': metrics.precision_recall_fscore_support(
            y_test, test_pred, average='macro')[:3]
    }
    cf = DataFrame(confusion_matrix(y_train, train_pred, labels=classes),
                   index=pd.MultiIndex.from_product([['Actual'], classes]),
                   columns=pd.MultiIndex.from_product([['Predicted'], classes]))
    cf_train[name] = cf
    cf = DataFrame(confusion_matrix(y_test, test_pred, labels=classes),
                   index=pd.MultiIndex.from_product([['Actual'], classes]),
                   columns=pd.MultiIndex.from_product([['Predicted'], classes]))
    cf_test[name] = cf
```

	Precision		Recall		F1-score		
	train	test	train	test	train	test	
naivebayes	0.758517	0.747060	0.522357	0.498908	0.541932	0.513666	

perceptron0.9420790.7320100.9532850.7658790.9464630.741730linearsvc0.9901330.8092240.9933920.8116190.9917290.806204logistic0.9010010.8233110.8446400.7933190.8679060.805434

28.3.3 Confusion Matrix

A confusion matrix provides a detailed breakdown of the classification results, showing the true positive, false positive, true negative, and false negative counts for each class.

naivebayes Train Set Durbl Enrgy - 400 HiTec Hlth - 300 Manuf Actual NoDur - 200 Other Shops - 100 Telcm Utils 0 NoDur Durbl Enrgy HiTec Hith Manuf Other Shops Telcm Utils Predicted

Chapter 28. Machine Learning: Classification

perceptron Train Set Durbl Enrgy - 400 HiTec Hlth - 300 Manuf Actual NoDur - 200 Other Shops - 100 Telcm Utils 0 Hith NoDur Utils Durbl Enrgy HiTec Manuf Other Shops Telcm Predicted perceptron Test Set Durbl - 80 Enrgy - 70 HiTec - 60 Hlth - 50 Manuf Actual - 40 NoDur Other - 30 Shops - 20 Telcm - 10 Utils 0 Utils Durbl Hith Other , HiTec Manuf NoDur Shops . Telcm Enrgy Predicted

28.3.4 Feature importance

Feature importance can be assessed by examining the weights or probabilities assigned to each term in the model, allowing us to visualize the most important terms for each class. For Naive Bayes, the weights can be exponentiated to probabilities

Word clouds, facilitated by packages such as WordCloud, can help visualize the most frequent and important words in the dataset, highlighting the key terms that influence classification decisions.

```
wc = WordCloud(height=500, width=500, prefer_horizontal=1.0, colormap='rainbow')
top_n = 10
for topic in classes:
                       # loop over classes
    fig, axes = plt.subplots(ncols=len(models), nrows=1, figsize=(10, 4))
    fig.suptitle(topic)
    for imodel, (ax, name, clf) in enumerate(zip(
            axes, models.keys(), models.values())):
        assert hasattr(clf, 'coef_') or hasattr(clf, 'feature_log_prob_')
        k = clf.classes_.tolist().index(topic)
        #print("Event %d %s:" % (topic, events_[clf.classes_[topic]]))
        if hasattr(clf, 'coef_'):
            importance = clf.coef_[k, :]
        else:
            importance = np.exp(clf.feature_log_prob_[k, :])
        words = {feature_names[i]: importance[i]
                 for i in importance.argsort()[-top_n:]}
        ax.imshow(wc.generate_from_frequencies(words))
        #Series(words).plot(kind='barh', color=f"C{imodel}", ax=ax)
        #ax.yaxis.set_tick_params(labelsize=7)
        ax.axes.yaxis.set_visible(False) # make axes ticks invisible
        ax.xaxis.set_ticks([])
        ax.xaxis.set_ticklabels([])
        ax.set title(name, fontdict={'fontsize':10})
    fig.tight_layout()
plt.close()
```

Durbl

Enrgy

HiTec

Hlth

Manuf

NoDur

Other

Shops

Telcm

naivebayes linearsvc logistic perceptron programming е е S а oadca revolutior connectivity br oadcast video radio cable cab. iewer ad proadcast voice voice nn

References:

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. "An Introduction to Statistical Learning with Applications in R". New York, Springer, 2013.

Gerard Hoberg and Gordon Phillips, 2016, Text-Based Network Industries and Endogenous Product Differentiation.Journal of Political Economy 124 (5), 1423-1465.

Gerard Hoberg and Gordon Phillips, 2010, Product Market Synergies and Competition in Mergers and Acquisitions: A Text-Based Analysis. Review of Financial Studies 23 (10), 3773-3811.

CHAPTER

TWENTYNINE

MACHINE LEARNING: REGRESSION

Whereof what' s past is prologue - Shakespeare

We explore supervised machine learning and regression models for macroeconomic forecasting, with a focus on predicting the industrial production index (INDPRO) using a wide range of economic indicators. To improve generalization and predictive performance, we investigate methods such as subset selection, penalized regression, decision trees, and ensemble learning, aiming to strike a balance between model complexity and accuracy.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.metrics import mean_squared_error
from finds.readers.alfred import Alfred, fred_md
from finds.utils import plot_date
from secret import credentials
# %matplotlib qt
VERBOSE = 0
```

29.1 Macroeconomic forecasting

For the candidate regression models, the independent variables consist of up to three lags of each economic indicator. The objective is to predict the rate of change in the industrial production index (INDPRO) for the following month while minimizing the **mean squared error (MSE)** loss function, which is appropriate for continuous-valued targets.

Monthly macroeconomic data is retrieved from FRED-MD, with any missing recent values supplemented from other public sources. Suggested transformations are applied to each time series to ensure stationarity. The pre-2023 period is used for training, while the post-2023 period is reserved for testing.

```
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=-1)
```

```
# Get latest FRED-MD data
freq = 'M'
beg = 19640701 # 19620701
df, t = fred_md() #
transforms = t['transform']
end = df.index[-2]
split_date = end - 20000
print("Train/test date ranges:", beg, split_date, end)
```

FRED-MD vintage: monthly/current.csv

```
# Splice in common updates: source of PE ratio, Commercial Paper
for col in ['S&P PE ratio']:
    df[col] = alf.splice(col)
df['COMPAPFF'] = df['COMPAPFF'].ffill()  # forward fill 20200430
df['CP3M'] = df['CP3M'].ffill()  # forward fill 20200430
```

Train/test date ranges: 19640701 20221231 20241231

```
# Apply time series transformations according to FRED-MD
transformed = []
for col in df.columns:
    transformed.append(alf.transform(df[col], tcode=transforms[col], freq=freq))
data = pd.concat(transformed, axis=1).iloc[2:]
c = list(data.columns)
data = data.loc[(data.index >= beg) & (data.index <= end)]</pre>
```

```
# Drop columns with missing data
missing = []
for series_id in df.columns:
    g = data[series_id].notna()
    missing.extend([(date, series_id) for date in data.index[~g]])
missing_per_row = data.isna().sum(axis=1)
missing = DataFrame.from_records(missing, columns=['date', 'series_id'])
print('original:', data.shape, 'dropna:', data.dropna(axis=1).shape)
data = data.dropna(axis=1)  # drop columns where missing values
print(missing['series_id'].value_counts())
data
```

```
original: (726, 126) dropna: (726, 122)
series_id
ACOGNO 332
UMCSENT 163
TWEXAFEGSMTH 103
ANDENO 44
Name: count, dtype: int64
```

	RPI	W875RX1	DPCERA3M086SBEA	CMRMTSPI	RETAIL	INDPRO	\setminus
19640731	0.005422	0.005404	0.007343	0.019986	0.004947	0.006552	
19640831	0.005644	0.006061	0.005992	-0.020139	0.013974	0.006506	
19640930	0.004123	0.004205	-0.004164	0.027173	0.009372	0.003703	
19641031	0.000555	0.000650	0.006499	-0.013866	-0.039421	-0.013947	
19641130	0.006703	0.007352	-0.009111	-0.009745	0.009335	0.030429	
20240831	0.000066	-0.000117	0.000711	0.000375	-0.001144	0.004869	
20240930	0.001458	0.000240	0.005257	0.007155	0.008903	-0.004205	
20241031	0.003690	0.003488	0.001757	-0.001714	0.005575	-0.004547	
20241130	0.002184	0.002756	0.004346	0.003993	0.006484	-0.001453	
20241231	0.001234	0.001391	0.005441	0.006665	0.007175	0.009853	
	IPFPNSS	IPFINAL	IPCONGD IPDCC	NGD	DDURRG3M086	6sbea \	
19640731	0.010342	0.011313	0.014079 0.016	438	0.00	0667	
19640831	-0.000936	-0.000939	-0.001865 0.007	219	-0.00	02031	

19640930	-0.004690 -0.0037	59 -0.011267	-0.02365	56	0.000728	
19641031	-0.010404 -0.0132	69 -0.020030	0 -0.10987	75	-0.001712	
19641130	0.029043 0.0319	29 0.036884	0.12812	21	0.004137	
• • •		••••••	• • •		• • •	
20240831	0.004515 0.0070	94 0.009218	3 0.04754	17	0.000600	
20240930	-0.005809 -0.0089	28 -0.002317	-0.00144	11	0.005721	
20241031	-0.007220 -0.0109	70 -0.006158	3 -0.02859	98	-0.002965	
20241130	-0.001180 -0.0001	55 -0.004246	0.018/9	94	-0.000986	
20241231	0.00/300 0.0065	69 0.003355	9 -0.01331	11	-0.004215	
	DNDGRG3M086SBEA	DSERRG3M086	SBEA CES	5060000008	CES2000000008	\
19640731	-0.000369	-0.00	0090	-0.000016	0.003231	
19640831	-0.002398	0.00	1406	-0.000016	-0.003263	
19640930	0.003749	-0.00	1674	-0.000015	-0.006462	
19641031	-0.002344	0.00	0525	-0.011757	0.016093	
19641130	0.000985	-0.00	0352	0.011772	-0.019272	
20240831	-0.002222	-0.00	0061	-0.002580	0.001376	
20240930	-0.002598	0.00	0553	0.004137	0.001906	
20241031	0.003609	0.00	0788	-0.003839	-0.005006	
20241130	0.000117	-0.00	02176	-0.000639	-0.002760	
20241231	0.004218	0.00	2086	0.002521	0.005776	
		TCOINUENM	DTCTUENM	TNUTEOT	VINCIO	
19640731	_0_00/158	_0 003798 _	DICIHENM	_0 002831	11 2238	
196/0831	0.004130	-0 005958 -	-0 001818	0.002031	13 6898	
19640930	0.004141	-0 011142 -	-0 003802	0.011073	10 5167	
19641031	-0.024760	0 005974 -	-0 000704	-0 003579	11 0924	
19641130	0.024828	-0.009946 -	-0.002806	-0.002694	12.0087	
20240831	-0.006110	-0.001974 -	-0.000766	0.001445	19.6750	
20240930	0.004652	-0.002368 -	-0.001586	-0.001644	17.6597	
20241031	-0.002154	-0.000146	0.003227	-0.000473	19.9478	
20241130	0.003190	-0.000872 -	-0.001679	-0.011753	15.9822	
20241231	-0.001439	0.002963	0.002748	0.002421	15.6997	
[726 rows	s x 122 columns]					

Data beyond the split date is excluded from model training to ensure a proper evaluation of generalization performance.

```
# Split time series train and test set
def ts_split(X, Y, end=split_date):
    """helper to split train/test time series"""
    return X[Y.index<=end], X[Y.index>end], Y[Y.index<=end], Y[Y.index>end]
```

```
def columns_map(columns, lag):
    """helper to create lagged column names"""
    return {col: col + '_' + str(lag) for col in columns}
```

```
def columns_unmap(columns):
    """helper to extract lagged column names"""
    cols = [col.split('_') for col in columns]
    return [col[0] for col in cols], [int(col[1]) for col in cols]
```

```
# new table to collect final fitted models
test = Series(name='test', dtype=float)  # collect test and train errors
train = Series(name='train', dtype=float)
final_models = {}
```

29.2 Regression models

Complex regression models with numerous features or parameters risk overfitting, capturing noise rather than true patterns. Several techniques help mitigate overfitting and improve model generalization:

- Cross-validation: Hyperparameter tuning using cross-validation helps ensure models generalize well across different data subsets. K-fold Cross-Validation (K-fold CV) divides the dataset into K parts, training the model on K 1 sections and testing it on the remaining part, iterating through all folds and averaging results. Leave-One-Out Cross-Validation (LOOCV) is a special case where each data point serves as the test set once, helping refine hyperparameter selection.
- Information criteria penalty: The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) aid model selection by balancing goodness of fit and complexity. AIC, defined as $AIC = 2k 2\ln(L)$, where k is the number of parameters and L is the likelihood, favors models that explain the data with minimal complexity. BIC, given by $BIC = k \ln(n) 2\ln(L)$, introduces a stronger penalty for sample size n, preferring simpler models for large datasets. Lower AIC or BIC values indicate better models.
- Ensemble learning: By combining multiple weak learners, ensemble methods enhance model robustness. Bagging averages predictions from multiple models trained on different data subsets, reducing variance. Boosting sequentially corrects model errors, improving overall accuracy.

29.2.1 Forward Subset Selection

Forward Subset Regression is a stepwise variable selection method used in regression modeling to identify the best subset of predictors. It begins with no variables in the model and iteratively adds the most significant predictor at each step, based on a chosen criterion, and stops when adding more variables does not significantly improve model performance. Penalized selection criteria, such as AIC or BIC, helps avoid overfitting. Forward selection is computationally more efficient than exhaustive search methods but may miss the optimal subset if an initially excluded variable becomes relevant later in combination with others.

```
def forward_select(Y, X, selected, ic='aic'):
    """helper to forward select next regressor, using sm.OLS"""
    remaining = [x for x in X.columns if x not in selected]
    results = []
    for x in remaining:
        r = sm.OLS(Y, X[selected + [x]]).fit()
        results.append({'select': x,
```

```
'aic': r.aic,
   'bic': r.bic,
   'rsquared': r.rsquared,
   'rsquared_adj': r.rsquared_adj})
return DataFrame(results).sort_values(by=ic).iloc[0].to_dict()
```

```
# find best bic, and show selection criteria scores
ic = 'bic' # select by information criterion
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
selected = []
models = {}
for i in range(1, 32):
   select = forward_select(Y_train,
                            X_train,
                            selected,
                            ic=ic)
   models[i] = select
   selected.append(select['select'])
selected = DataFrame.from_dict(models, orient='index')
best = selected[[ic]].iloc[selected[ic].argmin()]
subset = selected.loc[:best.name].round(3)
subset.index = [alf.header(s.split('_')[0]) for s in subset['select']]
print('Forward Selection Subset')
subset
```

Forward Selection Subset

	select	aic	\backslash
Initial Claims	CLAIMS_1	-4772.162	
Real M2 Money Stock	M2REAL_2	-4814.414	
All Employees, Wholesale Trade	USWTRADE_2	-4843.063	
All Employees, Service-Providing	SRVPRD_2	-4864.114	
5-Year Treasury Constant Maturity Minus Federal	T5YFFM_3	-4881.249	
Total Business: Inventories to Sales Ratio	ISRATIO_2	-4895.191	
All Employees, Service-Providing	SRVPRD_1	-4911.828	
All Employees, Financial Activities	USFIRE_2	-4928.888	
All Employees, Trade, Transportation, and Utili	USTPU_1	-4945.576	
Consumer Motor Vehicle Loans Owned by Finance C	DTCOLNVHFNM_3	-4952.630	
Industrial Production: Nondurable Energy Consum	IPB51222S_3	-4960.975	
Industrial Production: Nondurable Goods Materials	IPNMAT_3	-4974.770	
Canadian Dollars to U.S. Dollar Spot Exchange Rate	EXCAUS_3	-4983.489	
M1	M1SL_3	-4993.678	
Nonrevolving consumer credit to Personal Income	CONSPI_2	-5001.564	
Market Yield on U.S. Treasury Securities at 10	GS10_1	-5008.976	
Capacity Utilization: Manufacturing (SIC)	CUMFNS_2	-5014.366	
Industrial Production: Manufacturing (SIC)	IPMANSICS_2	-5041.837	
All Employees, Nondurable Goods	NDMANEMP_1	-5056.048	
Average Hourly Earnings of Production and Nonsu	CES200000008_1	-5065.393	
Average Weekly Overtime Hours of Production and	AWOTMAN_2	-5075.474	
Industrial Production: Equipment: Business Equi	IPBUSEQ_2	-5083.967	
Industrial Production: Total Index	INDPRO_2	-5091.928	
Real Estate Loans, All Commercial Banks	REALLN_1	-5096.759	
All Employees, Mining, Quarrying, and Oil and G	CES1021000001_2	-5102.029	
Moody's Seasoned Baa Corporate Bond Yield	BAA_1	-5106.126	

Moody's Seasoned Aaa Corporate Bond Yield All Employees, Mining, Quarrying, and Oil and G Industrial Production: Materials	AAA_1 -5110.792 CES1021000001_1 -5116.399 IPMAT_1 -5120.986
Initial Claims Real M2 Money Stock All Employees, Wholesale Trade All Employees, Service-Providing 5-Year Treasury Constant Maturity Minus Federal Total Business: Inventories to Sales Ratio All Employees, Service-Providing	bic rsquared \ -4767.612 0.355 -4805.315 0.394 -4829.414 0.420 -4845.916 0.439 -4858.500 0.454 -4867.893 0.467 -4879.981 0.481 4802.400 0.405
All Employees, Financial Activities All Employees, Trade, Transportation, and Utili Consumer Motor Vehicle Loans Owned by Finance C Industrial Production: Nondurable Energy Consum Industrial Production: Nondurable Goods Materials Canadian Dollars to U.S. Dollar Spot Exchange Rate M1 Nonrevolving consumer credit to Personal Income	-4892.490 0.495 -4904.629 0.508 -4907.133 0.514 -4910.928 0.521 -4920.175 0.532 -4924.343 0.539 -4929.983 0.547 -4933.319 0.554
Market Yield on U.S. Treasury Securities at 10 Capacity Utilization: Manufacturing (SIC) Industrial Production: Manufacturing (SIC) All Employees, Nondurable Goods Average Hourly Earnings of Production and Nonsu Average Weekly Overtime Hours of Production and Industrial Production: Equipment: Business Equipment	-4936.181 0.560 -4937.022 0.564 -4959.943 0.582 -4969.605 0.592 -4974.400 0.598 -4979.931 0.605 -4983.875 0.611
Industrial Production: Total Index Real Estate Loans, All Commercial Banks All Employees, Mining, Quarrying, and Oil and G Moody's Seasoned Baa Corporate Bond Yield Moody's Seasoned Aaa Corporate Bond Yield All Employees, Mining, Quarrying, and Oil and G Industrial Production: Materials	-4987.286 0.617 -4987.568 0.620 -4988.288 0.624 -4987.835 0.627 -4987.951 0.631 -4989.008 0.635 -4989.046 0.638
Initial Claims Real M2 Money Stock	rsquared_adj 0.354 0.393 0.418
All Employees, whoresare frade All Employees, Service-Providing 5-Year Treasury Constant Maturity Minus Federal Total Business: Inventories to Sales Ratio All Employees, Service-Providing All Employees, Financial Activities All Employees, Trade, Transportation, and Utili	0.410 0.436 0.450 0.462 0.475 0.489 0.502
Industrial Production: Nondurable Energy Consum Industrial Production: Nondurable Goods Materials Canadian Dollars to U.S. Dollar Spot Exchange Rate M1 Nonrevolving consumer credit to Personal Income Market Yield on U.S. Treasury Securities at 10	0.507 0.514 0.524 0.531 0.538 0.544 0.549
Capacity Utilization: Manufacturing (SIC) Industrial Production: Manufacturing (SIC) All Employees, Nondurable Goods Average Hourly Earnings of Production and Nonsu	0.553 0.571 0.580 0.586

Average Weekly Overtime Hours of Production and	0.593
Industrial Production: Equipment: Business Equi	0.598
Industrial Production: Total Index	0.604
Real Estate Loans, All Commercial Banks	0.607
All Employees, Mining, Quarrying, and Oil and G	0.610
Moody's Seasoned Baa Corporate Bond Yield	0.613
Moody's Seasoned Aaa Corporate Bond Yield	0.616
All Employees, Mining, Quarrying, and Oil and G	0.620
Industrial Production: Materials	0.623

	lag	description
series_id		
CLAIMS	1	Initial Claims
M2REAL	2	Real M2 Money Stock
USWTRADE	2	All Employees, Wholesale Trade
SRVPRD	2	All Employees, Service-Providing
T5YFFM	3	5-Year Treasury Constant Maturity Minus Federa
ISRATIO	2	Total Business: Inventories to Sales Ratio
SRVPRD	1	All Employees, Service-Providing
USFIRE	2	All Employees, Financial Activities
USTPU	1	All Employees, Trade, Transportation, and Util
DTCOLNVHFNM	3	Consumer Motor Vehicle Loans Owned by Finance
IPB51222S	3	Industrial Production: Nondurable Energy Consu
IPNMAT	3	Industrial Production: Nondurable Goods Materials
EXCAUS	3	Canadian Dollars to U.S. Dollar Spot Exchange
M1SL	3	Ml
CONSPI	2	Nonrevolving consumer credit to Personal Income
GS10	1	Market Yield on U.S. Treasury Securities at 10
CUMFNS	2	Capacity Utilization: Manufacturing (SIC)
IPMANSICS	2	Industrial Production: Manufacturing (SIC)
NDMANEMP	1	All Employees, Nondurable Goods
CES200000008	1	Average Hourly Earnings of Production and Nons
AWOTMAN	2	Average Weekly Overtime Hours of Production an
IPBUSEQ	2	Industrial Production: Equipment: Business Equ
INDPRO	2	Industrial Production: Total Index
REALLN	1	Real Estate Loans, All Commercial Banks
CES1021000001	2	All Employees, Mining, Quarrying, and Oil and
BAA	1	Moody's Seasoned Baa Corporate Bond Yield
AAA	1	Moody's Seasoned Aaa Corporate Bond Yield
CES102100001	1	All Employees, Mining, Quarrying, and Oil and
IPMAT	1	Industrial Production: Materials

```
# Plot BIC vs number selected
fig, ax = plt.subplots(num=1, figsize=(10, 8))
selected['bic'].plot(ax=ax, c='C0')
selected['aic'].plot(ax=ax, c='C1')
ax.plot(best.name, float(best.iloc[0]), "ob")
ax.legend(['BIC', 'AIC', f"best={best.name}"], loc='upper left')
```

```
ax.set_title(f"Forward Subset Selection with {ic.upper()}")
bx = ax.twinx()
selected['rsquared'].plot(ax=bx, c='C2')
selected['rsquared_adj'].plot(ax=bx, c='C3')
bx.legend(['rsquared', 'rsquared_adj'], loc='upper right')
bx.set_xlabel('# Predictors')
plt.tight_layout()
```



```
# evaluate train and test mse
X_subset = X_train[subset['select']]
model = sm.OLS(Y_train, X_subset).fit()
name = f"Forward Subset Regression (k={len(subset)})"
Y_pred = model.predict(X_test[subset['select']])
test[name] = mean_squared_error(Y_test, Y_pred)
train[name] = mean_squared_error(Y_train, model.predict(X_subset))
final_models[name] = model
```


				name	train	test
RMSE	Forward	Subset	Regression	(k=29)	0.005955	0.007674

29.2.2 Partial Least Squares Regression

Partial Least Squares (PLS) Regression combines features of principal component analysis (PCA) and multiple linear regression. PLS constructs new latent variables (components) as linear combinations of the original predictors that maximize covariance with the response variable. The number of components (n_components) parameter controls the dimensionality reduction and must be chosen carefully to balance bias-variance tradeoff. This method is particularly useful when datasets have more predictors than observations and strong multicollinearity.

```
# split train and test, fit standard scaling using train set
from sklearn.preprocessing import StandardScaler
from sklearn.cross_decomposition import PLSRegression
from sklearn.model_selection import cross_val_score, KFold
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
scale = StandardScaler().fit(X_train)
X_train = scale.transform(X_train)
X_test = scale.transform(X_test)
```



```
name train test
RMSE PLS Regression(k=11) 0.005306 0.008791
```

29.2.3 Ridge Regression

Ridge Regression is a linear regression model that includes L2 regularization, which helps prevent overfitting by adding a penalty term to the loss function. The objective function is modified as follows:

$$\min_{w} ||y - Xw||^{2} + \lambda ||w||^{2}$$

where $||y - Xw||^2$ is the standard least squares error, and $\lambda ||w||^2$ is the penalty term that shrinks the model coefficients w towards zero. The λ parameter (alpha in sklearn's Ridge) controls the strength of regularization: larger values reduce model complexity by forcing coefficients to be smaller, while smaller values make Ridge behave like standard linear regression. Ridge retains all features but reduces their impact, which is useful when dealing with multicollinearity, without completely eliminating any predictor.

```
from sklearn.linear_model import Ridge, RidgeCV
alphas = 10**np.linspace(5, -4, 100)*0.5 # for parameter tuning
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
scale = StandardScaler().fit(X_train)
X_train = scale.transform(X_train)
X_test = scale.transform(X_test)
np.random.seed(42)
```

Ridge Regression fitted coefficients


```
name train test
RMSE Ridge (alpha=1.8) 0.004305 0.009825
```

29.2.4 Lasso Regression

Lasso Regression (Least Absolute Shrinkage and Selection Operator) is a linear regression model that includes L1 regularization, which adds the sum of the absolute values of the coefficients as a penalty term to the loss function. This encourages sparsity, meaning it shrinks some coefficients to exactly zero, effectively performing feature selection. The objective function is:

$$\min_{w} ||y - Xw||_2^2 + \alpha ||w||_1$$

where α is a hyperparameter controlling the strength of regularization: a higher α increases shrinkage, leading to more coefficients being set to zero. Lasso regression is particularly useful when dealing with high-dimensional data where many features may be irrelevant, by reducing model complexity and improving interpretability. However, with correlated features, it tends to arbitrarily select one and ignore the others.

```
from sklearn.linear_model import Lasso, LassoCV
alphas = 10**np.linspace(-2, -9, 100)*0.5 # for parameter tuning
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
scale = StandardScaler().fit(X_train)
X_train = scale.transform(X_train)
X_test = scale.transform(X_test)
```



```
name train test
RMSE Lasso (alpha=0.000255) 0.006279 0.006808
```

Lasso: Nonzero Coefficients

	lags	desc	coef				
series_id							
CLAIMS	1	Initial Claims	-0.005356				
SRVPRD	1	All Employees, Service-Providing	-0.001268				
M2REAL	2	Real M2 Money Stock	0.000893				
IPNMAT	3	Industrial Production: Nondurable Goods Materials	0.000751				
USGOVT	1	All Employees, Government	-0.000716				
M2SL	3	M2	0.000020				
COMPAPFF	3	3-Month Commercial Paper Minus FEDFUNDS	-0.000020				
UEMPLT5	3	Number Unemployed for Less Than 5 Weeks	0.000019				
CUSR0000SAS	3	Consumer Price Index for All Urban Consumers:	0.000009				
RPI	3	Real Personal Income	0.000002				
[82 rows x 3 columns]							

29.2.5 Decision Tree

Decision trees partition the predictor space into regions, making predictions based on mean values (for regression) or mode (for classification).

- A **decision tree** consists of a sequence of splitting rules that divide observations into different regions. These trees are typically drawn upside down, with the leaves at the bottom.
- Terminal nodes or leaves represent the final partitions of the predictor space where observations are grouped.
- Internal nodes are points in the tree where the predictor space is split.
- Branches connect the nodes and represent different decision paths.
- A stump refers to a decision tree with only a single split (one internal node).

Decision trees are constructed using **recursive binary splitting**, a top-down, greedy algorithm. The process begins with all observations in a single region, and at each step, the predictor space is split into two new branches based on the best possible split at that moment (without considering future steps). The best split is determined by selecting the predictor and cutpoint that minimize a chosen cost function, such as the **Residual Sum of Squares (RSS)** in regression. The process continues recursively until a stopping criterion is met, such as a minimum number of observations per node.

Growing a tree until all leaves are pure (containing only one class) often leads to overfitting. Tree complexity is measured by the number of nodes, and controlling this complexity is crucial. If trees are allowed to grow too large, they may fit the training data well but perform poorly on unseen data. A balance must be found where accuracy on the test set is maximized before further tree growth begins to decrease performance.

Overfitting can be mitigated by pruning the tree using cost complexity pruning. A fully grown tree is simplified by removing less important splits to minimize the following function:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

where |T| is the number of terminal nodes, R_m represents a region in the predictor space, and \hat{y}_{R_m} is the predicted response for that region. Pruning is controlled by a tuning parameter α , where higher values result in smaller trees that generalize better.

For classification tasks, different impurity measures determine the best binary splits:

• **Classification error rate**: Measures the proportion of incorrectly classified observations in a node. While intuitive, it is not sensitive enough for effective tree growth.

$$\hat{\rho}_{m,c} = \frac{n_{m,c}}{n_m}$$

where n_m is the number of observations in node m and $n_{m,c}$ is the number of observations in node m belonging to class c.

• Gini index: Measures total variance across classes. A lower Gini index indicates that most observations in a node belong to a single class.

$$G = \sum_{k=1}^{K} \hat{\rho}_{mk} (1 - \hat{\rho}_{mk})$$

where $\hat{\rho}_{mk}$ represents the proportion of training observations in node m that belong to class k.

• Entropy: Measures node impurity. Lower entropy values indicate purer nodes.

$$D = -\sum_{k=1}^{K} \hat{\rho}_{mk} \log \hat{\rho}_{mk}$$

Deviance is a statistical measure used to assess model performance in classification problems. It is derived from the likelihood function and is a measure of how well the predicted probabilities match the actual class labels. It is calculated as:

$$Deviance = -2\sum_{m=1}^{g}\sum_{c=1}^{w} n_{m,c} \ln \hat{p}_{m,c}$$

where:

- g is the number of terminal nodes (leaf nodes) in the forest.
- w is the number of classes.
- $n_{m,c}$ is the number of observations in node m belonging to class c.
- $\hat{p}_{m,c}$ is the predicted probability of class c in node m.

with the **residual mean deviance** given by: $\frac{\text{deviance}}{n-1}$

A lower deviance indicates better model performance, meaning the predicted class probabilities align more closely with the true class labels.

Advantages:

- Easy to interpret and visualize, even for non-experts.
- Often reflect human decision-making processes.
- Can handle qualitative predictors without requiring dummy variables.

Disadvantages:

- Less accurate than some other regression and classification models.
- · Highly sensitive to small changes in data, making them non-robust.
- Tend to overfit categorical variables.

Decision tree performance can be significantly improved using ensemble methods such as:

- **Bagging (Bootstrap Aggregating)**: Reduces variance by averaging predictions from multiple decision trees trained on different bootstrap samples.
- **Random Forests**: A variant of bagging that introduces additional randomness by selecting a random subset of features at each split.
- **Boosting**: Sequentially builds trees where each new tree corrects the errors of the previous ones, reducing bias and improving predictive performance.

By aggregating multiple decision trees, these ensemble methods enhance generalization and reduce overfitting, making decision trees more robust and effective for complex predictive modeling.

29.2.6 Gradient boosting

Gradient Boosting is an ensemble learning technique that builds models sequentially, where each new model corrects the errors of the previous ones. It uses decision trees as weak learners and minimizes the loss function by optimizing the model in the direction of the gradient of the loss. Key parameters include n_estimators (number of trees), learning_rate (step size for updates, controlling how much each tree contributes), and max_depth (tree depth, preventing overfitting). Gradient Boosting can be computationally expensive and prone to overfitting if not regularized using techniques like early stopping or shrinkage (learning_rate tuning).

```
from sklearn.ensemble import GradientBoostingRegressor
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
scale = StandardScaler().fit(X_train)
X_train = scale.transform(X_train)
X_test = scale.transform(X_test)
```


DataFrame({'name': name,
 'train': np.sqrt(train[name]),
 'test': np.sqrt(test[name])}, index=['RMSE'])

		name	train	test
RMSE	Boosting	(depth=3)	0.002704	0.007407

Feature importances:

Gradient Boosting: Top 10 Feature Importances

```
importance series_id lags \
     0.140886 BUSLOANS
1
                        1
2
                          1
     0.136621
                CLAIMS
               UEMPLT5
3
     0.031817
                          3
4
     0.030436
                M2REAL
                          3
5
     0.029806
                 USGOOD
                          1
6
     0.027816
                 M2SL
                          1
7
     0.022606
                 IPNMAT
                           1
```

```
8
      0.020286
                 DMANEMP
                             1
                             1
9
      0.019784
                  EXCAUS
10
      0.018134
                             1
                  UNRATE
                                           description
1
    Commercial and Industrial Loans, All Commercia...
2
                                        Initial Claims
3
              Number Unemployed for Less Than 5 Weeks
4
                                   Real M2 Money Stock
5
                       All Employees, Goods-Producing
6
                                                     M2
7
    Industrial Production: Nondurable Goods Materials
                         All Employees, Durable Goods
8
9
   Canadian Dollars to U.S. Dollar Spot Exchange ...
10
                                     Unemployment Rate
```

29.2.7 Random Forest

Random Forest is an ensemble learning method that builds multiple decision trees and combines their predictions to improve accuracy and reduce overfitting. It operates by randomly selecting subsets of the training data and features (using bootstrap sampling and feature bagging) to create diverse trees. The final prediction is determined by majority voting (for classification) or averaging (for regression). Key parameters include n_estimators (number of trees), max_depth** (maximum depth of each tree), max_features (number of features considered for splitting), and min_samples_split (minimum samples needed to split a node). Feature importance scores can be extracted to interpret which variables influence predictions most. Random Forest handles missing data well and mitigates overfitting through averaging multiple models.

```
from sklearn.ensemble import RandomForestRegressor
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
```

```
# tune max_depth with 5-fold CV
n_splits=5
kf = KFold(n_splits=n_splits,
           shuffle=True,
           random_state=0)
mse = Series(dtype=float)
for i in range(3, 20): #tune for best performance
    model = RandomForestRegressor(max_depth=i, random_state=0)
    score = cross_val_score(model,
                            X_train,
                             Y_train,
                             cv=kf,
                             n_jobs=5,
                             verbose=VERBOSE,
                             scoring='neg_mean_squared_error').mean()
    mse.loc[i] = -score
    #print(i, np.sqrt(abs(score)))
```

```
ax.plot(best, mse.loc[best], "or")
ax.legend(['Mean Squared Error', f"best={best}"])
plt.tight_layout()
                                       Random Forest Regressor with 5-fold CV
                                                                                 Mean Squared Error
                                                                                 best=15
      0.0001105
      0.0001100
      0.0001095
    MSE
      0.0001090
      0.0001085
      0.0001080
      0.0001075
                     4
                               6
                                        8
                                                 10
                                                          12
                                                                   14
                                                                             16
                                                                                      18
                                                   max depth
name = f"RandomForest (depth={best})"
model = RandomForestRegressor(max_depth=best,
                                 random_state=0).fit(X_train, Y_train)
Y_pred = Series(index=Y_test.index,
                 data=model.predict(X_test).reshape((-1,)))
test[name] = mean_squared_error(Y_test, Y_pred)
train[name] = mean_squared_error(Y_train, model.predict(X_train))
final_models[name] = model
```


```
DataFrame({'name': name,
    'train': np.sqrt(train[name]),
    'test': np.sqrt(test[name])}, index=['RMSE'])
```

		name	train	test
RMSE	RandomForest	(depth=15)	0.00376	0.005875

Feature importance scores:

Random Forest: Top 10 Feature Importances

```
importance series_id lags \
   0.051226 CLAIMS 1
1
   0.046733 BUSLOANS 1
2
   0.044055 M2SL 1
3
4
    0.015825 USGOOD 1
5
    0.015268 UNRATE 1
    0.014617 UEMPLT5 3
6
    0.014576 IPCONGD 1
7
    0.014529 UEMPLT5
8
                       1
    0.014496 M1SL 1
9
    0.013855 DMANEMP 1
10
                                      description
                                   Initial Claims
1
2
   Commercial and Industrial Loans, All Commercia...
3
                                              M2
4
                    All Employees, Goods-Producing
5
                                Unemployment Rate
6
            Number Unemployed for Less Than 5 Weeks
7
              Industrial Production: Consumer Goods
8
            Number Unemployed for Less Than 5 Weeks
9
                                             М1
10
                      All Employees, Durable Goods
```

Summary:

The **root mean squared error** (**RMSE**) performance of all the models, based on train and test samples, is summarized in the following chart:

```
fig, ax = plt.subplots(figsize=(10, 8))
pd.concat([np.sqrt(r.to_frame()) for r in [train, test]], axis=1)\
    .sort_values('test')\
    .plot.barh(ax=ax, width=0.85)
ax.yaxis.set_tick_params(labelsize=10)
ax.set_title('Regression RMSE')
ax.figure.subplots_adjust(left=0.35)
plt.tight_layout()
```


References:

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. "An Introduction to Statistical Learning with Applications in R". New York, Springer, 2013.

CHAPTER

THIRTY

DEEP LEARNING

May your choices reflect your hopes, not your fears -Nelson Mandela

We explore the application of deep learning techniques for text classification, specifically focusing on categorizing US companies based on their industry sectors. Using business description texts extracted from SEC 10-K filings, we apply natural language processing (NLP) methods and deep averaging networks (DAN) to classify firms according to the Fama-French 10-sector scheme. The analysis includes preprocessing textual data, leveraging pre-trained word embeddings for semantic representation, and evaluating various training strategies to optimize predictive accuracy and generalization performance.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import random
import time
import pandas as pd
from pandas import DataFrame, Series
from collections import Counter
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import seaborn as sns
from tqdm import tqdm
import torch
from torch import nn
import torchinfo
from textblob import TextBlob
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.unstructured import Edgar, Vocab
from finds.structured import BusDay, CRSP, PSTAT
from finds.readers import Sectoring
from finds.utils import Store
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
outdir = paths['scratch']
store = Store(outdir, ext='pkl')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"{device=}")
print(f"{torch.cuda.is_available() = }")
                                             # Should return True
print(f"{torch.cuda.device_count() =}")
print(f"{torch.cuda.device_count()=}")  # Number of available GPUs
print(f"{torch.cuda.current_device()=}")  # Current GPU index
print(f"{torch.cuda.get_device_name(0) =}") # Name of the GPU
```

```
device=device(type='cuda')
torch.cuda.is_available()=True
torch.cuda.device_count()=1
torch.cuda.current_device()=0
torch.cuda.get_device_name(0)='NVIDIA GeForce RTX 3080 Laptop GPU'

sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
```

30.1 Industry text classification

We begin by extracting a universe of US-domiciled common stocks at the start of the most recent year, along with their corresponding 10-K business descriptions from SEC filings. The target categories for our text classification task are drawn from the Fama-French 10-sector classification scheme.

```
# Retrieve universe of stocks as of start of latest year
univ = crsp.get_universe(bd.endmo(CRSP_DATE-10000))
CRSP_DATE
```

20241231

```
# lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)
```

```
# lookup ticker symbols
ticker = crsp.build_lookup(source='permno', target='ticker', fillna="")
univ['ticker'] = ticker(univ.index)
```

```
# lookup sic codes from Compustat, and map to FF 10-sector code
sic = pstat.build_lookup(source='lpermno', target='sic', fillna=0)
industry = Series(sic[univ.index], index=univ.index)
industry = industry.where(industry > 0, univ['siccd'])
sectors = Sectoring(sql, scheme='codes10', fillna='') # supplement from crosswalk
univ['sector'] = sectors[industry]
```

30.1.1 Textblob

The TextBlob library simplifies common NLP tasks such as part-of-speech tagging, lemmatization, noun phrase extraction, sentiment analysis, and spelling correction. It provides friendly access to functionalities derived from NLTK and integrates with WordNet.

• https://textblob.readthedocs.io/en/dev/quickstart.html

For our task, TextBlob is employed to tokenize business descriptions and extract nouns. We filter the documents to retain only those containing at least 100 valid nouns to ensure robust semantic representation.

100%| 4488/4488 [17:23<00:00, 4.30it/s]

30.1.2 Word Embeddings

Word embeddings are dense, numerical vector representations capturing semantic and syntactic meanings of words. These embeddings place words into a continuous vector space, positioning semantically similar or related words closely together. Word embeddings can be generated through neural network-based approaches or matrix factorization methods.

- 1. Word2Vec (Mikolov et al., 2013): Word2Vec utilizes shallow neural networks, usually comprising a single hidden layer, to learn embeddings from textual data. It has two primary training approaches:
 - Skip-gram: Predicts context words given a center word, effectively capturing representations of rare words.
 - **Continuous Bag of Words (CBOW)**: Predicts a center word from surrounding context words, typically faster and better for frequent words.
- GloVe (Global Vectors for Word Representation) (Pennington et al., 2014): GloVe generates embeddings based on matrix factorization of global word-word co-occurrence statistics. Unlike Word2Vec, which relies on local context predictions, GloVe considers overall word pair co-occurrences, resulting in globally consistent embeddings.

Pre-trained GloVe vectors (300-dimensional) are utilized to represent the extracted words as embeddings.

```
(400000, 300)
```

30.1.3 Word vector arithmetic

Word embeddings reflect linguistic relationships through geometric relationships in vector space. Embeddings can be arithmetically combined and manipulated to uncover analogies and semantic similarities. However, these mathematical relationships are generally approximate and can highlight potential biases inherent in training data, such as implicit gender biases.

king - man + woman = ['queen']
france - paris + tokyo = ['japan']
bigger - big + cold = ['colder']

30.1.4 Data preparation

We construct a custom vocabulary (Vocab) mapping each word to an index, encoding each document as a list of these indices. The pre-trained GloVe embedding matrix is adapted to include only words present in our corpus-specific vocabulary. Sector labels are converted into numerical values using LabelEncoder. The dataset is then stratified and split into training and testing subsets to maintain balanced class distributions.

```
words = Counter()
for nouns in bus.values():
    words.update(list(nouns))
vocab = Vocab(words.keys())
print('vocab len:', len(vocab))
```

vocab len: 85891

```
labels = []
x_all = []
for permno, nouns in bus.items():
    x = vocab.get_index([noun for noun in nouns])
    if sum(x):
        labels.append(univ.loc[permno, 'sector'])
        x_all.append(x)
class_encoder = LabelEncoder().fit(labels)  # .inverse_transform()
y_all = class_encoder.transform(labels)
```

store['dan'] = dict(y_all=y_all, x_all=x_all)

```
# retrieve from previously stored
y_all, x_all = store['dan'].values()
```

```
# relativize embeddings to words in vocab
vocab.set_embeddings(embeddings)
print(vocab.embeddings.shape)
```

(85891, 300)

vocab.dump(outdir / f"dan{embeddings_dim}.pkl")

```
# load vocab
vocab.load(outdir / f"dan{embeddings_dim}.pkl")
```

30.2 Feedforward neural networks

Neural networks are computational models inspired by the human brain. They are built from layers of simple computational units that transform input data to output predictions. Deep neural networks alternate between linear layers and non-linear activations, and can approximate any continuous function (Universal Approximation Theorem).

- **Neurons** are the basic computational units or nodes of a neural network. Each neuron receives input, processes it using a weighted sum and a bias term, and then applies an activation function to produce an output, which is then passed to the neurons in the next layer.
- Activation functions are the nonlinear mathematical functions applied to neurons in a neural network. They introduce non-linearity into the model, enabling it to learn and represent complex patterns in the data. Common activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh.
- **Input Layer** is the first layer of a neural network which directly receives the input data. Each neuron in the input layer represents one feature of the input.
- **Hidden Layers**, between the input layer and the output layer, take input from the previous layer of neurons, apply weights, biases, and activation functions, and pass the output to the next layer.
- **Output Layer** is the final layer of the neural network and it produces the network' s output. Its neurons represent the predictions or classifications made by the network. The number of neurons in the output layer corresponds to the number of output classes or the dimensionality of the output. For classification tasks, softmax or sigmoid functions are often used in the output layer to provide probability distributions of the class predictions.

Feedforward neural networks (FFNNs) are the simplest form of neural networks, where the data flows in one direction (a forward pass) and the connections do not form a cycle. A **Multilayer Perceptron (MLP)** is a type of FFNN which must has at least one hidden layer: MLPs are composed of an input layer, one or more hidden layers, and an output layer, with non-linear activation functions applied between layers.

Optimization is the process of adjusting model parameters to align its predictions with true targets.

- Loss function measures how well a neural network' s output matches the true label or target. During training, the goal is to minimize this loss. Common loss functions L1 (Mean Absolute Error) and L2 (Mean Squared Error) for regression tasks, and Cross-Entropy for classification tasks.
- Stochastic Gradient Descent (SGD) is an optimization method used to train neural networks by updating parameters using gradients from a single (or small batch of) data point(s) at each step. It allows efficient updates even on massive datasets, with the ability to escape local minima due to its noise.

- **Backpropagation** is used for training neural networks by updating the weights of neurons based on the error (loss) of the network' s predictions: it involves calculating the gradient of the loss function with respect to each weight by using the chain rule of calculus, and propagating these gradients backward from the output layer to the input layer.
- **Computation Graph** is a graphical representation of the sequence of operations used to compute the forward pass and the backward pass for backpropagation. PyTorch' s modules automatically constructs the computation graph and computes gradients, hence simplifying the implementation of neural networks.
- **Initialization** refers to the process of setting the initial values of the weights in a neural network before training begins. Poor initialization can lead to slow convergence or getting stuck in local minima. Common initialization methods include Xavier (Glorot) and He initialization

Training deep neural networks involves carefully tuning several key components to ensure effective learning and generalization.

- Learning Rate: If too low, training is slow; too high and loss spikes. A learning rate schedules (e.g. cosine annealing) is more efficient than a fixed learning rate.
- Adam (Adaptive Moment Estimation) is an optimization algorithm for training neural networks which improves on stochastic gradient descent and achieves good performance on problems with large, high-dimensional data sets. It adapts the learning rate for each parameter by computing adaptive learning rates from estimates of first and second moments of the gradients. AdamW improves the performance of Adam in deep networks by applying weight decay directly to model parameters separately from gradient-based updates.
- **Hyperparameters** are parameters not learned by the neural network during training. They are set before training and control how the network learns. Examples include: Learning rate (size of each update step in gradient descent); Number of epochs (how many times the model sees the entire dataset); and Model size (number of layers, units per layer).
- **Batching** divides the training data into smaller subsets called batches, rather than training the model on the entire dataset at once, which can be computationally intensive and inefficient. It also gives speedup compared to training the network one sample at a time due to more efficient matrix operations.
- **Dropout** is a regularization technique during training, where a random subset of neurons is "dropped out" or set to zero at each iteration. This reduces overfitting by ensuring that the model does not rely too heavily on any particular subset of neurons. Geoffrey Hinton, et al. in their 2012 paper that first introduced dropout. They found that using a simple method of 50% dropout for all hidden units and 20% dropout for input units achieve improved results with a range of neural networks on different problem types. It is not used on the output layer.

30.2.1 Deep Averaging Networks

Deep Averaging Network (DAN) is a straightforward feedforward neural network architecture used for text classification. It averages embeddings of document words and feeds this representation through multiple hidden layers to predict class labels. Key properties include:

- Embedding Layer: Uses pre-trained GloVe vectors (frozen or fine-tuned).
- Fully Connected Layers: Transform embeddings into classification scores.
- Nonlinear Activations: Employ ReLU for non-linearity.
- Output Layer: Applies LogSoftmax for multi-class predictions.
- Dropout Layers: Prevent overfitting.
- Xavier Initialization: Stabilizes training.

We investigate training strategies, such as frozen embeddings (fast, prevents overfitting on small data), fine-tuned embeddings (task-specific optimization but resource-intensive), and dropout regularization (enhances generalization).

```
class DAN (nn.Module):
   """Deep Averaging Network for classification"""
   def __init__(self,
                 vocab dim,
                 num_classes,
                 hidden,
                 embedding,
                 freeze=True):
        super().__init__()
        self.embedding = nn.EmbeddingBag.from_pretrained(embedding)
       self.embedding.weight.requires_grad = not freeze
       D = nn.Dropout(0.0)
       V = nn.Linear(vocab_dim, hidden[0])
       nn.init.xavier_uniform_(V.weight)
       L = [D, V]
        self.drops = [D]
        for in_dim, out_dim in zip(hidden, hidden[1:] + [num_classes]):
            L.append(nn.ReLU())
                                 # nonlinearity layer
            D = nn.Dropout(0.0)
            self.drops.append(D)
            L.append(D)
                                  # dropout layer
            W = nn.Linear(in_dim, out_dim)
                                           # dense linear layer
            nn.init.xavier_uniform_(W.weight)
           L.append(W)
        self.network = nn.Sequential(*L)
        self.classifier = nn.LogSoftmax(dim=-1) # output is (N, C) logits
   def set_dropout(self, dropout):
       if dropout:
            self.drops[0].p = 0.2 # input layer
            for i in range(1, len(self.drops)):
                                                 # hidden layers
                self.drops[i].p = 0.5
        else:
            for i in range(len(self.drops)):
                self.drops[i].p = 0.0
   def set_freeze(self, freeze):
        """To freeze part of the model (embedding layer)"""
        self.embedding.weight.requires_grad = not freeze
   def forward(self, x):
        """Return tensor of log probabilities"""
       return self.classifier(self.network(self.embedding(x)))
   def predict(self, x):
        """Return predicted int class of input tensor vector"""
        return torch.argmax(self(x), dim=1).int().tolist()
   def save(self, filename):
        """save model state to filename"""
       return torch.save(self.state_dict(), filename)
   def load(self, filename):
        """load model name from filename"""
        self.load_state_dict(torch.load(filename, map_location='cpu'))
        return self
```

Split the data into stratified (i.e. equal class proportions) train and test set

```
3474 3474 2779 695 10
```

	Train	Test
Hlth	657	164
Other	612	153
HiTec	554	139
Manuf	275	69
Shops	246	62
Durbl	131	33
NoDur	114	28
Enrgy	81	20
Utils	72	18
Telcm	37	9

Layer (type:depth-idx)	Param #
 DAN	
-EmbeddingBag: 1-1	(25,767,300)
-Sequential: 1-2	
Dropout: 2-1	
Linear: 2-2	9,632
└─ReLU: 2-3	
Dropout: 2-4	
Linear: 2-5	1,056
ReLU: 2-6	
Dropout: 2-7	
Linear: 2-8	330
LogSoftmax: 1-3	
Total params: 25,778,318 Trainable params: 11,018 Non-trainable params: 25,767,300	

30.2.2 Training

Training employs

- Adam optimizer for adaptive learning rates.
- · Negative Log Likelihood (NLLLoss) for multi-class classification.
- Batch training with shuffled data to improve generalization.
- Padding of variable-length word index lists to form uniform-length input tensors.
- Evaluation of both training and test performance per epoch.

```
batch_sz = 16
lr = 0.001
num_epochs = 50
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
loss_function = nn.NLLLoss()
```

Helper function to batch and form an input for neural network. Pads each sample to have lengths equal to the max, and convert to Long tensor type.

```
def form_input(docs):
    """Pad lists of index lists to form batch of equal lengths"""
    lengths = [len(doc) for doc in docs]  # length of each doc
    max_length = max(1, max(lengths))  # to pad so all lengths equal max
    out = [doc + ([0] * (max_length-n)) for doc, n in zip(docs, lengths)]
    return torch.LongTensor(out)
```

```
accuracy = []
for imodel, (freeze, dropout) in enumerate([(True, False), (True, True), (False,

→True)]):

    model.set_freeze(freeze=freeze)
    model.set_dropout(dropout=dropout)
    accuracy.append(dict())
    # Loop over epochs
    for epoch in tqdm(range(num_epochs)):
        tic = time.time()
        # Form batches
        random.shuffle(train_index)
        batches = [train_index[i:(i+batch_sz)]
                   for i in range(0, len(train_index), batch_sz)]
        # Train in batches
        total loss = 0.0
        model.train()
        for batch in batches: # train by batch
            x = form_input([x_all[idx] for idx in batch]).to(device)
            y = torch.LongTensor([y_all[idx] for idx in batch]).to(device)
                                                 # reset model gradient
            model.zero_grad()
            \log \text{ probs} = \text{model}(x)
                                                  # run model
            loss = loss_function(log_probs, y) # compute loss
            total_loss += float(loss)
            loss.backward()
                                                  # loss step
            optimizer.step()
                                                  # optimizer step
```

```
model.eval()
   model.save(outdir / f"dan{embeddings_dim}.pt")
   if VERBOSE:
       print(f"Loss {epoch}/{num_epochs} {(freeze, dropout)}:" +
             f"{total_loss:.1f}")
   with torch.no_grad(): # evaluate test error
       test_pred = [model.predict(form_input([x_all[i]]).to(device))[0]
                    for i in test_index]
       test_gold = [y_all[idx] for idx in test_index]
       test_correct = (np.array(test_pred) == np.array(test_gold)).sum()
       train_pred = [model.predict(form_input([x_all[i]]).to(device))[0]
                     for i in train_index]
       train_gold = [y_all[idx] for idx in train_index]
       train_correct = (np.array(train_pred) == np.array(train_gold)).sum()
       accuracy[imodel][epoch] = {
           'loss': total_loss,
           'train': train_correct/len(train_gold),
           'test': test_correct/len(test_gold) }
       if VERBOSE:
           print (freeze,
                 dropout,
                 epoch,
                 int(time.time() - tic),
                 optimizer.param_groups[0]['lr'],
                 train_correct/len(train_gold),
                 test_correct/len(test_gold))
0%|
             | 0/50 [00:00<?, ?it/s]
```

100%	50/50	[03:51<00:00,	4.62s/it]
100%	50/50	[03:51<00:00,	4.64s/it]
100%	50/50	[04:02<00:00,	4.85s/it]

30.2.3 Evaluation

Evaluation includes computing confusion matrices of prediction errors for both training and testing data.

DAN Tuned GloVe Test Set Confusion Matrix

Initially, embeddings are frozen, then fine-tuned, with dropout introduced last, to highlight generalization improvements and the challenge of overfitting.

```
train_accuracy = pd.concat([Series([epoch['train'] for epoch in acc.values()])
                            for acc in accuracy],
                           ignore_index=True)
test_accuracy = pd.concat([Series([epoch['test'] for epoch in acc.values()])
                           for acc in accuracy],
                          ignore_index=True)
fig, ax = plt.subplots(num=1, clear=True, figsize=(10, 6))
train_accuracy.plot(ax=ax)
test_accuracy.plot(ax=ax)
ax.axvline(len(accuracy[0]), c='grey', alpha=0.5)
ax.axvline(len(accuracy[0]) + len(accuracy[1]), c='brown', alpha=0.5)
ax.set_title(f'Accuracy of DAN with GloVe word embeddings')
ax.set_xlabel('Steps')
ax.set_ylabel('Accuracy')
ax.legend(['Train Set', 'Test Set', 'Dropout', 'Unfrozen'], loc='upper left')
plt.tight_layout()
```


When embeddings are frozen, the model overfits the training data, achieving 100% training accuracy. When dropout regularization is enabled, the test set accuracy slightly improves.

Accuracy

frozen dropout unfrozen train 0.844908 0.830155 0.999640 test 0.808633 0.810072 0.841727

References:

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, Ruslan R. Salakhutdinov, July 2012, "Improving neural networks by preventing co-adaptation of feature detectors"

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, 2013, "Efficient Estimation of Word Representations in Vector Space"

Greg Durrett, 2021-2024, "CS388 Natural Language Processing course materials", retrieved from https://www.cs. utexas.edu/~gdurrett/courses/online-course/materials.html

Philipp Krähenbühl, 2020-2024, "AI394T Deep Learning course materials", retrieved from https://www.philkr.net/ dl_class/material and https://ut.philkr.net/deeplearning/ Philipp Krähenbühl, 2025, "AI395T Advances in Deep Learning course materials", retrieved from https://ut.philkr.net/advances_in_deeplearning/

CHAPTER

THIRTYONE

CONVOLUTIONAL NEURAL NETWORKS

Life can only be understood backwards; but it must be lived forwards. - Søren Kierkegaard

Convolutional Neural Networks (CNNs) are particularly effective for analyzing structured data like images and sequences. By leveraging convolutional layers, CNNs extract hierarchical patterns from raw inputs for complex tasks such as image classification and time series prediction. We explore the application of **Temporal Convolutional Networks** (**TCNs**) for capturing dependencies in economic time series. The results from modeling multiple time series data such as CPI components are compared with with classical models like Vector Autoregression (VAR).

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import random
import torch
import torch.nn as nn
import torchinfo
from statsmodels.tsa.api import VAR
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from finds.structured import BusDay
from finds.readers import Alfred
from secret import credentials
# %matplotlib qt
VERBOSE = 0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# train-test split date
split_date = '2021-12-01'
                            # training period up to this date
```

31.1 Convolutions

Convolutional layers are memory-efficient neural network components designed to process spatially structured data, such as images. Unlike fully connected (linear) layers, which require vast numbers of parameters, convolutional layers use localized, shared filters called **kernels** to capture patterns in input data. Mathematically, a convolution operates as follows:

$$y_{i,j,k} = \sum_{l=1}^{C_1} \sum_{m=0}^{h-1} \sum_{n=0}^{w-1} x_{l,j+m,k+n} \cdot \omega_{i,l,m,n}$$

Here, ω is a small kernel (e.g., 3×3) that slides over the image, performing element-wise multiplications and summing the results.

31.1.1 Image Filters

Convolutions can be interpreted as applying image processing filters, such as:

• Box filter (averaging):
$$\$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

• Edge detection filter: $\$\begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

Thus, convolutional layers serve as feature extractors, enabling models to detect edges, textures, and patterns crucial for tasks like image classification and segmentation.

31.1.2 Receptive field and output size

Convolutions operate on local patches of an image, but by stacking multiple layers, they can expand their **receptive field**, allowing the network to capture broader context. Several parameters affect the output size and receptive field:

- Padding: Adds extra pixels around the input to control output size and preserve borders.
- Stride: Controls how far the filter moves across the input, affecting downsampling.
- Dilation: Inserts zeros between kernel elements, expanding the receptive field without increasing parameters.
- Transposed convolution (up-convolution): A learnable upsampling method used to increase output size, often employed in image segmentation models like **U-Net**.

31.1.3 Computer vision

CNNs process images based on :

- Recurring Patterns: They detect similar structures that appear across different images.
- Multi-Scale Patterns: They recognize features ranging from small edges to large object shapes.
- Local Invariance: They take advantage of the fact that neighboring pixels often have similar values.
- Semantic Grouping: They group together pixels that belong to the same object based on shared patterns.

They excel at computer vision tasks that involve recognizing structured patterns at multiple levels of abstraction. These tasks include:

- **Image Classification**: CNNs are highly effective at identifying what object is present in an image by detecting low-level patterns (like edges and textures) and gradually building up to high-level semantic features (like object categories).
- **Object Detection**: By capturing patterns at various scales and identifying object parts, CNNs can localize and label multiple objects within an image, even if they vary in size or position.
- Semantic Segmentation: CNNs perform well at assigning a class label to each pixel in an image by grouping together pixels that form the same object or region.

AlexNet (2012) was the first deep network to outperform non-deep vision systems, winning the ImageNet challenge competition and kicking off the Deep Learning revolution. Winning the 2015 competition, ResNet introduced shortcut "residual connections" for gradients in convolutional architectures. The U-Net (2016) model designed a symmetric hourglass-shaped architecture dsemantic segmentation, combining down-sampling to capture context with up-sampling to produce higher output resolution. More recently, Vision Transformer (ViT) models have incorporated transformer encoders by dividing images into patches, treating each patch as a token.

31.2 Temporal convolutional networks (TCN)

Temporal Convolutional Networks (TCNs) are deep convolutional architectures designed for sequence data. They utilize causal and dilated convolutions along with residual connections to model long-range dependencies efficiently. Unlike CNNs for images, TCNs handle sequential data such as time series, text, and audio.

• Causal Convolutions: Ensure that each output at time t only depends on current and past inputs —preserving the temporal order:

$$y_t = \sum_{i=0}^{k-1} w_i x_{t-i}$$

• Dilated Convolutions: Introduce gaps between filter (kernel) elements to capture long-range dependencies without expanding filter size:

$$y_t = \sum_{i=0}^{k-1} w_i x_{t-d\cdot i}$$

• Residual Connections: Allow gradients to flow efficiently through deep networks, mitigating vanishing gradient issues:

$$Output = x + F(x)$$

Key hyperparameters of TCNs include:

- kernel_size: Size of convolutional filter.
- dropout: Regularization to prevent overfitting.
- blocks: Number of stacked convolutional layers.
- dilation: Grows exponentially (e.g., 1, 2, 4, ...).
- activation: Non-linear activation, typically ReLU.

```
dilation=dilation),
            torch.nn.ReLU(),
            torch.nn.Dropout (dropout))
        self.skip = lambda x: x
        if in_channels != out_channels: # downsample for skip if necessary
            self.skip = torch.nn.Conv1d(in_channels, out_channels, 1)
    def forward(self, x):
        return self.network(x) + self.skip(x) # with skip connection
def __init__(self, n_features, blocks, kernel_size, dropout):
    """TCN model by connecting multiple convolution layers"""
    super().__init__()
    in_channels = n_features
   L = []
    for dilation, hidden in enumerate(blocks):
        L.append(self.CausalConv1dBlock(in_channels=in_channels,
                                        out_channels=hidden,
                                        kernel_size=kernel_size,
                                        dilation=2**dilation,
                                        dropout=dropout))
        in_channels = hidden
    self.network = torch.nn.Sequential(*L) if L else lambda x: x
    if L:
        self.classifier = torch.nn.Conv1d(in_channels, n_features, 1)
    else:
        self.classifier = torch.nn.Sequential(
            torch.nn.ConstantPad1d((kernel_size-1, 0), 0),
            torch.nn.Conv1d(in_channels, n_features, kernel_size))
def forward(self, x):
    """input is (B, n_features, L)), linear expects (B, * n_features)"""
    return self.classifier(self.network(x))
def save(self, filename):
    """save model state to filename"""
   return torch.save(self.state_dict(), filename)
def load(self, filename):
    """load model name from filename"""
    self.load_state_dict(torch.load(filename, map_location='cpu'))
    return self
```

31.2.1 Data preparation

The dataset comprises economic time series of CPI components obtained from FRED (Federal Reserve Economic Data). The data, covering various CPI categories (e.g., food, housing, transportation), is log-transformed and differenced for stationarity and standardized using StandardScaler to mean 0 and variance 1.

```
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=-1)
vspans = alf.date_spans('USREC')  # recession periods for plots
```

```
names = [s[s.find(':')+2:s.find(' in ')] for s in alf.header(series_ids)]
names
```

```
['Food and Beverages',
 'Housing',
 'Apparel',
 'Transportation',
 'Medical Care',
 'Other Goods and Services']
```

```
# Standardize the data data
scaler = StandardScaler().fit(df)
scaled_data = DataFrame(scaler.transform(df), columns=names, index=df.index)
scaled_data
```

	Food and	Beverages	Housing	Apparel	Transportation	\
date						
1967-02-28		-1.520716	-1.129800	0.533990	0.266586	
1967-03-31		-0.805655	-1.129800	0.124553	-0.267488	
1967-04-30		-1.522780	-0.063784	0.529140	0.263339	
1967-05-31		-0.805655	-0.067262	0.122142	-0.003280	
1967-06-30		1.339539	-1.129800	0.524347	-0.267488	
2024-10-31		-0.252031	0.063171	-2.110286	-0.203592	
2024-11-30		-0.053379	-0.037266	-0.114479	0.027062	
2024-12-31		-0.180743	-0.209529	-0.015224	0.767819	
2025-01-31		0.090331	-0.037301	-3.137367	0.794814	
2025-02-28		-0.350673	0.133190	0.934107	-0.605692	
	Medical C	are Other	c Goods and	d Sarvicas		
date	Medicar c	are other	00003 4110	a bervices		
1967-02-28	-0.248	585		-1.017195		
1967-03-31	-0.253	160		-0.284868		
1967-04-30	0.988	995		-1.017195		
1967-05-31	-0.266	687		-0.286982		
1967-06-30	0.962	232		-0.289083		
		• • •				
2024-10-31	-0.692	758		-0.172972		
2024-11-30	-0.702	581		0.085335		

```
2024-12-31 -1.058184 -1.113129

2025-01-31 -0.701262 -1.822241

2025-02-28 -0.563596 0.499572

[697 rows x 6 columns]

ntrain = sum(scaled_data.index < split_date)

M = scaled_data.shape[1] # M is number of time series
```

31.2.2 Training

The TCN is trained to predict the next time step of the CPI components using past observations. Training involves splitting data into train and test sets, and using the Adam optimizer to minimize mean squared error (MSE) between predictions and actual values.

```
# Model training parameters
seq_len = 8  # length of each input sequence for TCN
batch_size = 16
step_size = 30  # learning rate scheduler step size
lr = 0.01  # initial learning rate
num_lr = 3
num_epochs = step_size * num_lr
results = {}  # to collect evaluate results
train_loss = {}
```

```
# train_ex should have dimension (batch size, channels, sequence length+1)
train_ex = torch.tensor(scaled_data.values[:ntrain].T) [None,:,:].float().to(device)
```

First, a baseline model comprising just a single 1D Conv layer is trained to predict next time step

```
model = torch.nn.Conv1d(n_features, n_features, kernel_size=1).to(device)
print(model)
print(torchinfo.summary(model))
modelname = "1D-Convolution"
train_loss[modelname] = []
test_loss[modelname] = []
optimizer = torch.optim.Adam(model.parameters())
loss_function = nn.MSELoss()
```

```
      Conv1d(6, 6, kernel_size=(1,), stride=(1,))

      Layer (type:depth-idx)
      Param #

      Conv1d
      42
```

```
Total params: 42
Trainable params: 42
Non-trainable params: 0
```

```
for epoch in range (num_epochs):
    for _ in range(batch_size):
        total_loss = 0.0
       model.train()
       model.zero_grad()
        X = train_ex[:,:,:-1]
        Y = train_ex[:,:,1:]
        output = model(X)
        loss = loss_function(output, Y) # calculated over all outputs
        total_loss += float(loss)
        loss.backward()
        optimizer.step()
    model.eval()
    train_loss[modelname].append(total_loss)
    X = torch.tensor(scaled_data.values.T) [None,:,:].float().to(device)
    pred = model(X).cpu().detach().numpy()[0,:,:].T
    test_loss[modelname] = mean_squared_error(scaled_data.values[ntrain:],
                                              pred[ntrain-1:-1])
results[modelname] = {
    'Train Error': mean_squared_error(scaled_data.values[1:ntrain],
                                        pred[:ntrain-1]),
    'Test Error': mean_squared_error(scaled_data.values[ntrain:],
                                        pred[ntrain-1:-1])
```

Save the fitted weights to compare with classical Vector Autoregression (VAR) models.

Next, we train various TCN configurations, utilizing StepLR learning rate scheduler and shuffled batches, while varying:

- number of layers (blocks): 1, 2
- different kernel sizes: 1, 2
- dropout rates: 0, 0.5.

```
dropout=dropout).to(device)
print()
print('*****', modelname, '*****')
print(model)
print(torchinfo.summary(model))
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(
   optimizer, gamma=0.1, step_size=step_size
)
loss_function = nn.MSELoss()
# Run training loop over num_epochs with batch_size
num_epochs = step_size * num_lr
for epoch in range(num_epochs):
    # shuffle indxs into batches
   idxs = np.arange(len(train_exs))
    random.shuffle(idxs)
   batches = [idxs[i:min(len(idxs), i + batch_size)]
               for i in range(0, len(idxs), batch_size)]
    # train by batch
   total_loss = 0.0
   model.train()
    for batch in batches:
        # input has shape (batch_size, n_features, seq_len)
        # Creating a tensor from a list of numpy.ndarrays is extremely slow.
        nparray = np.array([[train_exs[idx][seq] for idx in batch]
                            for seq in range(seq_len+1)])
        train_ex = torch.tensor(nparray).permute(1, 2, 0).float().to(device)
        model.zero_grad()
        X = train_ex[:,:,:-1]
        Y = train_ex[:,:,1:]
        output = model(X)
        loss = loss_function(output, Y) # calculated over all outputs
        total_loss += float(loss) / len(batches)
        loss.backward()
        optimizer.step()
        scheduler.step()
   model.eval()
    train_loss[modelname].append(total_loss)
    if VERBOSE and (epoch % (step_size//2)) == 0:
        print(epoch, num_epochs, optimizer.param_groups[0]['lr'], total_loss)
    # Compute MSE of one-period ahead forecast error in train and test sets
   X = torch.tensor(scaled_data.values.T) [None,:,:].float().to(device)
   pred = model(X).cpu().detach().numpy()[0,:,:].T
    test_loss[modelname].append(mean_squared_error(scaled_data.values[ntrain:],
                                                   pred[ntrain-1:-1]))
results[modelname] = {
    'Train Error': mean_squared_error(scaled_data.values[1:ntrain],
                                        pred[:ntrain-1]),
    'Test Error': mean_squared_error(scaled_data.values[ntrain:],
```

```
pred[ntrain-1:-1])
 #print('Blocks:', block, 'Kernel size:', kernel_size, results[modelname])
 #print(pd.concat(res, axis=1).T)
****** TCN (b=1, k=1, d=0.0) ******
TCN (
 (network): Sequential(
   (0): CausalConv1dBlock(
    (network): Sequential(
      (0): ConstantPad1d(padding=(0, 0), value=0)
      (1): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
      (2): ReLU()
      (3): ConstantPad1d(padding=(0, 0), value=0)
      (4): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
      (5): ReLU()
      (6): Dropout (p=0, inplace=False)
    )
  )
 )
 (classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
)
Layer (type:depth-idx)
                               Param #
_____
TCN
                                ___
-Sequential: 1-1
                                ___
    CausalConv1dBlock: 2-1
                               ___
   | -Sequential: 3-1
                               84
⊢Conv1d: 1-2
                               42
Total params: 126
Trainable params: 126
Non-trainable params: 0
------
                ****** TCN (b=1, k=2, d=0.0) *****
TCN (
 (network): Sequential(
   (0): CausalConv1dBlock(
    (network): Sequential(
      (0): ConstantPad1d(padding=(1, 0), value=0)
      (1): Convld(6, 6, kernel_size=(2,), stride=(1,))
      (2): ReLU()
      (3): ConstantPad1d(padding=(1, 0), value=0)
      (4): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
      (5): ReLU()
      (6): Dropout(p=0, inplace=False)
    )
   )
 )
 (classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
)
Layer (type:depth-idx)
                               Param #
_____
```

```
TCN
-Sequential: 1-1
                                ___
    └─CausalConv1dBlock: 2-1
    └─Sequential: 3-1
                                156
Conv1d: 1-2
                               42
_____
Total params: 198
Trainable params: 198
Non-trainable params: 0
_____
****** TCN (b=2, k=1, d=0.0) ******
TCN (
 (network): Sequential(
   (0): CausalConv1dBlock(
     (network): Sequential(
      (0): ConstantPad1d(padding=(0, 0), value=0)
      (1): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
      (2): ReLU()
      (3): ConstantPad1d(padding=(0, 0), value=0)
      (4): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
      (5): ReLU()
      (6): Dropout(p=0, inplace=False)
    )
   )
   (1): CausalConv1dBlock(
    (network): Sequential(
      (0): ConstantPad1d(padding=(0, 0), value=0)
      (1): Conv1d(6, 6, kernel_size=(1,), stride=(1,), dilation=(2,))
      (2): ReLU()
      (3): ConstantPad1d(padding=(0, 0), value=0)
      (4): Conv1d(6, 6, kernel_size=(1,), stride=(1,), dilation=(2,))
      (5): ReLU()
      (6): Dropout (p=0, inplace=False)
    )
  )
 )
 (classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
)
_____
Layer (type:depth-idx)
                                Param #
_____
TCN
-Sequential: 1-1
    CausalConv1dBlock: 2-1
       └─Sequential: 3-1
                                84
    CausalConv1dBlock: 2-2
                               ___
    │ └─Sequential: 3-2
                               84
├─Conv1d: 1-2
                               42
Total params: 210
Trainable params: 210
Non-trainable params: 0
_____
****** TCN (b=2, k=2, d=0.0) *****
```

```
(continued from previous page)
```

```
TCN (
  (network): Sequential(
   (0): CausalConv1dBlock(
     (network): Sequential(
       (0): ConstantPad1d(padding=(1, 0), value=0)
       (1): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
       (2): ReLU()
       (3): ConstantPad1d(padding=(1, 0), value=0)
       (4): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
       (5): ReLU()
       (6): Dropout (p=0, inplace=False)
     )
   )
   (1): CausalConv1dBlock(
     (network): Sequential(
       (0): ConstantPad1d(padding=(2, 0), value=0)
       (1): Conv1d(6, 6, kernel_size=(2,), stride=(1,), dilation=(2,))
       (2): ReLU()
       (3): ConstantPad1d(padding=(2, 0), value=0)
       (4): Conv1d(6, 6, kernel_size=(2,), stride=(1,), dilation=(2,))
       (5): ReLU()
       (6): Dropout(p=0, inplace=False)
     )
   )
 )
  (classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
)
  _____
Layer (type:depth-idx)
                                   Param #
_____
TCN
-Sequential: 1-1
    CausalConv1dBlock: 2-1
                                   ___
        └─Sequential: 3-1
                                   156
    └─CausalConv1dBlock: 2-2
                                   ___
    | ____Sequential: 3-2
                                   156
⊢Conv1d: 1-2
                                   42
_____
Total params: 354
Trainable params: 354
Non-trainable params: 0
_____
****** TCN (b=2, k=2, d=0.3) *****
TCN (
  (network): Sequential(
   (0): CausalConv1dBlock(
     (network): Sequential(
       (0): ConstantPad1d(padding=(1, 0), value=0)
       (1): Convld(6, 6, kernel_size=(2,), stride=(1,))
       (2): ReLU()
       (3): ConstantPad1d(padding=(1, 0), value=0)
       (4): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
       (5): ReLU()
       (6): Dropout (p=0.3, inplace=False)
     )
```

```
)
   (1): CausalConv1dBlock(
    (network): Sequential(
      (0): ConstantPad1d(padding=(2, 0), value=0)
      (1): Conv1d(6, 6, kernel_size=(2,), stride=(1,), dilation=(2,))
      (2): ReLU()
      (3): ConstantPad1d(padding=(2, 0), value=0)
      (4): Conv1d(6, 6, kernel_size=(2,), stride=(1,), dilation=(2,))
      (5): ReLU()
      (6): Dropout (p=0.3, inplace=False)
    )
  )
 )
 (classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
)
_____
Layer (type:depth-idx)
                             Param #
_____
TCN
-Sequential: 1-1
                              ___
   └─CausalConv1dBlock: 2-1
                              ___
      └─Sequential: 3-1
                             156
   CausalConv1dBlock: 2-2
                              ___
   └─Sequential: 3-2
                             156
-Conv1d: 1-2
                              42
_____
Total params: 354
Trainable params: 354
Non-trainable params: 0
_____
```

31.2.3 Evaluation

Training and test errors (MSE) from one-step-ahead forecasting are collected across models. Additionally, training and testing loss curves are plotted to analyze convergence and overfitting tendencies of different configurations.

```
fig, ax = plt.subplots(figsize=(10, 6))
DataFrame(train_loss).plot(ax=ax)
ax.set_ylim(top=1.0)
ax.set_title(f"TCN Models Training Loss by Epoch")
ax.set_xlabel('Epoch')
ax.legend(title='Model Size (blocks, kernel)')
plt.tight_layout()
```



```
fig, ax = plt.subplots(figsize=(10, 6))
DataFrame(test_loss).plot(ax=ax)
ax.set_ylim(top=1.0)
ax.set_title(f"TCN Models Test Loss by Epoch")
ax.set_xlabel('Epoch')
ax.legend(title='Model Size (blocks, kernel)')
plt.tight_layout()
```

TCN Models Test Loss by Epoch


```
print('Sorted by Test Error')
DataFrame(results).T.sort_values('Test Error')
```

Sorted by Test Error

```
Train ErrorTest Error1D-Convolution0.7369070.753075TCN (b=2, k=2, d=0.0)0.7861850.788295TCN (b=2, k=1, d=0.0)0.7884570.792443TCN (b=1, k=2, d=0.0)0.7754190.809113TCN (b=1, k=1, d=0.0)0.8329840.845615TCN (b=2, k=2, d=0.3)0.7902850.956657
```

31.3 Vector Autoregression

Vector Autoregression (VAR) is a statistical time series model that captures linear interdependencies across multiple time series.

var_model = VAR(scaled_data.iloc[:ntrain], freq='ME')

31.3.1 Lag order

The lagged coefficients estimated from the Vector Autoregression help predict multi-step future outcomes. The optimal lag order (p) can be selected using infomation criteria such as AIC, BIC, HQIC, or FPE.

Optimal number of VAR(p) lags selected by various IC

```
IC: aic fpe hqic bic optimal p: 3 3 2 2
```

```
# Fit VAR(p) models
var_models = {p: var_model.fit(p) for p in range(1, maxlags+1)} # fit models
```

```
# Show model summary for VAR(1)
print(var_models[1].summary())
```

Summary of Regression	Results					
Model: Method: Date: Sat, 15 Time:	VAR OLS , Mar, 2025 04:58:13					
No. of Equations: Nobs: Log likelihood: AIC:	6.00000 657.000 -4907.30 -1.96089	BIC: HQIC: FPE: Det(Omega_	-1 -1 0. _mle): 0.	.67401 .84967 140733 132063		
Results for equation Fo	od and Bevera	ages				
↔ prob	CO6	efficient	std. error			
⇔ const ⇔ 0.985	-	-0.000685	0.035822	-0.019	_	
L1.Food and Beverages		0.309512	0.037889	8.169	_	
L1.Housing		0.212849	0.043404	4.904	-	
L1.Apparel	-	-0.002978	0.038364	-0.078	_	
→ 0.938 L1.Transportation	-	-0.006074	0.038082	-0.159	_	
→ 0.873 L1.Medical Care	-	-0.007239	0.042771	-0.169	.	
 ↓ 0.866 L1.0ther Goods and Serv ↓ 0.789 	ices	0.010009	0.037379	0.268		
Results for equation Ho	using					
→ prob	CO6	efficient	std. error			
د						
const → 0.564	-	-0.016126	0.02/926	-0.577		
L1.Food and Beverages → 0.000		0.163358	0.029537	5.531	-	
L1.Housing → 0.000		0.494378	0.033836	14.611	-	
L1.Apparel ↔ 0.197		0.038625	0.029907	1.291	-	
L1.Transportation → 0.012		0.074603	0.029687	2.513	-	
L1.Medical Care		0.211794	0.033342	6.352	-	
L1.Other Goods and Serv O.437	ices -	-0.022649	0.029139	-0.777		

Results for equation Apparel

coefficient std. error t-stat prob \hookrightarrow 0.036418 -0.004137 -0.114 const ↔ 0.910 L1.Food and Beverages 0.032202 0.038519 0.836 🗖 ↔ 0.403 0.108030 0.044125 L1.Housing 2.448 ↔ 0.014 0.137027 0.039002 L1.Apparel 3.513 ↔ 0.000 0.187727 0.038715 L1.Transportation 4.849 ↔ 0.000 L1.Medical Care 0.116103 0.043482 2.670 ↔ 0.008 L1.Other Goods and Services 0.007090 0.038000 0.187 ↔ 0.852 Results for equation Transportation _____ coefficient std. error t-stat prob _____ ц-----0.001347 const 0.034599 0.039 ____ 0.969 \hookrightarrow L1.Food and Beverages 0.021051 0.036595 0.575 ↔ 0.565 L1.Housing 0.070974 0.041921 1.693 ⇔ 0.090 L1.Apparel 0.032549 0.037054 0.878 ____ ↔ 0.380 L1.Transportation 0.425719 0.036782 11.574 ↔ 0.000 L1.Medical Care 0.050082 0.041310 1.212 ↔ 0.225 L1.Other Goods and Services -0.035207 0.036103 -0.975↔ 0.329 Results for equation Medical Care coefficient std. error t-stat \hookrightarrow prob _____ ц-----0.033077 0.029060 1.138 const \hookrightarrow 0.255 0.030737 0.024634 L1.Food and Beverages 0.801 0.423 **⇔** L1.Housing 0.232885 0.035211 6.614 ↔ 0.000 L1.Apparel 0.044440 0.031122 1.428

			(co	ntinued from previous p	bage)	
• 0.153 L1.Transportation	0.005782	0.03	0893	0.187	_	
L1.Medical Care	0.431033	0.03	4697	12.423	_	
L1.Other Goods and Services O.000	0.114476	0.03	0323	3.775	-	
Results for equation Other Goods	and Services					
↔ prob	coefficient	std. e	rror	t-stat		
const	-0.009490	0.03	7496	-0.253		
	0.026291	0.03	9660	0.663	_	
L1.Housing	0.076689	0.04	5432	1.688	_	
L1.Apparel	0.094758	0.04	0157	2.360	-	
L1.Transportation 0.649	0.018115	0.03	9861	0.454	_	
L1.Medical Care → 0.000	0.260564	0.04	4769	5.820	-	
L1.Other Goods and Services → 0.805	0.009675	0.03	9126	0.247	-	
Correlation matrix of residuals						
Food Medical Care Other Goods and	and Beverages Services	Housing	Apparel	Transportatio	onu	
Food and Beverages ↔ 0.014162	1.000000	0.147358	0.085820	-0.00056	53 _	
Housing → 0.094535	0.147358 0.019075	1.000000	0.093314	0.13254	16.	
Apparel ↔ 0.037713	0.085820 0.025531	0.093314	1.000000	0.12665	53_	
Transportation ↔ -0.054420	-0.000563 -0.012936	0.132546	0.126653	1.00000	0_	
Medical Care → 1.000000	0.014162 0.153701	0.094535	0.037713	-0.05442	20	
Other Goods and Services ↔ 0.153701	-0.010059 1.000000	0.019075	0.025531	-0.01293	36_	

31.3.2 Var(1) and Conv1d

The coefficients learned by VAR(1) models are compared to the learned weights of Conv1D layers, illustrating how classical linear models relate to convolution-based neural approaches in time series forecasting.

Coefficients of VAR(1) model

Tensor weights of Conv1D

	Food and Bevera	ges Housing	Apparel	
const	-0.0	007 -0.0161	-0.0041	
L1.Food and Beverages	0.3	095 0.1634	0.0322	
L1.Housing	0.2	128 0.4944	0.1080	
L1.Apparel	-0.0	030 0.0386	0.1370	
L1.Transportation	-0.0	061 0.0746	0.1877	
L1.Medical Care	-0.0	072 0.2118	0.1161	
L1.Other Goods and Services	0.0	100 -0.0226	0.0071	
	Transportation	Medical Care	\	
const	0.0013	0.0331		
L1.Food and Beverages	0.0211	0.0246		
L1.Housing	0.0710	0.2329		
L1.Apparel	0.0325	0.0444		
L1.Transportation	0.4257	0.0058		
L1.Medical Care	0.0501	0.4310		
L1.Other Goods and Services	-0.0352	0.1145		
	Other Goods and	Services		
const		-0.0095		
L1.Food and Beverages		0.0263		
L1.Housing		0.0767		
L1.Apparel		0.0948		
L1.Transportation	0.0181			
L1.Medical Care		0.2606		
L1.Other Goods and Services		0.0097		

print('Tensor weights of Conv1D')
DataFrame(conv1d_weights, columns=names, index=['bias'] + names).round(4)

Food and Beverages	Housing	Apparel	\
-0.0011	-0.0167	-0.0041	
0.3154	0.1677	0.0322	
0.1997	0.4808	0.1080	
-0.0014	0.0396	0.1370	
-0.0037	0.0773	0.1877	
-0.0018	0.2197	0.1160	
0.0105	-0.0227	0.0072	
Transportation Med	dical Care	Λ	
0.0014	0.0330		
	Food and Beverages -0.0011 0.3154 0.1997 -0.0014 -0.0037 -0.0018 0.0105 Transportation Med 0.0014	Food and Beverages Housing -0.0011 -0.0167 0.3154 0.1677 0.1997 0.4808 -0.0014 0.0396 -0.0037 0.0773 -0.0018 0.2197 0.0105 -0.0227 Transportation Medical Care 0.0014 0.0330	Food and Beverages Housing Apparel -0.0011 -0.0167 -0.0041 0.3154 0.1677 0.0322 0.1997 0.4808 0.1080 -0.0014 0.0396 0.1370 -0.0037 0.0773 0.1877 -0.0018 0.2197 0.1160 0.0105 -0.0227 0.0072 Transportation Medical Care \ 0.0014 0.0330

(continues on next page)

\
Food and Domonago	0 0210	0 0252		
Food and Beverages	0.0210	0.0253		
Housing	0.0713	0.2302		
Apparel	0.0326	0.0447		
Transportation	0.4256	0.0063		
Medical Care	0.0493	0.4323		
Other Goods and Services	-0.0349	0.1146		
	Other Goods and	Services		
bias		-0.0086		
Food and Beverages		0.0233		
Housing		0.0861		
Apparel		0.0936		
Transportation		0.0166		
Medical Care		0.2514		
Other Goods and Services		0.0115		

31.3.3 Evaluation

The forecasting accuracy of VAR models, measured by train and test MSE, is compared across different lag orders.

```
# Calculate forecast errors for each observation and model
test_errors = {p: list() for p in range(maxlags+1)}
train_errors = {p: list() for p in range(maxlags+1)}
```

```
for i in range(maxlags, len(scaled_data)-1):
    data = scaled_data.iloc[i].values
    # test or train sample
    var_errors = train_errors if i < ntrain else test_errors
    # error of unconditional mean forecast
    var_errors[0].append(mean_squared_error(data, scaled_data.iloc[:ntrain].mean()))
    # accumulate to error of VAR(p) model forecasts
    for p in range(1, maxlags+1):
        pred = var_models[p].forecast(scaled_data.iloc[:i].values, 1)</pre>
```

```
var_errors[p].append(mean_squared_error(data.reshape(1, -1), pred))
```

out

VAR models train and test set errors

Train Error Test Error VAR(0) 1.009966 0.936672 VAR(1) 0.739496 0.757588

VAR(2)	0.696483	0.754189
VAR(3)	0.680224	0.739767
VAR (4)	0.671862	0.750212
VAR(5)	0.657304	0.739927
VAR(6)	0.647010	0.744329

Error plots are generated to determine the optimal lag order for best predictive performance.

References:

Philipp Krähenbühl, 2020-2024, "AI394T Deep Learning course materials", retrieved from https://www.philkr.net/ dl_class/material and https://ut.philkr.net/deeplearning/

Philipp Krähenbühl, 2025, "AI395T Advances in Deep Learning course materials", retrieved from https://ut.philkr. net/advances_in_deeplearning/

CHAPTER

THIRTYTWO

RECURRENT NEURAL NETWORKS

History doesn' t repeat itself, but it often rhymes - Mark Twain

We analyze the application of **Recurrent Neural Networks (RNNs)** for forecasting multivariate time series data, focusing on U.S. Consumer Price Index (CPI) components. RNN models are trained under different configurations to compare their predictive performance and investigate the behavior of their hidden states. Additionally, we examine how the temporal patterns learned by RNNs relate to the latent factors uncovered by Dynamic Factor Models (DFMs), a classical econometric approach for modeling co-movements in time series data.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import gc
import statsmodels.api as sm
import torch
import torch.nn as nn
import torchinfo
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from tqdm import tqdm
from finds.structured import BusDay
from finds.readers import Alfred
from secret import credentials
import warnings
```

```
# %matplotlib qt
VERBOSE = 0
if not VERBOSE: # Suppress FutureWarning messages
    warnings.simplefilter(action='ignore', category=FutureWarning)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# train-test split date
split_date = '2021-12-01'
```

32.1 Sequence modeling

Recurrent Neural Networks (RNNs) are powerful models for learning from sequential data, enabling tasks such as language modeling, translation, and time series forecasting by maintaining a memory of past inpformation. Unlike feed-forward networks, RNNs process sequences one step at a time, using a hidden state that carries information across time steps to capture temporal dependencies. Variants like Elman and Jordan networks provide basic feedback mechanisms, while more advanced models such as LSTMs and GRUs address training challenges like vanishing gradients. However, RNNs remain inherently sequential, making them slower to train and less parallelizable compared to modern architectures like convolutional or transformer models.

32.1.1 Recurrent units

RNNs retain temporal information through recurrent connections, applying the same computation repeatedly at each time step while maintaining a **hidden state (memory)**. The hidden state h_t is updated based on the current input x_t and the previous hidden state h_{t-1} :

$$\begin{split} h_t &= f_h(x_t,h_{t-1},\theta_h) \\ h_t &= f_h(x_t,h_{t-1},\theta_h) \end{split}$$

where the initial hidden state h_0 is typically initialized to zero, θ_h are learnable parameters, and f_h is the recurrent function (e.g., tanh, ReLU, GRU, LSTM).

Training RNNs is more complex than training feedforward neural networks due to dependencies across time steps.

RNNs are unfolded through time, applying the same parameters (shared weights) at each step, and trained using standard backpropogation, known as **Backpropagation Through Time (BPTT)** when applied over multiple time steps. This makes training computationally expensive, and prone to **vanishing gradients** (gradients shrink) and **exploding gradients** (gradients blow up), which respectively limit the model' s ability to learn long-range dependencies and cause unstable updates.

32.1.2 LSTM networks

Long Short-Term Memory (LSTM) networks mitigate the vanishing gradient problem by introducing a **cell state** and multiple **gating mechanisms** that regulate information flow. Key components include:

- Cell state c_t : A "memory" that runs through the network, modified by gates.
- Hidden state h_t : Output of the LSTM at each time step.
- Input x_t : Current input at time t.
- Previous state h_{t-1}, c_{t-1} : From the last time step.
- Gates:
 - Forget gate f_t : Decides what information to discard from the cell state.
 - Input gate i_t : Controls how much new information flows into the cell state.
 - Output gate o_t : Determines what part of the cell state should be output as h_t .

A cell update combines the past cell state and new input to update c_t . The h_t output is updated from c_t and previous its previous state h_{t-1} .

32.1.3 GRU networks

Gated Recurrent Unit (GRU) networks are a simplified version of LSTMs that combine cell state and hidden state into a single vector, using fewer gates:

- Update gate (similar to combined forget/input gate): Controls what part of the past state to keep.
- Reset gate: Controls how to combine new input with the previous memory.
- Single hidden state h_t : Serves as both memory and output.

GRUs are computationally more efficient than LSTM, and perform comparably on many tasks.

32.2 Elman network

An Elman network is a basic RNN where recurrence occurs within the hidden layer:

$$h_t = f(x_t, h_{t-1})$$

Multiple Elman layers can be stacked to capture longer-term dependencies and more complex temporal patterns. For every element in the input sequence, each layer computes the following function:

$$h_t = \tanh(x_t \; W_{ih}^T \; + b_{ih} \; + h_{t-1} \; W_{hh}^T \; + b_{hh} \;)$$

where

- h_t is the hidden state at time t,
- x_t is the input at time t,
- h_{t-1} is the hidden state of the previous layer at time t-1 or the initial hidden state at time 0, and
- b' s and W' s are the learnable bias and weights

We implement a single-layer Elman RNN using PyTorch's standard RNN module to process sequential data, with Dropout regularization to reduce overfitting.

```
class Elman(nn.Module):
    def __init__(self, n_features, hidden_size, dropout, num_layers=1):
        super().__init__()
        self.hidden_size = hidden_size
        self.output_size = n_features
        self.num_layers = num_layers
        self.dropout = nn.Dropout(dropout)
        self.rnn = nn.RNN(input_size=n_features,
                          hidden_size=hidden_size,
                          num_layers=num_layers)
        self.o2o = nn.Linear(hidden_size, n_features)
    def forward(self, x, hidden):
                            # drop out input layer
        x = self.dropout(x)
        output, hidden = self.rnn(x, hidden)
        output = self.o2o(output[-1:, :])
        return output, hidden
    def init_hidden(self):
        return torch.zeros(self.num_layers, self.hidden_size)
```

32.2.1 Data preparation

CPI time series data for multiple components (e.g., food, housing) are collected from FRED. The data are log-transformed and differenced to ensure stationarity, then standardized (using StandardScaler) to have mean 0 and variance 1. The time series data are split into training followed by testing sets using a defined cutoff date.

```
\# Max number of hidden states (RNN) or factors (Dynamic Model) K = 2
```

```
# number of out-of-sample forecasts to predict
nforecast = 3
```

```
# Load time series from FRED
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
vspans = alf.date_spans('USREC')  # recession periods
```

```
names = [s[s.find(':')+2:s.find(' in ')] for s in alf.header(series_ids)]
names
```

```
['Food and Beverages',
 'Housing',
 'Apparel',
 'Transportation',
 'Medical Care',
 'Other Goods and Services']
```

Standardize the data data
scaler = StandardScaler().fit(df)
scaled_data = DataFrame(scaler.transform(df), columns=names, index=df.index)
scaled_data

	Food	and	Beverages	Housing	Apparel	Transportation	\setminus
date							
1967-02-28			-1.520716	-1.129800	0.533990	0.266586	
1967-03-31			-0.805655	-1.129800	0.124553	-0.267488	
1967-04-30			-1.522780	-0.063784	0.529140	0.263339	
1967-05-31			-0.805655	-0.067262	0.122142	-0.003280	
1967-06-30			1.339539	-1.129800	0.524347	-0.267488	
2024-10-31			-0.252031	0.063171	-2.110286	-0.203592	
2024-11-30			-0.053379	-0.037266	-0.114479	0.027062	
2024-12-31			-0.180743	-0.209529	-0.015224	0.767819	

```
2025-01-31
                    0.090331 -0.037301 -3.137367
                                                       0.794814
                   -0.350673 0.133190 0.934107
2025-02-28
                                                      -0.605692
           Medical Care Other Goods and Services
date
             -0.248585
1967-02-28
                                      -1.017195
            -0.253160
                                      -0.284868
1967-03-31
1967-04-30
             0.988995
                                      -1.017195
1967-05-31 -0.266687
                                      -0.286982
1967-06-30
            0.962232
                                      -0.289083
. . .
                   . . .
                                            . . .
2024-10-31
            -0.692758
                                      -0.172972
2024-11-30 -0.702581
                                      0.085335
2024-12-31
            -1.058184
                                      -1.113129
2025-01-31
            -0.701262
                                      -1.822241
2025-02-28
            -0.563596
                                       0.499572
[697 rows x 6 columns]
```

```
# Create input data for RNN
ntrain = sum(scaled_data.index < split_date)
ntest = len(scaled_data.index) - ntrain - 1
n_features = scaled_data.shape[1]
data = scaled_data.values</pre>
```

32.2.2 Training

RNN models with different hidden sizes (K = 1, 2) are trained using an Adam optimizer and a StepLR learning rate scheduler, which reduces the learning rate during training for better convergence.

```
# Train model
num_layers = 1
dropout = 0.0
lr = 0.01  # starting learning rate
step_size = 100  # number of steps per learning rate
num_lr = 3 # number of learning rate periods
num_epochs = step_size * num_lr
train_loss = {}
hidden_states = {}
for hidden_size in range(1, K+1):
    torch.manual_seed(0)
    model = Elman(n_features=n_features,
                 hidden_size=hidden_size,
                  dropout=dropout,
                  num_layers=num_layers).to(device)
    print(model)
    torchinfo.summary(model)
    # Set optimizer and learning rate scheduler
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                step_size=step_size,
```

```
gamma=0.1)
loss_function = nn.MSELoss()
train_loss[hidden_size] = []
for epoch in tqdm(range(num_epochs)): # Run training loop per epoch
   model.train()
   model.zero_grad()
   hidden = model.init_hidden().to(device)
   loss = torch.FloatTensor([0]).to(device)
    for i in range(ntrain):
        x = torch.FloatTensor(data[[i], :]).to(device)
        y = torch.FloatTensor(data[[i+1], :]).to(device)
        output, hidden = model(x, hidden)
        l = loss_function(output, y)
        loss += l
    loss.backward()
    optimizer.step()
    scheduler.step()
   model.eval()
   train_loss[hidden_size].append(float(loss)/ntrain)
    #if VERBOSE:
       print(epoch, train_loss[hidden_size][-1], scheduler.get_last_lr())
    #
# collect predictions and hidden states, and compute mse
with torch.no_grad(): # reduce memory consumption for eval
   loss_function = nn.MSELoss()
   hidden = model.init_hidden().to(device)
   hidden_states[hidden_size] = [hidden.cpu().numpy().flatten()]
   y_pred = [np.zeros(n_features)]
    for i in range(ntrain + ntest):
        x = torch.FloatTensor(data[[i], :]).to(device)
        y = torch.FloatTensor(data[[i+1], :]).to(device)
        output, hidden = model(x, hidden)
        hidden_states[hidden_size].append(hidden.cpu().numpy().flatten())
        y_pred.append(output.cpu().numpy().flatten())
    # k-step ahead forecast at end of period
    for i in range(nforecast):
        х = у
        y, hidden = model(x, hidden)
        y_pred.append(y.cpu().numpy().flatten())
    print(f"train MSE (hidden={hidden_size}):",
         mean_squared_error(data[1:ntrain+1, :], y_pred[1:ntrain+1]))
    print(f"test MSE (hidden={hidden_size}):",
          mean_squared_error(data[ntrain+1:ntrain+ntest+1, :],
                             y_pred[ntrain+1:ntrain+ntest+1]))
```

```
Elman(
  (dropout): Dropout(p=0.0, inplace=False)
  (rnn): RNN(6, 1)
  (o2o): Linear(in_features=1, out_features=6, bias=True)
)
```

100%| 300/300 [01:42<00:00, 2.93it/s]

```
train MSE (hidden=1): 0.8150888820868842
test MSE (hidden=1): 0.7845472493024133
Elman(
   (dropout): Dropout(p=0.0, inplace=False)
   (rnn): RNN(6, 2)
   (o2o): Linear(in_features=2, out_features=6, bias=True)
)
```

100%| 300/300 [01:38<00:00, 3.04it/s]

```
train MSE (hidden=2): 0.757587880335504
test MSE (hidden=2): 0.7211778265327311
```

32.2.3 Evaluation

The training and testing MSE for each RNN model are calculated for performance comparison. Training loss curves across epochs are plotted to assess convergence, and out-of-sample forecasts for 3 time steps ahead, after the end of the sample period, are visualized.

```
fig, ax = plt.subplots(figsize=(10, 6))
DataFrame(train_loss).plot(ax=ax)
ax.set_title(f"Elman Models Training Loss by Epoch")
ax.set_xlabel('Epoch')
ax.legend(title='Model Size')
plt.tight_layout()
```


Monthly forecasts from RNN Model

	Food and	l Beverages	Housing	Apparel	Transportation	Medical Care	\setminus
2025-02		0.00000	0.000000	0.000000	0.00000	0.00000	
2025-03		0.002727	0.002439	0.000359	0.001873	0.003255	
2025-04		0.002429	0.002219	0.000304	0.001803	0.003247	
2025-05		0.002214	0.002026	0.000220	0.001723	0.003180	
	Other Go	ods and Ser	vices				
2025-02		0.0	00000				
2025-03		0.0	03144				
2025-04		0.0	03125				
2025-05		0.0	03065				

Plot forecasts
fig, ax = plt.subplots(figsize=(10, 6))
forecasts.cumsum().plot(ax=ax, marker='*')
ax.set_title(f"Elman Model (with {K} hidden states) cumulative forecasts")
plt.tight_layout()

32.2.4 Hidden states

Hidden states from the last training epoch are collected, and their cumulative sums are plotted to illustrate how the internal memory of the Elman RNN evolves over time.

32.3 Dynamic Factor Models

This statistical model captures co-movements in time series using latent factors: The basic model is:

$$y_t = \Lambda f_t + \epsilon_t$$

$$f_t = A_1 f_{t-1} + \dots + A_2 f_{t-2} + u_t$$

where:

- y_t is observed data at time t
- ϵ_t is idiosyncratic disturbance at time t
- f_t is the unobserved factor at time t
- + $u_t \sim N(0,Q)$ is the factor disturbance at time t
- Λ is referred to as the matrix of factor loadings
- A_i are matrices of autoregression coefficients

We use DynamicFactorMQ from statsmodels, which employs an **Expectation-Maximization (EM)** algorithm for fitting, and so can accommodate a large number of observed variables. This can handle any collection of blocks of factors, including different factor autoregression orders, and AR(1) processes for idiosyncratic disturbances. The model allows incorporate monthly/quarterly mixed frequency data, making it suitable for **nowcasting**.

• https://www.statsmodels.org/dev/examples/notebooks/generated/statespace_dfm_coincident.html

We fit models with varying lag orders (p) to find an optimal autoregressive structure.

```
# Fit ar lags with best BIC
dynamic_factors = dict()
models = {}
K = 2
for ar in range(1, 5):
    mod = sm.tsa.DynamicFactorMQ(endog=scaled_data,
                                 factors=1,
                                                           # num factor blocks
                                 factor_multiplicities=K, # num factors in block
                                                          # order of factor VAR
                                 factor_orders=ar,
                                 idiosyncratic_ar1=True)
    fitted = mod.fit(disp=20 * bool(VERBOSE),
                     maxiter=1000,
                     full_output=True)
    models[ar] = dict(bic=fitted.bic,
                      mse=fitted.mse,
                      summary=fitted.summary().tables[0],
                      predict=fitted.predict(),
                      forecast=fitted.forecast(nforecast),
                      params=len(fitted.param_names))
    dynamic_factors[ar] = DataFrame(fitted.factors.filtered)
    dynamic_factors[ar].columns = np.arange(1, K+1)
    print(DataFrame(dict(bic=fitted.bic,
                         mse=fitted.mse,
                         parameters=len(fitted.param_names)),
                    index=[ar]))
    del fitted
    del mod
    qc.collect()
```

```
        bic
        mse
        parameters

        1
        10478.491794
        4.275815
        31

        bic
        mse
        parameters

        2
        10499.374971
        4.272672
        35

        bic
        mse
        parameters

        3
        10506.462669
        4.243688
        39

        bic
        mse
        parameters

        4
        10517.472768
        4.231597
        43
```

32.3.1 Lag order

Bayesian Information Criterion (BIC) is used to select the optimal lag order

```
# dynamic model with best bic
best, model = min(models.items(), key=lambda item: item[1]['bic'])
mse = mean_squared_error(scaled_data, model['predict'])
print('Best lag:', best, ' bic:', model['bic'])
print(model['summary'])
Best lag: 1 bic: 10478.49179401509
Dynamic Factor Results
```

Dep. Variable: "Food and Beverages", and 5 more No. Observations:

Model: ↔-5137.771	Dynamic Factor Model	Log Likelihood	
	+ 2 factors in 1 blocks	AIC	
→ 10337.541			
	+ AR(1) idiosyncratic	BIC	_
⇒10478.492			
Date:	Sat, 15 Mar 2025	HQIC	
⇔10392.038			
Time:	05:18:21	EM Iterations	
↔ 182			
Sample:	02-28-1967		
-	- 02-28-2025		
Covariance Type:	Not computed		

32.3.2 Evaluation

The models are evaluated based on **train/test MSE**. The 3-step-ahead forecasts, as of the end of the sample period, are also plotted.

```
Dynamic Factor Model Train MSE: 0.7131933696697343
Dynamic Factor Model Test MSE: 0.7405157478690289
Number of parameters: 31
```

Monthly forecasts from Dynamic Factor Model

```
Food and Beverages Housing Apparel Transportation Medical Care \
2025-02
              2025-03
               0.002508 0.002980 0.001488
                                          0.000141
                                                     0.002883
                                          0.001794
2025-04
               0.002666 0.002714 0.000947
                                                     0.002942
               0.002714 0.002649 0.000894
                                          0.002477
                                                     0.002987
2025-05
      Other Goods and Services
2025-02
                   0.000000
2025-03
                   0.002253
2025-04
                   0.002512
2025-05
                   0.002546
```

```
# Plot forecasts
fig, ax = plt.subplots(figsize=(10, 6))
model_out.cumsum().plot(ax=ax, marker='*')
ax.set_title(f"Dynamic Factor Model cumulative forecasts")
plt.tight_layout()
```


32.3.3 Dynamic factors

Dynamic factors represent unobserved common drivers of the time series, and their cumulative sums highlight underlying trends or cycles. In macroeconomic datasets, these latent factors often correspond to broad economic forces or business cycles. These cumulative factors are plotted to visualize their temporal patterns.

```
# Plot dynamic factors
dynamic_factor = dynamic_factors[best]
fig, ax = plt.subplots(figsize=(10, 6))
dynamic_factor.cumsum().plot(ax=ax, style='-')
ax.legend(title='Dynamic Factor')
for a,b in vspans:
    if a >= min(dynamic_factor.index):
        ax.axvspan(a, min(b, max(dynamic_factor.index)), alpha=0.4)
plt.suptitle(f"Cumulative Dynamic Factors Values")
plt.tight_layout()
```


Cumulative Dynamic Factors Values

The hidden states from the simple Elman RNN are compared to DFM latent factors, and with R-squared (R^2) statistics reported to measure the degree of overlap.

Proportion of variance of RNN hidden state values explained by dynamic factors: 0. $_{\rm 9}7471$

Hidden State	1	2
R-square	0.7494	0.7447
pvalue	0.0000	0.0000

References:

Philipp Krähenbühl, 2020-2024, "AI394T Deep Learning course materials", retrieved from https://www.philkr.net/ dl_class/material

CHAPTER

THIRTYTHREE

REINFORCEMENT LEARNING

I have not failed. I' ve just found 10,000 ways that won' t work - Thomas A. Edison

We combine financial modeling with reinforcement learning (RL) to evaluate static and adaptive retirement spending strategies. Traditional approaches, such as the **4% rule**, assume fixed withdrawal rates and asset allocations, that may not adapt well to changing market conditions. Leveraging historical economic data, simulations, and deep learning techniques, we apply RL to learn dynamic strategies which adjust asset allocations based on financial conditions, minimizing the risk of retirees outliving their savings.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from pandas import DataFrame, Series
import pandas as pd
import numpy as np
import math
import random
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import numpy as np
import gymnasium as gym
from gymnasium import spaces
from stable_baselines3 import DQN
from typing import List, Tuple
from finds.database import SQL
from finds.structured import BusDay
from finds.utils import Store, subplots, set_xticks
import torch
from secret import credentials, paths
store = Store(paths['scratch'])
#pd.set_option('display.max_rows', None)
VERBOSE = 0
gym.logger.min_level = gym.logger.ERROR # Suppress warnings
```

```
# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
bd = BusDay(sql, verbose=VERBOSE)
outdir = paths['scratch'] / 'RL'
```

33.1 Retirement spending policy

A retirement spending policy guides how retirees withdraw funds from their savings to sustain their lifestyle while minimizing the risk of depleting assets. The key elements include the **withdrawal strategy**, which defines the initial withdrawal rate (e.g., the 4% rule) and its adjustments over time (e.g., inflation-linked or dynamic withdrawals); **asset allocation**, which balances stocks, bonds, and other investments to optimize growth and risk; **time horizon**, representing the expected duration of withdrawals, typically spanning 20-30 years or more; and **market conditions**, including interest rates, inflation, and asset returns, which influence portfolio sustainability. Effective policies seek to balance spending needs, longevity risk, and market fluctuations to minimize the risk of outliving their assets.

Benz, Ptak and Rekenthaler (2022) found that "For retirees who seek a fixed real withdrawal from their portfolio in retirement, a starting withdrawal rate of 3.8% is safe in Morningstar's model over a 30-year time horizon, assuming a 90% success rate (defined here as a 90% likelihood of not running out of funds) and a balanced portfolio."

33.1.1 SBBI data

The **Stocks, Bonds, Bills, and Inflation (SBBI)** dataset provides historical monthly, quarterly, and yearly total returns and yields for major U.S. asset classes, including large-cap stocks, small-cap stocks, corporate bonds, government bonds, and inflation. This data, which dates back to 1926, is commonly used for retirement portfolio simulations.

```
stocks bonds inflation
19260131 0.000000 0.013756 0.000000
19260228 -0.038462 0.006313 0.000000
19260331 -0.057471 0.004129 -0.005587
19260430 0.025305 0.007589 0.005618
19260531 0.017918 0.001412 -0.005587
. . .
              . . .
                       . . .
                                   . . .
20240831 0.024257
                            0.000814
                       NaN
20240930 0.021357 0.100107
                            0.001604
20241031 -0.009069 -0.046509
                             0.001151
20241130 0.058701 0.068325
                            -0.000542
20241231 -0.023838 -0.044901
                             0.000355
[1188 rows x 3 columns]
```

33.1.2 Scenario generator

To create realistic economic simulations, we extract different 30-year retirement periods from the 100-year span of historical data. These scenarios help model how varying economic conditions impact retirement outcomes.

```
# Scenario generator: episode, backtest a sample path
class Episodes:
    def __init__(self, data: DataFrame, T: int, num_loops: int = 1):
       self.data = np.log(1 + data)
        self.high = list(self.data.max() + self.data.std()*.1)
        self.low = list(self.data.min() - self.data.std()*.1)
        self.T = T
                                # number of years per episode
        self.M = (T + 1) * 12 # number of monthly observations per episode
        self.num_loops = num_loops
    def __len__(self):
        return (len(self.data) - self.M + 1) * self.num_loops
    def __iter__(self):
        rows = []
        for i in range(self.num_loops):
            rows += np.random.permutation(len(self.data) - self.M + 1).tolist()
        for t in rows:
            df = self.data.iloc[t:(t + self.M), :].reset_index(drop=True)
            yield df.groupby(df.index // 12)\
                    .sum() \
                    .set_index(self.data.index[(t + 11):(t + self.M):12])
```

Summary statistics of all 30-year episodes:

30-year sample periods:

stocks bonds inflation N annualized mean 0.105185 0.05502 0.03604 817

We assess the effectiveness of a fixed annual withdrawal strategy by analyzing its performance under different conditions. Key inputs for such strategies include: ortfolio asset allocation (e.g., stock/bond mix); market environment (e.g., past returns and inflation rates); and expected duration of withdrawals.

For example, a typical rule of a fixed 4% withdrawal rate (adjusted for inflation) for a 50% stock / 50% bond portfolio can be evaluated across rolling 30-year periods to estimate the likelihood that a retiree' s savings will last the full duration.

The Base model is a simple **buy-and-hold** strategy where funds are invested in a fixed allocation at the start of retirement and are not rebalanced, even if allocation weights drift over time. Withdrawals remain fixed as a percentage of initial wealth, adjusted for inflation.

```
class BaseModel:
   """Buy-and-hold allocation model where assets weights drift from initial"""
   name = 'Buy-and-Hold'
   def __init__(self, T: int, W: List[float]):
       assert W[-1] > 0
                                # spend must be positive
       self.initial = dict(T=int(T), W=np.array(W))
   def reset(self, market_changes: List[float]):
        self.T = int(self.initial["T"])
        self.W = np.array(self.initial["W"])
       return list(market_changes)
   def step(self, action: List, market_changes: List) -> Tuple:
       assert self.T > 0
       self.W[:-1] = np.array(action).flatten() * self.W[:-1].sum() # rebalance
       self.W = self.W * np.exp(np.array(market_changes))
                                                                    # price changes
       self.T = self.T - 1
       wealth = sum(self.W[:-1]) # remaining wealth
       if wealth < self.W[-1]:</pre>
           truncated = True
                                     # is not enough for spend
           self.W[:-1] = 0.0
       else:
           truncated = False
                                     # is sufficient for spend
           spend = self.W[-1] * self.W[:-1] / wealth # allocate and deduct spending
           self.W[:-1] = self.W[:-1] - spend
        terminated = not self.T or truncated
       return terminated, truncated
   def predict(self, obs: List) -> List:
        """Allow initial asset allocation to drift"""
       return self.W[:-1] / sum(self.W[:-1])
```

The Fixed model adds annual rebalancing, ensuring that the portfolio maintains a constant stock/bond allocation throughout retirement.

```
class FixedModel(BaseModel):
    """Allocation model where assets are rebalanced to fixed weights"""
    name = 'Annual-Rebalance'
    def predict(self, obs: List) -> List:
        """Action to rebalance asset allocation to fixed initial weight"""
        return self.initial['W'][:-1] / sum(self.initial['W'][:-1])
```

To assess the risk of retirees running out of money, we simulate rolling 30-year periods and track shortfalls. Our starting scenarios assume a 50/50 stock-bond allocation and a 4% inflation-adjusted withdrawal rule. The probability of shortfall measures the fraction of simulations where assets were depleted before reaching 30 years.

```
alloc = 50 # 50-50 stocks/bonds initial allocation
rule = 4.0 # 4 percent spending policy
model = BaseModel(T=T, W=[alloc, 100-alloc, rule])
```

```
result = {}
for n, episode in enumerate(iter(episodes)):
    obs = model.reset(episode.iloc[0])
```

```
for year in episode.index[1:]:
    obs = episode.loc[year].to_list()
    action = model.predict(obs)
    terminated, truncated = model.step(action, obs)
    if truncated:
        break
    result[episode.index[0]] = model.T
prob = np.mean(np.array(list(result.values()))) != 0)
print('Number of 30-year scenerios:', len(episodes))
print('Probability of shortfall: ', round(prob, 4))
```

```
Number of 30-year scenerios: 817
Probability of shortfall: 0.0747
```

The graph illustrates the years in which retirees ran out of money, with bar heights representing the number of years their assets fell short of the goal. Additionally, plots of compounded asset returns and inflation highlight how periods of lower investment returns and higher inflation increased the risk of shortfall.

```
fails = Series(result).sort_index().rename('shortfall_years')
market = df.reindex(fails.index).cumsum()
fails.index = fails.index.astype(str).str.slice(0,4)
market.index = fails.index
ax = market.plot()
ax.set_title(f"Retirement Shortfalls: {alloc}/{100-alloc} allocation, {rule}% spend")
ax.set_ylabel('cumulative returns of asset classes and CPI')
ax.set_xlabel('Year of retirement')
ax.legend(loc='upper left')
##
bx = ax.twinx()
fails.plot(kind='bar', width=1.0, color='C4', ax=bx)
bx.set_ylabel('Number of shortfall years')
bx.legend(['shortfall years'], loc='lower right')
set_xticks(ax=ax, nskip=23, rotation=90)
```

```
plt.tight_layout()
```


33.1.3 Historical simulations

Next, we expanded the analysis to include a broader range of asset allocations (0% to 100% in stocks) and withdrawal rates (3% to 5%) to evaluate their impact on portfolio longevity.

```
# range of spending policy rules
rules = np.arange(3, 5.1, 0.1)
# simulate fixed and initial equity allocations from 0 to 100%
allocs = np.arange(0, 105, 5)
TAIL = 0.95
tail = int(100 * (1 - TAIL))
def compute_shortfall(x, q):
    """Compute average number of years of shortfall given tail probability level, q"""
    x = sorted(x)  # each simulation's results (years of shortfall)
```

```
q = int(q * len(x))
return x[q], np.mean(x[q:])
```

```
for num, Model in enumerate([BaseModel, FixedModel]):
    fail = DataFrame(columns=rules, index=allocs, dtype=float)
    shortfall = DataFrame(columns=rules, index=allocs, dtype=float)
    quantile = DataFrame(columns=rules, index=allocs, dtype=float)
```

```
for alloc in tqdm(allocs):
       for rule in rules:
           # Evaluate for this allocation strategy and spending policy
           model = Model(T=T, W=[alloc, 100-alloc, rule])
           result = []
           for n, episode in enumerate(iter(episodes)): # for every 30-year sample
               obs = model.reset(episode.iloc[0])
               for year in episode.index[1:]:
                   obs = episode.loc[year].to_list()
                   action = model.predict(obs)
                   terminated, truncated = model.step(action, obs)
                   if truncated:
                       break
               result.append(model.T)
           fail.loc[alloc, rule] = np.mean(np.array(result) != 0)
           quantile.loc[alloc, rule], shortfall.loc[alloc, rule] = compute_
⇔shortfall(result, TAIL)
  store[model.name] = dict(fail=fail, shortfall=shortfall)
```

```
100%| 21/21 [07:33<00:00, 21.57s/it]
100%| 21/21 [07:32<00:00, 21.57s/it]
```

We compare the proportion of scenarios where the Base buy-and-hold strategy performed better or worse than the Fixed strategy with annual rebalancing.

```
#for model in [BaseModel, FixedModel]:
# fail = store[model.name]['fail']
# print(f"Probability of Shortfall: with {model.name} allocation")
# print(fail.iloc[::-1, :].round(2).to_string())
print('Buy-and-hold outperformed Annual-Rebalance:',
      round(np.mean(store[FixedModel.name]['fail'] > store[BaseModel.name]['fail']),...
+3))
print('Annual-Rebalance outperformed Buy-and-Hold:',
      round(np.mean(store[FixedModel.name]['fail'] < store[BaseModel.name]['fail']),...
+3))</pre>
```

Buy-and-hold outperformed Annual-Rebalance: 0.374 Annual-Rebalance outperformed Buy-and-Hold: 0.297

33.1.4 Risk of spending shortfall

To measure the likelihood and severity of depleting funds before the end of retirement, we use two key metrics:

- Probability of shortfall: The percentage of simulations where retirees outlived their assets.
- **Expected shortfall period:** This metric quantifies the severity of shortfalls by estimating how many years retirees would be without funds in the worst-case scenarios (e.g., the worst 5% of simulations).

```
for model in [BaseModel, FixedModel]:
    fail = store[model.name]['fail'].iloc[::-1, :]
    plt.figure(figsize=(8, 6))
```

```
sns.heatmap(fail, annot=True, cbar=True, fmt='.2f', annot_kws=dict(fontsize='xx-

small'),

    xticklabels=np.round(fail.columns, 1), yticklabels=fail.index)

# Labels and title

plt.xlabel("Spending Rule")

plt.ylabel("Allocation to Stocks")

plt.title(f"Probability of Shortfall: with {model.name} strategy")

plt.show()
```

Probability of Shortfall: with Buy-and-Hold strategy

Probability of Shortfall: with Annual-Rebalance strategy

Probability of shortfall:

Contour lines in the probability of shortfall graph show the combinations of asset allocation and withdrawal rates that result in the same likelihood of running out of money.

```
def plot_contour(Z, levels, title, label):
    """Helper to plot contour lines at given levels"""
    X, Y = np.meshgrid(rules, allocs)
    fig, ax = plt.subplots(figsize=(10, 6))
    cp = ax.contour(X, Y, Z, levels=levels, cmap='cool')
    ax.set_title(f"{title} with {model.name} strategy")
    ax.set_xlabel('spending policy (%)')
    ax.set_ylabel(f'{model.name} equity allocation (%)')
    ax.grid(which='both')
    fig.colorbar(cp, label=label)
    plt.tight_layout()
```

```
for model in [BaseModel, FixedModel]:
    fail = store[model.name]['fail']
    plot_contour(fail, levels=[0.0, .01,.05,.1,.15],
```


Expected shortfall period:

This metric estimates the potential duration of financial shortfalls, which helps retirees plan for worst-case scenarios.

Buy-and-hold outperformed Annual-Rebalance: 0.059 Annual-Rebalance outperformed Buy-and-Hold: 0.61

33.2 Deep reinforcement learning

Unlike static asset allocation models, **reinforcement learning** (**RL**) can learn optimal strategies that adapt to market conditions and remaining wealth.

33.2.1 Gymnasium environment

The Gymnasium (formerly OpenAI Gym) library provides a Pythonic interface for reinforcement learning problems. Stable Baselines3 (SB3) implements a set of RL algorithms in PyTorchf OpenAI's Gym library.

https://gymnasium.farama.org/index.html

https://github.com/DLR-RM/stable-baselines3

33.2.2 State space

During training, the RL model learns to predict optimal spending actions based on the current financial state. The **state space** includes:

- current wealth and allocation,
- recent market (equity and bonds) and inflation changes
- · spending amount
- years since retirement

33.2.3 Actions

Exploitation: Selects the action with the highest expected value, based on past training data (e.g., Q-learning, SARSA). **Exploration**: Tries alternative strategies to discover better long-term policies.

33.2.4 Reward function

- If assets are depleted, the model applies a severe penalty of -100 times the square of remaining years: $-(100T^2)$
- If wealth is positive, the reward is proportional to the wealth-to-spending coverage ratio: $\sqrt{\frac{W}{S(T+1)}}$

```
FAIL = 100 # failure reward factor
class CustomEnv(gym.Env):
    """Custom gymnasium environment, using Episodes scenario generator"""
   def __init__(self, model: BaseModel, episodes: Episodes):
        super().__init__()
       self.model = model
                                      # for stepping through a 30-year episode
       self.episodes = episodes
                                      # for generating a sample 30-year episode
       self.iterator = iter(self.episodes) # iterator to reset a 30-year sample
       T = self.model.initial['T']
       W = self.model.initial['W']
       low = np.array([0] + episodes.low + [0]*len(W))
       high = np.array([T] + episodes.high + [T]*len(W))
        self.observation_space = spaces.Box(low=low, high=high)
        self.action_space = spaces.Discrete(21)
        #self.action_space = spaces.Box(low=0.0, high=1.0)
   def reset(self, seed=0):
       super().reset(seed=seed)
        # generate a fresh 30-year episode
        self.episode = next(self.iterator, None)
        if self.episode is None:
           self.iterator = iter(self.episodes)
            self.episode = next(self.iterator)
        self.n = 0
        # return initial observations
       deltas = self.model.reset(self.episode.iloc[self.n])
        obs = [self.model.T] + list(deltas) + self.model.W.tolist()
       return obs, {}
   def step(self, action):
       S = self.model.W[-1]
                                       # amount to spend at t-1
       W = np.sum(self.model.W[:-1])  # wealth at t-1
       T = self.model.T
                                        # year remaining till termination
        # Convert action to asset allocation weights
        action = action * 0.05
        action = np.array([action, 1-action])
        # Grab next market move at time t
        self.n = self.n + 1
       deltas = self.episode.iloc[self.n].tolist()
```

```
# Apply rebalance wealth and market move (t=1)
terminated, truncated = self.model.step(action, deltas)
# Calculate reward (t=1)
reward = -(T*T*FAIL) if truncated else math.sqrt(W / (S*T))
# Return as next observation
obs = [T] + list(deltas) + self.model.W.tolist()
return obs, reward, terminated, truncated, {}
```

Helpers to evaluate trained model

```
def evaluate(env, model, episodes):
    """Return success likelihood, shortfalls and asset allocation actions"""
    result = []
    actions = {t: [] for t in range(episodes.T + 1)} # to store predicted actions
    for n, episode in enumerate(iter(episodes)):
        obs, info = env.reset()
        terminated = False
        while not terminated:
            action, _states = model.predict(np.array(obs))
            actions[env.model.T].append(float(action))
            obs, rewards, terminated, truncated, info = env.step(action)
            result.append(env.model.T if truncated else 0)
    #print(n, truncated, action, rewards, env.model.W)
    return np.mean(np.array(result) != 0), *compute_shortfall(result, TAIL), actions
```

33.2.5 Deep Q-Network (DQN)

We use **Deep Q-Networks (DQN)** from Stable Baselines3, which is designed for discrete action spaces. This approach employs **deep reinforcement learning** to maximize wealth longevity while adapting asset allocation strategies dynamically.

```
TIMESTEPS = int(5e5)
initial_alloc = 50
fail, actions, shortfall, quantile = \{\}, \{\}, \{\}, \{\}\}
for rule in tqdm(rules): # train a model for each spending rule
    # define and train model for this spending rule
    name = str(round(rule, 1))
    W = [initial_alloc, 100-initial_alloc, rule]
    env = CustomEnv(model=BaseModel(T=T, W=W), episodes=episodes)
    clf = DQN('MlpPolicy', env, verbose=VERBOSE)
    clf.learn(total_timesteps=TIMESTEPS)
    clf.save(f"{outdir}/{name}")
    # evaluate model
    test_clf = clf.load(f"{outdir}/{name}", env=None)
    fail[name], quantile[name], shortfall[name], actions[name] =\
        evaluate(env, test_clf, episodes)
    store['dqn'] = dict(fail=fail, shortfall=shortfall,
                        quantile=quantile, actions=actions)
```

100%| 21/21 [2:00:19<00:00, 343.79s/it]

print(DataFrame(fail, index=["Deep RL"]).round(2).to_string())

```
# Plot average allocations over time
labels = list(np.arange(T) + 1)
fig, axs = subplots(nrows=2, ncols=2, figsize=(10, 8), sharex=True, sharey=True)
plt.suptitle('Deep RL average equity allocations, by year after retirement')
for ax, rule in zip(axs, ["3.5", "4.0", "4.5", "5.0"]):
    y = [[a*5 for a in actions[rule][i]] for i in labels]
    mean = [np.mean(a) for a in y]
    median = [np.median(a) for a in y]
    ax.plot(labels, mean, label='mean')
    ax.set_title(f"Spending policy: {rule}%")
    ax.set_xlabel('years after retirement')
    ax.legend()
plt.tight_layout()
```


Deep RL average equity allocations, by year after retirement

References:

Richard S. Sutton and Andrew G. Barto, 2018, "Reinforcement Learning: An Introduction", MIT Press.

Christine Benz, Jeffrey Ptak John Rekenthaler, Dec. 12, 2022, "The State of Retirement Income: 2022. A look at how higher bond yields, lower equity valuations, and inflation affect starting safe withdrawal rates", Morningstar Portfolio and Planning Research.

CHAPTER THIRTYFOUR

LANGUAGE MODELING

Attention is all you need - Vaswani et al

Transformers, built on the **attention** mechanism, are neural network models designed to process variable-length sequences and capture complex dependencies in language without relying on recurrence or convolution. By leveraging self-attention, multi-head attention, and positional encodings, transformers can model long-range relationships between words for tasks like text generation, translation, and summarization. We apply transformer-based models to language modeling of Federal Reserve meeting minutes, introducing perplexity as a key evaluation metric and exploring decoding strategies such as nucleus sampling to generate coherent and diverse text.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from typing import Callable, List
import math
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import bisect
import matplotlib.pyplot as plt
from nltk.tokenize import wordpunct_tokenize as tokenize
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Dataset, DataLoader
import torchinfo
from tqdm import tqdm
from finds.database.mongodb import MongoDB
from finds.unstructured import Unstructured, Vocab
from secret import credentials, paths
# %matplotlib qt
VERBOSE = 0
```

```
mongodb = MongoDB(**credentials['mongodb'], verbose=VERBOSE)
fomc = Unstructured(mongodb, 'FOMC')
outdir = paths['scratch']
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Device:', device)
```

Device: cuda

34.1 Transformers

Transformers are a neural network architecture built entirely on attention mechanisms, designed to process variable-length sequential data without relying on recurrence (as in RNNs) or convolution (as in CNNs). They are especially effective for natural language processing (NLP) tasks such as language modeling, translation, and text generation.

Traditional models like RNNs and CNNs face limitations when processing language data. RNNs are sequential, making them slow to train and difficult to parallelize, and they suffer from vanishing gradients. CNNs, while powerful for structured patterns like images, are less suited for variable-length, syntactically complex language sequences.

Because language involves variable lengths, hierarchical syntax, and long-range dependencies, attention allows the model to focus on relevant parts of the input when generating outputs. To introduce positional information, since Transformers lack an inherent sense of sequential order, positional encodings to provide information about work positions are added to the token embeddings. In autoregressive tasks, **causal masks** are applied to ensure that each token only attends to previous tokens, not future ones.

34.1.1 Attention mechanism

Attention is a mechanism that enables models to reason about a **set of elements and their relationships**, dynamically weighting the importance of different parts of the input.

Attention is essentially a set operator designed to reason about a set of elements and their relationships, dynamically weighting the importance of different parts of the input when producing each element of the output sequence. Unlike RNNs, attention does not require sequential processing, making it highly parallelizable and efficient for sequence modeling.

The inputs to the attention operator are called:

- Queries (Q): What we' re looking for.
- Keys (K): Labels that help identify relevant content.
- Values (V): The actual content or information to aggregate.

In **self-attention**, these inputs are all derived from the same input, allowing each input element to attend to every other element. Each input token is represented by three vectors: *query*, *key*, and *value*. Attention scores are computed as a scaled dot product between queries and keys, and these scores weight the values to produce a contextualized representation:

$$\operatorname{Attention}(Q,K,V) = \operatorname{Softmax}\left(\frac{QK^{\top}}{\sqrt{C}}\right)V$$

Learnable weight matrices W_Q, W_K, W_V enable queries, keys, and values, respectively, to adapt to different input patterns:

Attention
$$(X; W_Q, W_K, W_V)$$
 = Attention (XW_Q, XW_K, XW_V)

where X is the embedded input.

Cross-attention is a mechanism used in encoder-decoder transformer architectures for tasks such as machine translation, where queries (Q) come from one source (typically the decoder) and keys (K) and values (V) come from another source (typically the encoder output).

Multi-head attention runs multiple independent attention layers (heads) in parallel. Each head learns different ways of attending to the input, capturing different aspects of the relationships. Heads are concatenated and linearly projected back to the output dimension.

34.1.2 Masked attention

Auto-regressive prediction is used for sequence generation tasks such as text completion and translation. To ensure predictions are causal (based only on past and current information), causal masks hide future tokens when computing attention, The mask is just a upper-triangular matrix applied to the attention scores to block future tokens, ensuring that each word can only attend to itself and earlier words. This prevents the model from "cheating" by looking at future tokens when generating or predicting a sequence, preserving the causal structure required for tasks like language modeling and text completion.

34.1.3 Positional encoding

Since Transformers treat inputs as sets of tokens without inherent order, **positional encodings** provide sequence information. These are added to token embeddings to enable the model to understand word positions. Types of positional encodings include:

- Absolute Positional Embeddings: Add a fixed position index to each input token. Although simple and straightforward, this method is not generalizable to longer sequences than seen during training.
- Relative Positional Embeddings: encode pairwise distances between tokens. These relative distances are bounded and reusable, hence independent of the total length of the sequence.
- Sinusoidal Positional Embeddings: Predefined using sine and cosine functions of different frequencies. This can capture relative position information which generalizes to sequences longer than trained on. $PE(n, 2i) = \sin\left(\frac{n}{10000^{2i/C}}\right)$, $PE(n, 2i+1) = \cos\left(\frac{n}{10000^{2i/C}}\right)$
- Rotary Positional Embeddings (RoPE): Combines both absolute and relative positional information through a rotation operation, which extrapolates well to longer contexts and is widely adopted in large language models (LLMs).
- Learnable Positional Embeddings: Initialized randomly and learned during training like token embeddings. This fully flexible, but performance may degrade if sequence length varies significantly between training and testing.

```
class PositionalEncoding(nn.Module):
    """Positional encoder, learned with an embeddings layer"""
   def __init__(self, d_model: int, max_len: int, dropout: float= 0.0):
        super().__init__()
        self.dropout = nn.Dropout(dropout)
        self.emb = nn.Embedding(num_embeddings=max_len, embedding_dim=d_model)
   def forward(self, x):
        ......
        Args:
           x: Tensor, shape [seq_len, batch_size, embedding_dim]
        to_embed = torch.LongTensor(np.asarray(range(0, x.size(1))))
                       .to(x.device)
        embedded = self.emb(to_embed)
        embedded = self.dropout(embedded)
       return x + embedded.unsqueeze(0)
    """ Alternate positional encodings with sine function
   def __init__(self, d_model: int, max_len: int, dropout: float = 0.1):
       super().__init__()
       self.dropout = nn.Dropout(p=dropout)
       position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
       div_term = torch.exp(torch.arange(0, d_model, 2)
                             * (-math.log(10000.0) / d_model))
        pe = torch.zeros(max_len, d_model)
```

```
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe[:, None, :]
self.register_buffer('pe', pe)

def forward(self, x):
    x = x + self.pe[:x.size(1), 0, :]
    return self.dropout(x)
"""
```

34.1.4 Transformer layers

A transformer-based neural network is built from repeated blocks of Transformer layers, each consisting of:

- Multi-Head Attention: Combines several attention "heads" that learn different relationships between tokens. Each head performs: $Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{C}}\right)V$ and the final output is concatenated and linearly projected back to match input dimensions.
- Feedforward Neural Network: Applies a two-layer fully connected network (MLP) with non-linearity (typically ReLU) in between: $MLP(x) = ReLU(Linear_1(x)) \rightarrow Linear_2$
- Residual Connections: Directly connect input and output of each sub-layer.
- · Layer Normalization: Normalizes inputs within each layer.

The input sentence is split into parts (characters, words, or "tokens"). The model takes token embeddings with positional encodings, applies layers of attention and MLPs, and outputs contextualized representations of each token.

```
class Transformer(nn.Module):
    """Transformer neural network"""
    def __init__(self, seq_len: int, vocab_size: int, d_model: int, nhead: int,
                num_layers: int, dim_feedforward: int, dropout: float):
        super().__init__()
        # model dimensions
        self.seq_len = seq_len
        self.vocab_size = vocab_size
        self.d_model = d_model
        # define layers
        self.embedding = nn.Embedding(num_embeddings=vocab_size,
                                      embedding_dim=d_model)
        self.positional = PositionalEncoding(max_len=seq_len,
                                             d_model=d_model,
                                             dropout=dropout)
        layer = nn.TransformerEncoderLayer(d_model=d_model,
                                            nhead=nhead,
                                            dim_feedforward=dim_feedforward,
                                            dropout=dropout,
                                           batch_first=True)
        self.encoder = nn.TransformerEncoder(encoder_layer=layer,
                                             num_layers=num_layers)
        self.decoder = nn.Linear(in_features=d_model,
                                 out_features=vocab_size)
```
```
(continued from previous page)
```

```
# initialize weights
    self.embedding.weight.data.uniform_(-0.1, 0.1)
    self.decoder.weight.data.uniform_(-0.1, 0.1)
    self.decoder.bias.data.zero_()
def causal_mask(self, sz: int, device: str = 'cpu'):
    """returns upper triu set to -inf"""
    return nn.Transformer.generate_square_subsequent_mask(sz=self.seq_len,
                                                           device=device)
def forward(self, x):
   if len(x.shape) == 1:
        x = x[None, :]
   assert x.size(-1) == self.seq_len
   x = self.embedding(x) * math.sqrt(self.d_model) # embedding
   x = self.positional(x)
                                                     # position encoding
   x = self.encoder(x, mask=self.causal_mask(sz=len(x), device=x.device))
   x = self.decoder(x)
                                                     # linear layer
   x = F.log_softmax(x, dim=-1)
                                                      # classify
   return x
def save(self, filename):
    """save model state to filename"""
   return torch.save(self.state_dict(), filename)
def load(self, filename):
    """load model name from filename"""
    self.load_state_dict(torch.load(filename, map_location='cpu'))
    return self
```

34.2 Language modeling

Language modeling is the task of estimating the probability distribution over word sequences. By learning this distribution from large text corpora, models capture linguistic structure, enabling downstream tasks like translation and text generation.

34.2.1 Perplexity

Accuracy (measuring whether the predicted word is exactly correct) is not a meaningful metric for language models. Predicting the exact next word in a sequence is highly uncertain and difficult, so accuracy would be very low even for strong models. Instead, we care about how well the language model assigns probability distributions over possible next words. Perplexity quantifies how well the it predicts the test set, calculated as the exponential of the average negative log likelihood over the test set:

$$\text{Perplexity} = \exp\left(-\frac{1}{N}\sum_{i=1}^N \log P(w_i|w_{i-1},\ldots,w_{i-n+1})\right)$$

- N is the total number of words in the test set.
- $P(w_i|w_{i-1}, \dots, w_{i-n+1})$ is the probability assigned by the language model to the word w_i given its context $w_{i-1}, \dots, w_{i-n+1}$.

Intuitively, perplexity measures how surprised the model is by the text. It can be interpreted as the geometric mean of the inverse probabilities assigned by the model, hence lower perplexity indicates better model performance and generalization.

```
def get_next_log_probs(model, context: List[str], unk=UNK):
    """log P(word / context) where word ranges over the vocab"""
    # pad to length seq_len
    if len(context) > model.seq_len:
        context = context[-model.seq_len:]
    elif len(context) < model.seq_len:
        context = ([unk] * (model.seq_len - len(context))) + context
    context = torch.LongTensor(vocab.get_index(context))\
            .to(device)\
            .unsqueeze(0)
    output = model(context)
    logits = output[0, -1, :]
    return logits.cpu().detach().numpy()</pre>
```

34.2.2 Fedspeak

The Fed has a jargon all of its own, with Alan Blinder coining the term *Fedspeak* to describe the "turgid dialect of English" used by Federal Reserve Board chairs. We explore language modeling of minutes text from all FOMC meetings since 1993.

The text data are tokenized and converted into indices in a Vocab object. PyTorch Dataset and DataLoader tools simplify the processing of chunks and batches of the data. The most recent document is held-out from training to serve as the test set for perplexity evaluation.

```
len(vocab) = 8675, len(docs) = 256: 19930203 - 20250129
```

```
# Pytorch Dataset and DataLoader
class FOMCDataset(Dataset):
    """Subclass of torch Dataset
    Notes:
```

```
(continued from previous page)
```

```
All subclasses should overwrite __getitem__(),
      supporting fetching a data sample for a given key. Subclasses
      could also optionally overwrite __len__(), which is expected to
     return the size of the dataset
    .....
    def __init__(self, text: Series, seq_len: int, get_index: Callable[[str], int]):
       self.text = text
       self.seq_len = seq_len
       self.get_index = get_index
        self.counts = np.cumsum([len(s) // seq_len for s in text])
    def __len__(self):
        return self.counts[-1]
    def __getitem__(self, idx):
        assert 0 <= idx < len(self), "idx out of range"</pre>
        doc = bisect.bisect_right(self.counts, idx)
        start = (idx - (self.counts[doc-1] if doc > 0 else 0)) * self.seq_len
        end = start + self.seq_len
        chunk = self.text.iloc[doc][start:end]
        return (torch.LongTensor([0] + self.get_index(chunk[:-1])),
                torch.LongTensor(self.get_index(chunk)))
# length of input sequence
seq_len = 30
# split last document to be test set
test_len = 1
test_set = docs.iloc[-test_len:].tolist()
train_set = FOMCDataset(docs.iloc[:-test_len], seq_len, vocab.get_index)
dataloader = DataLoader(train_set, batch_size=32, shuffle=True)
DataFrame({'docs': len(docs)-test_len, 'chunks': len(train_set)}, index=['Train'])
```

docs chunks Train 255 54877

Create the model:

```
# Create the model
lr = 0.0001
step_size = 30
num_epochs = 100 #step_size * 1
```

d_model = 512 #512
nhead = 4 # 4
num_layers = 3 # 2
dim_feedforward = 2048 # 512 #1024
dropout = 0.3 # 0.3 # 0.2

```
model = Transformer(seq_len=seq_len,
            vocab_size=len(vocab),
            d_model=d_model,
            nhead=nhead,
```

```
num_layers=num_layers,
    dim_feedforward=dim_feedforward,
    dropout=dropout).to(device)
torchinfo.summary(model)
```

Layer (type:depth-idx)	Param #			
Transformer				
Embedding: 1-1	4,441,600			
-PositionalEncoding: 1-2				
Dropout: 2-1				
Embedding: 2-2	15,360			
⊣TransformerEncoder: 1-3				
ModuleList: 2-3				
TransformerEncoderLayer: 3-1	3,152,384			
TransformerEncoderLayer: 3-2	3,152,384			
TransformerEncoderLayer: 3-3	3,152,384			
-Linear: 1-4	4,450,275			
Total params: 18,364,387 Trainable params: 18,364,387				
Non-trainable params: 0				

Train the model:

```
# Specify training parameters
criterion = nn.NLLLoss().to(device)
optimizer = Adam(model.parameters(), lr=lr)
scheduler = StepLR(optimizer, step_size=step_size, gamma=0.1)
```

```
perplexity = []
losses = []
for epoch in tqdm(range(num_epochs)):
    model.train()
    for train_ex, target_ex in dataloader:
        optimizer.zero_grad()
        train_ex, target_ex = train_ex.to(device), target_ex.to(device)
        output = model(train_ex)
        loss = criterion(output.view(-1, len(vocab)), target_ex.view(-1))
        loss.backward()
        optimizer.step()
    scheduler.step()
    # Evaluate perplexity on test set
   model.eval()
    perplexity.append(np.mean([get_perplexity(model, s) for s in test_set]))
    losses.append(loss.item())
    if VERBOSE:
        print(f"Epoch: {epoch}, Loss: {loss.item()}, Perplexity: {perplexity[-1]}")
model.save(outdir / f"transformer{nhead}_{dim_feedforward}.pt")
```

```
100%| 100/100 [1:03:53<00:00, 38.33s/it]
```

```
# save model checkpoint
import warnings
with warnings.catch_warnings():
    warnings.filterwarnings('ignore') ## ignore the weights_only=True future warning
    model.load(outdir / f"transformer{nhead}_{dim_feedforward}.pt")
```

Evaluate the model:

```
# Plot perplexity
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(perplexity, color="C0")
ax.set_ylabel('Perplexity on test set', color="C0")
bx = ax.twinx()
bx.plot(losses, color="C1")
bx.set_ylabel('Training error', color="C1")
plt.title('Training a transformer language model on FOMC minutes')
print('Perplexity:', perplexity[-1], ' Loss:', losses[-1])
```

```
Perplexity: 10.185370762878241 Loss: 2.0497496128082275
```


Training a transformer language model on FOMC minutes

34.2.3 Decoding

Decoding refers to the process of generating a sequence of words based on learned probabilities. Language models generate text by sampling from a probability distribution over the next word $P(y_i|y_1, ..., y_{i-1})$, given previous words:

- **Greedy** approach: At each step of generation, the word with the highest probability according to the model is selected as the next word. While simple and computationally efficient, this results in repetitive or less diverse outputs.
- **Beam search** maintains a fixed number (beam width) of partial candidate sequences of words. At each step, it expands all possible next words for each candidate, keeping the top k based on their joint probabilities. This allows exploration of multiple promising paths, but can be computationally expensive, and may still produce suboptimal outputs due to early pruning.
- Nucleus Sampling samples from the smallest set of k words whose cumulative probability mass exceeds a predefined threshold p. This approach promotes diversity in generated text by allowing for the possibility of sampling from a larger set of words.

```
def get_nucleus_sequence(model, n: int, p: float, context: List[str] = []):
    """Sample sequence of words given context using nucleus sampling"""
   if not context:
       context = [UNK]
   for i in range(n):
       probs = np.exp(get_next_log_probs(model, context))
       probs_sorted = sorted(probs, reverse=True)
       probs_cum = np.cumsum(probs_sorted)
       num_drop = sum(probs_cum > p)
       threshold = probs_sorted[-num_drop]
       probs[probs < threshold] = 0.</pre>
       probs /= sum(probs)
       choice = vocab.get_word(np.random.choice(len(probs), p=probs))
       context.append(choice)
        #print(i, drop, len(probs), len(probs_sorted))
   return context
```

```
import textwrap
wrapper = textwrap.TextWrapper(width=80, fix_sentence_endings=True)
```

Finally, nucleus sampling with p = 0.95 is used to generate new text conditioned on starting contexts, balancing diversity and coherence.

```
n, p = seq_len * 4, 0.95
for context in ['the financial markets' , 'participants noted that']:
    # generate from context with nuclear sampling
    words = get_nucleus_sequence(model, n=n, p=p, context=context.split())
    # pretty-print the output
    out = ''
    is_end = True
    is_space = ''
    for w in words:
        if not w.isalnum():
            out += w
        else:
            if is_end:
```

```
w = w.capitalize()
out += is_space + w
is_end = w in ['!', '?', '.']
is_space = ' '*bool(w not in ["'", '-', '-'])
print(f"{context.upper()}...")
print(wrapper.fill(out))
print()
```

```
THE FINANCIAL MARKETS...
```

The financial markets. In addition, the tga and the resulting decline in the soma portfolio would result in a combination of shifts in the composition of reserve liabilities, and a waning volume of credit allocation liquidity. In that regard, the appropriate course of monetary policy, a number of participants noted that purchases of longer-term securities were faced by the likely onset of the financial crisis in mid-december. Labor market conditions improved further in january but expanded modestly on balance over the intermeeting period. Consumer price inflation— as measured by the 12-month percentage change in the price index for personal consumption expenditures (pce)— was elevated in march

```
PARTICIPANTS NOTED THAT...
```

Participants noted that recent indicators and orders pointed to somewhat more moderate expansion of spending for equipment and software. The nominal deficit on u. S. Trade in goods and services was significantly larger in the third quarter than in the previous quarter. The value of exports of goods and services also increased considerably in july, with increases widespread by categories. Imports of services rose more than exports. The increase in imports was concentrated in consumer goods, however, consumer goods, and services, which decreased exports of capital goods. Imports of services in july and august were expanding briskly; the gains were concentrated in industrial supplies, semiconductors, and services.

References:

https://pytorch.org/tutorials/beginner/transformer_tutorial.html

Jay Alammar, The Illustrated Transformer, retrieved from https://jalammar.github.io/illustrated-transformer/

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. https://arxiv.org/abs/1706.03762

Greg Durrett, 2021-2024, "CS388 Natural Language Processing course materials", retrieved from https://www.cs. utexas.edu/~gdurrett/courses/online-course/materials.html

Philipp Krähenbühl, 2020-2024, "AI394T Deep Learning course materials", retrieved from https://www.philkr.net/ dl_class/material and https://ut.philkr.net/deeplearning/

CHAPTER

THIRTYFIVE

LARGE LANGUAGE MODELS

I didn' t have time to write a short letter, so I wrote a long one instead - Mark Twain

We introduce large language models (LLMs) through a financial natural language processing (NLP) task: summarizing the *Quantitative and Qualitative Disclosures About Market Risk* sections of 10-K reports. To assess performance, we compare the overlap and readability of summaries generated by GPT-40-mini, a proprietary closed-source model, and DeepSeek-R1-14B, an open-source model that can be downloaded and run locally. Small language models, particularly those trained using techniques like **distillation**, can closely approximate the performance of larger models while offering lower latency and reduced memory requirements.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import textwrap
from pprint import pprint
from rouge_score import rouge_scorer
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.unstructured import Edgar
from finds.readers import Sectoring
from secret import paths, credentials
VERBOSE = 0
```

```
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
```

35.1 OpenAl GPT models

Large language models are built using transformer-based deep learning architectures and pre-trained on massive text corpora. GPT models, short for Generative Pre-trained Transformers, use an autoregressive approach to learn the structure of language by predicting the next token given the previous ones. The transformer architectures allows these models to capture long-range dependencies in text, making them particularly powerful for understanding context and generating fluent text. Modern LLMs extend this base with techniques like instruction tuning and reinforcement learning from human feedback (RLHF), which improve their usability and alignment with human intent.

- **Pre-training** teaches the model general language patterns from large amounts of raw text data. This process builds a foundational base that can be fine-tuned for specific tasks later.
- Instruction tuning guides the model to follow specific types of tasks or instructions.
- RLHF improves output quality by training the model to reflect human preferences.

BERT (Bidirectional Encoder Representations from Transformers), released by Google in October 2018 not long after the seminal "Attention is All You Need" paper, pioneered transformers-based models for NLP tasks.

OpenAI's GPT series, from GPT-2 to GPT-03, demonstrated increasingly powerful capabilities due to the scale of their parameters and training data, containing billions and now trillions of adjustable weights in their deep neural networks. GPT-3 represented a fundamental shift in AI, demonstrating how scaling models alone could achieve generalization. It also introduced *In-Context Learning*, allowing models to learn from examples in the prompt without fine-tuning. GPT-4 expanded the context length to 128K **tokens** (which are how LLMs represent the fundamental units of text, which can be as small as single characters or as large as whole words), significantly improving its ability to understand and summarize long documents. These models, however, are only available through proprietary APIs.

LLM	Number of Parameters	Context Length
BERT-Base	110 million	512
BERT-Large	340 million	512
GPT-2	1.5 billion	1K
GPT-3.5	175 billion	4K
GPT-4	~1 trillion	128K

gpt_name = "gpt-4o-mini"

35.1.1 LangChain framework

A modular framework for building applications with language models, such as **LanChain** simplifies the process of integrating language models with external data sources and other AI tools. It abstracts over the underlying LLM API (OpenAI, Ollama, etc.) and allows users to create chains of prompts, tools, and logic for custom NLP workflows.

```
'type': 'secret'},
    'temperature': 0.0},
'lc': 1,
'name': 'ChatOpenAI',
'type': 'constructor'}
```

Temperature controls randomness in generation: lower values yield more deterministic responses, while higher values lead to more creative or diverse outputs.

35.1.2 Open and closed models

A large language model consists of three key components:

- Architecture: The structure of the model (e.g., Transformer-based).
- Weights: The learned parameters that define the model' s behavior.
- Training code & data: The scripts and datasets used to train the model.

LLMs are categorized as:

- Closed models: API-only, no access to weights or training data (e.g., GPT-4).
- Open models: Model weights are available, but full training details are not (e.g., LLaMA, Qwen).
- Open-source models: Full transparency including architecture, code, data, and weights (e.g., DeepSeek-R1).

35.2 DeepSeek-R1 model

DeepSeek-R1 is a powerful open-weight language model released by DeepSeek in January 2025, with size ranging from from 1.3B to 236B parameters across different variants. Supporting a context length up to 128K tokens with a GPT-style transformer decoder-only architecture, it was trained with 6-10T tokens from multilingual internet sources. Furthermore, DeepSeek-R1 was fine-tuned to implement chain-of-thought reasoning without explicit prompting. Its training process included:

- · synthetic dataset of thousands of long-form CoT examples
- group relative policy optimization, a reinforcement learning that improved its ability to solve challenging problems
- fine-tuning using a final round of reinforcement learning to boost its reasoning accuracy, helpfulness and harmlessness.

The model exposes its reasoning during inference, a departure from the typical black-box approach of other models, allowing users to witness the model's "thinking process" as it works through problems.

35.2.1 Distilled models

Distillation compresses LLMs by transferring knowledge from a large *teacher* model to a smaller *student* model.

- Knowledge Distillation (KD): Student learns from the teacher's output probabilities (soft targets) in addition to true labels (hard targets).
- Intermediate Layer Distillation: Transfers information from internal layers.
- Data Augmentation: Uses teacher-generated samples to expand the training set.

LLM distillation is expected to become an even more important practice in the AI world. Examples include GPT-40 distilled into GPT-40-mini, or DeepSeek-R1 variants trained on Llama and Qwen to preserve reasoning capabilities with fewer parameters.

Distilled versions of DeepSeek-R1 are available in various sizes, including 1.5B, 7B, 14B, 32B, and 70B parameters. These models used DPO (Direct Preference Optimization) or supervised fine-tuning on synthetic highly-curated datasets generated by the larger R1 models, retaining 90–95% of teacher model performance with lower latency.

```
https://ollama.com/library/deepseek-r1
```

```
# model name in Ollama
model name = "deepseek-r1:14b"
```

35.2.2 Small language models

Small language models (SLMs) are smaller in scale and scope than large language models (LLMs), with number of parameters ranging from a few million to a few billion. Requiring less memory and computational power, they can be deployed in resource-constrained environments such as edge devices, mobile apps and off-line situations where AI inferencing (when a model generates a response to a user' s query) must be done without a data network.

35.2.3 Ollama server

Ollama simplifies running open-source LLMs locally. After installing the Ollama runtime and pulling a model (e.g., deepseek-r1:14b), it can serve requests on localhost. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models. This allows experimentation with high-performance LLMs, improving accessibility, privacy, and latency.

https://github.com/ollama/ollama

- 1. Install Ollama (https://ollama.com/)
 - curl https://ollama.ai/install.sh | sh
 - ls -ltra which ollama``
 - ollama --version
- 2. Pull a model (stored in /usr/share/ollama/.ollama/models/)
 - ollama pull deepseek-r1:14b
 - ollama list
- 3. Serve an LLM
 - ollama run deepseek-r1:14b#uses GPU
 - ollama ps

```
4. or Linux service
```

- sudo systemctl status ollama # service status
- sudo systemctl disable ollama # disable so it does not start up again upon reboot
- sudo systemctl stop ollama # stop service
- sudo systemctl restart ollama # restart service
- sudo rm /etc/systemd/system/ollama.service # delete service file
- sudo rm \$(which ollama) # remove ollama binary

5. Endpoint

```
• curl http://localhost:11434/api/generate -d '{"model":
"deepseek-r1:14b", "prompt":"Why is the sky blue?"}'
```

```
# Initializes a local LLM (DeepSeek-R1) using Ollama
from langchain_ollama.llms import OllamaLLM
model = OllamaLLM(model=model_name, temperature=0)
pprint(model.to_json())
```

```
{'id': ['langchain_ollama', 'llms', 'OllamaLLM'],
  'lc': 1,
  'name': 'OllamaLLM',
  'repr': "OllamaLLM(model='deepseek-r1:14b', temperature=0.0)",
  'type': 'not_implemented'}
```

35.3 Text summarization

Summarization condenses lengthy documents into concise outputs. LLMs can perform abstractive summarization, generating summaries in their own words rather than extracting sentences. Summarization is a core NLP benchmark, critical for a wide variety of applications.

35.3.1 Natural language processing (NLP) tasks

These tasks play a crucial role in the field of **natural language processing**, challenging research and applications that have enhanced how machines understand and interact with human language. The performance of LLM' s on these tasks are commonly evaluated using large benchmark datasets, such as MMLU (undergraduate level knowledge), GSM-8K (grade-school math), HumanEval (coding), GPQA (graduate-level questions), and MATH (math word problems). However, the intepretation of these results should be tempered by the inadvertent risk that some benchmark examples found their way in the data set used for training models.

- Natural Language Inference (NLI), also known as textual entailment, is the task of determining the relationship between two sentences, i.e. predict whether one sentence (the hypothesis) logically follows from another sentence (the premise).
- Named Entity Recognition (NER) involves identifying and classifying named entities within a text into predefined categories such as person names, organizations, locations, dates, etc.
- Text Generation is the process of generating coherent and contextually relevant text given a certain input or prompt.
- Machine Translation (MT) is the task of automatically translating text from one language to another.

- Text Summarization involves creating a concise summary of a longer text while preserving its key information and meaning.
- Reading comprehension requires models to read a passage of text and answer questions about it, demonstrating understanding of the text. Some challenges when developing and evaluating reading comprehension models include:
 - Artifacts, which refer to incorrect or misleading information generated by models that do not reflect the true content of the text but rather exploit patterns in the training data
 - Adversarial attacks, which are instances where models fail due to intentional manipulation or perturbation of the input, aiming to mislead or deceive the model.
 - Multihop reasoning, which refers to the ability of a model to connect multiple pieces of information or "hops" across the text to arrive at an answer.
- Question-Answering (QA) systems that automatically answer questions posed by humans in natural language, either based on a given context or dataset (known as closed-QA) or diverse topics from any domen (open-QA).
- Sentiment Analysis is the task of determining the sentiment or emotional tone expressed in a piece of text, such as positive, negative, or neutral.

35.3.2 10-K Market risk disclosures

We focus on Item 7A of the 10-K reports: *Quantitative and Qualitative Disclosures About Market Risk*. After retrieving and filtering disclosures from the SEC' s EDGAR database, only the largest firms with sufficiently long reports are retained. One representative document per sector is selected for summarization.

```
# Retrieve universe of stocks
beg, end = 20240101, 20240331
univ = crsp.get_universe(bd.endmo(beg, -1))
```

```
# lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)
```

```
# lookup sic codes from Compustat, and map to FF 10-sector code
sic = pstat.build_lookup(source='lpermno', target='sic', fillna=0)
industry = Series(sic[univ.index], index=univ.index)
industry = industry.where(industry > 0, univ['siccd'])
sectors = Sectoring(sql, scheme='codes10', fillna='')  # supplement from crosswalk
univ['sector'] = sectors[industry]
```

```
# Load Disclosure about Market Risk text from 10-K's
item, form = 'qqr10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
found = rows[rows['date'].between(beg, end)]\
    .drop_duplicates(subset=['permno'], keep='last')\
    .set_index('permno')
```

```
# Keep largest decile of stocks
found = found.loc[found.index.intersection(univ.index[univ['decile'] == 1])]
```

```
# Require minimum length of text
docs = {permno: ed[found.loc[permno, 'pathname']].lower()
```

```
for permno in found.index}
permnos = [permno for permno, doc in docs.items() if len(doc)>2000]
found = found.join(Series(docs, name='item').reindex(permnos), how='inner')
docs = univ.loc[found.index].groupby('sector').sample(1)
```

35.3.3 Generation

A LangChain pipeline is used to apply two models (DeepSeek-R1 via Ollama and GPT-40-mini via OpenAI) to generate summaries. Model endpoints are configured with deterministic settings (temperature = 0). A prompt template and output parser are defined to extract core content, looping through each 10-K document. Summaries are generated and collected for analysis.

summary = {} # to collect generated summaries

Define Langchain input prompt template

```
from langchain_core.prompts import ChatPromptTemplate
prompt_template = """
{role}.
Please summarize this risk report in about 300 words in prose form:
    {text}
    """
prompt = ChatPromptTemplate.from_template(prompt_template)
```

Select Langchain output parser

```
from langchain_core.output_parsers import StrOutputParser
parser = StrOutputParser()
```

```
def collect_summaries(model, role="You are a helpful AI assistant."):
    """Helper to iterate over companies and generate summaries of risk reports"""
    summ = {}
    for i, permno in enumerate(docs.index):
        print(f'===== {i+1}/{len(docs)}.', univ.loc[permno, 'comnam'], '=====')
        chain = prompt | model | parser
        response = chain.invoke({"role": role, "text": found.loc[permno, 'item']})
        print("\n".join([textwrap.fill(s, width=80) for s in response.split('\n')]))
        print()
        summ[permno] = response.split('</think>')[-1]  # remove model's "thinking"
        return summ
```

Generate summaries with DeepSeek-R1-14b model

```
summary[model_name] = collect_summaries(model)
===== 1/10. PACCAR INC =====
<think>
Okay, so I need to summarize this risk report into about 300 words. Let me read
through it carefully first.
```

The report is about market risks and derivative instruments, focusing on interest rates, currencies, and commodities. It mentions that the figures are in millions. The company uses hedging programs to manage these risks, as described in Note P.

Starting with interest-rate risk: They measure this by estimating how a 100 basis point increase would affect fair values. In 2023, assets like cash equivalents and fixed rate loans show potential losses, while liabilities such as fixed rate term debt and swaps show gains. The total for 2023 is a loss of \$17.7 million, which is better than the previous year's \$1.1 million loss.

Next, currency risk: They hedge against several currencies like CAD, EUR, GBP, etc. A 10% unfavorable change in exchange rates would cause losses of \$259.7 million in 2023 and \$216.6 million in 2022. But these are offset by changes in the underlying exposures.

Then, commodity price risk: They use forward contracts to hedge against price fluctuations for production inputs. A 10% unfavorable change would lead to losses of \$3.3 million in 2023 and \$2.5 million in 2022, which are also offset by hedged exposures.

I should structure the summary to cover each risk category with their respective figures and explanations. Make sure it's concise, around 300 words, and flows well. </think>

The risk report outlines a company's strategies and exposures related to market risks, including interest rates, currencies, and commodities, as of December 31, 2023, and 2022. The company employs hedging programs to mitigate these risks.

Interest-Rate Risk:

The company assesses the impact of a 100 basis point increase in interest rates on the fair value of its assets and liabilities. In 2023, cash equivalents and marketable debt securities showed potential losses of \$29.2 million, while fixed-rate loans indicated a \$146.5 million loss. On the liability side, fixed rate term debt and swaps resulted in gains of \$156.8 million and \$1.2 million, respectively. The net interest-rate risk for 2023 was a manageable \$17.7 million loss, an improvement from the previous year's \$1.1 million loss.

Currency Risk:

To manage exchange rate fluctuations, the company hedges against major currencies like the Canadian dollar and Euro. A 10% unfavorable change in these rates could lead to losses of \$259.7 million in 2023 and \$216.6 million in 2022. These potential losses are largely offset by corresponding changes in the value of hedged exposures, indicating effective risk management.

Commodity Price Risk:

The company uses forward contracts to stabilize earnings against adverse commodity price movements, particularly for truck production inputs. A 10% unfavorable change in commodity prices could result in \$3.3 million and \$2.5 million losses in 2023 and 2022, respectively. These figures reflect the company's ability to mitigate risks through hedging.

In summary, the company demonstrates a structured approach to managing market risks, with effective use of derivatives and hedging strategies to minimize potential financial impacts across interest rates, currencies, and commodities.

===== 2/10. PHILLIPS 66 ===== <think> Okay, so I'm trying to understand all these risks mentioned in the document. Let me start by reading through them carefully.

First, there are market conditions like fluctuations in prices and margins for NGLs, crude oil, natural gas, and refined products. That makes sense because energy prices can be really volatile due to things like supply and demand changes or geopolitical events.

Then there's government policies affecting pricing, regulation, taxation, especially exports. I know that export policies can have a big impact on supply and demand, so this is an important factor.

Capacity constraints in pipelines, storage, and fractionation facilities are another risk. If these infrastructure issues arise, it could limit how much product they can transport, leading to bottlenecks or higher costs.

OPEC and non-OPEC actions influence supply and demand, which affects prices. I remember that OPEC's decisions can cause significant shifts in the market.

The success of DCP LP integration is mentioned, including achieving synergies. This probably refers to a business strategy where they're combining operations, so if this doesn't go as planned, it could hurt their performance.

Unexpected technical difficulties or cost increases during construction or operation are risks too. Construction delays can be costly and disrupt production.

Drilling and production volumes around midstream assets are another point. If the wells aren't producing as expected, it affects the company's revenue from those assets.

Permits and regulations compliance are also risks. They need to get permits for projects, and if they can't or if regulations change, it could delay things or require more spending.

Savings and cost reductions from business transformation initiatives might not happen as planned. If they don't achieve these savings, their financial goals could be at risk.

Renewable fuels policies and climate change regulations are factors too. Changes in these areas could affect demand for traditional fuels or require new investments.

Economic and political developments like the Russia-Ukraine war can impact markets. Also, things like inflation, interest rates, and expropriation of assets pose risks.

Public health crises, like pandemics, can disrupt operations and reduce demand for their products. The recovery after such events is also uncertain.

Capital projects might not be completed on time or within budget. Delays here can lead to cost overruns and project failures.

Asset dispositions or acquisitions could face challenges if they don't complete them successfully. This includes both the sale of assets and buying new ones.

Litigation or government actions could disrupt operations, leading to legal fees or operational changes.

Accidents, weather events, civil unrest, etc., can damage facilities and interrupt operations, causing financial losses.

Meeting sustainability goals is another risk. If they don't reduce GHG emissions as planned or develop new technologies, it could affect their reputation and operations.

New products might not be accepted by the market, leading to wasted investments.

Monetary conditions and exchange controls can impact international trade and profitability.

Environmental regulations requiring significant investments or reducing demand for their products are risks. They might have to spend a lot on compliance or face reduced sales.

Liability from environmental issues like cleanup costs is another concern.

Changes in laws and regulations, including alternative energy mandates, could force them to adapt their business models.

Climate change concerns might lead to changes in how they operate or increase expenses through litigation or other costs.

Impairment charges could occur if the value of assets decreases due to market conditions or strategic decisions.

Access to capital is crucial; if it's limited or more expensive, they might not be able to fund their operations effectively.

Counterparties going bankrupt could lead to financial losses from unpaid debts or obligations.

Cybersecurity incidents can compromise sensitive data and lead to legal liabilities or operational disruptions.

Joint ventures that the company doesn't control could make decisions that negatively impact their own business.

Lastly, all these factors are generally described in Item 1A of the risk factors in the report.

I think I've covered all the points. Now, how do I summarize this? Maybe by categorizing them into market risks, regulatory risks, operational risks, financial risks, and environmental/sustainability risks. That way, it's easier to understand and address each category separately.

The document outlines a comprehensive list of risks that could impact the company's performance and operations. These risks can be categorized as follows:

1. **Market Risks**: - Volatility in energy prices (NGLs, crude oil, natural gas, refined products). - Fluctuations in margins and demand for refining and petrochemical products. - Impact of OPEC and non-OPEC actions on supply and demand. 2. **Regulatory and Policy Risks**: - Changes in government policies affecting pricing, regulation, taxation, and exports. - Compliance with environmental regulations (GHG emissions, renewable fuels). - Influence of international monetary conditions and exchange controls. 3. **Operational Risks**: - Capacity constraints in transportation infrastructure (pipelines, storage). - Delays or cost overruns in construction and capital projects. - Challenges in permit acquisition and regulatory compliance. - Risks from joint ventures not under the company's control. 4. **Financial Risks**: - Failure to achieve expected savings from business transformation initiatives. - Impairment charges due to asset value declines. - Limitations in accessing capital or increased funding costs. - Counterparty risks (e.g., bankruptcy leading to financial losses). 5. **Environmental and Sustainability Risks**: - Meeting sustainability goals and adapting to climate change regulations. - Development of new technologies and products that may not gain market acceptance. 6. **Geopolitical and Public Health Risks**: - Impact of geopolitical events (e.g., Russia-Ukraine war) on markets. - Disruptions from public health crises (e.g., pandemics). 7. **Legal and Reputational Risks**: - Litigation risks and potential liabilities from environmental issues. - Cybersecurity threats leading to data breaches or operational disruptions. By categorizing these risks, the company can better manage and mitigate potential challenges across different areas of its operations. ===== 3/10. MASTERCARD INC ===== <think> Okay, so I need to summarize this risk report from MasterCard's 2023 Form 10-K about market risks, specifically items related to quantitative and qualitative disclosures. The user wants a summary in around 300 words, written in prose form. First, I'll read through the provided text carefully to understand the key points. It seems like the report is divided into sections on foreign exchange risk and interest rate risk. Under foreign exchange risk, MasterCard uses derivative contracts to manage currency exposures from transactions and asset/liability fluctuations. They mention a hypothetical 10% adverse change leading to potential losses of around

\$414 million in 2023 and \$94 million in 2022. There's also something about short-term settlement activities limiting their exposure to a few days, so the impact isn't material even with a 10% change. Additionally, they talk about net investment hedges for foreign subsidiaries but didn't have any as of December 31, 2023.

For interest rate risk, MasterCard has available-for-sale debt investments and fixed-rate debt. They mention that a 100 basis point adverse change wouldn't cause material losses in either year. They use derivative contracts to hedge some of their fixed-rate debt exposure.

I need to structure this summary clearly, probably starting with an overview of market risk, then breaking down into foreign exchange and interest rate risks separately. I should highlight the strategies they use, like derivatives for hedging, and mention the hypothetical losses but also note that these are before considering offsets from hedged activities. It's important to convey that their exposure is managed effectively through these measures.

I'll make sure to keep it concise, around 300 words, using clear and professional language without getting too technical. I should avoid jargon where possible and ensure each section flows logically into the next.

The risk report outlines Mastercard's approach to managing market risks, including foreign exchange and interest rate risks, which can lead to financial losses due to adverse changes in currency values or interest rates. The company actively monitors these risks and employs strategies such as derivative financial instruments to mitigate potential impacts.

Foreign Exchange Risk:

Mastercard manages foreign exchange risk through derivative contracts aimed at hedging currency exposures from transactions and asset/liability fluctuations. These contracts help reduce transaction gains or losses resulting from currency fluctuations against the U.S. dollar and euro. A hypothetical 10% adverse change in currency values could result in fair value losses of approximately \$414 million (2023) and \$94 million (2022). However, Mastercard's short-term settlement activities typically limit exposure to a few days between transactions and settlements, minimizing material impacts from such changes. Additionally, the company may use derivatives to hedge its net investment in foreign subsidiaries, though no such hedges were designated as of December 31, 2023.

Interest Rate Risk:

The company's available-for-sale debt investments include fixed and variable rate securities sensitive to interest rate fluctuations. A hypothetical 100 basis point adverse change in interest rates would not result in material losses for its investments or derivative contracts used to hedge fixed-rate debt as of December 31, 2023 and 2022.

Overall, Mastercard employs robust risk management strategies, including the use of derivatives, to effectively mitigate market risks and safeguard against potential financial losses.

===== 4/10. BRISTOL MYERS SQUIBB CO ===== <think> Okay, so I need to summarize this risk report into about 300 words. Let me read

through it carefully first.

The report is about market risks the company faces, specifically from currency exchange rates and interest rates. They use derivatives like forwards and swaps to hedge these risks but don't trade with them.

Looking at foreign exchange risk: a lot of their revenue and cash flows are affected by changes in Euro and Japanese Yen. They use forward contracts and put options to manage this. There's also transaction risk from non-functional currencies, which they offset with forwards not designated as hedges. They hedge net investments with affiliates using these contracts too.

They estimate that a 10% appreciation in the hedged currencies would decrease the fair value of their FX contracts by certain amounts, reducing earnings. Cross-currency swaps are used for long-term debt and foreign subsidiaries; here, a 10% change affects the swap values differently.

For interest rate risk: they use fixed-to-floating swaps to balance their debt. They also analyze how changes in rates affect their marketable securities and long-term debt. A 1% increase in rates doesn't have a big impact on earnings but does decrease the fair value of long-term debt.

Credit risk is managed by investing only with high-quality institutions, diversifying derivatives across counterparties to reduce default risks.

I need to condense all this into a coherent summary without getting too technical. Make sure to mention each type of risk (FX and interest rate), how they hedge, the impact of currency appreciation/depreciation, and their credit risk management strategies.

The company faces market risks primarily from fluctuations in foreign exchange rates and interest rates. To mitigate these risks, it employs derivative financial instruments such as forwards, swaps, and put options, which are used for hedging rather than trading.

Foreign Exchange Risk:

A significant portion of the company's revenue, earnings, and cash flows are exposed to changes in Euro and Japanese Yen exchange rates. The company uses foreign currency forward contracts and purchased local currency put option contracts to manage risks from intercompany transactions. Additionally, these forwards are used to hedge net investment exposures in international affiliates. Cross-currency swaps are employed to manage long-term debt denominated in Euros.

The impact of a 10% appreciation in hedged currencies is estimated to decrease the fair value of foreign exchange contracts and increase/decrease cross-currency swap values, affecting earnings over time.

Interest Rate Risk:

The company uses fixed-to-floating interest rate swaps to balance its debt structure. Sensitivity analysis shows that a 1% increase in short-term or longterm interest rates would not significantly impact earnings but could decrease the fair value of long-term debt.

Credit Risk Management: Investments are limited to high-credit-quality institutions, and derivatives are

diversified across counterparties to mitigate default risks.

In summary, the company effectively manages market risks through strategic use of financial instruments while adhering to conservative credit policies.

===== 5/10. CARRIER GLOBAL CORP ===== <think>

Okay, so I need to summarize this risk report about market risks for a company. The user provided the entire section under item 7a, which includes foreign currency exposures, commodity price exposures, and interest rate exposures. They also mentioned that there's been no significant change in their market risk exposure for the year ended December 31, 2023.

First, I should read through each part carefully to understand what each section is talking about.

Starting with foreign currency exposures: The company operates internationally, so they're exposed to exchange rate fluctuations. Their non-U.S. operations have different functional currencies, which affects their reported results when the U.S. dollar strengthens or weakens against those currencies. They manage material currency exposures at the legal entity level but don't hedge translation risk. However, for specific acquisitions like VCS and TCC, they used financial instruments like window forward contracts and cross-currency swaps to mitigate risks related to paying in foreign currencies.

Next, commodity price exposures: The company is affected by volatile commodity prices and uses fixed-price contracts when appropriate. They also face fuel costs for shipping but don't have any hedges in place as of December 31, 2023.

Interest rate exposures: Most of their long-term debt has fixed rates, so they don't expect much impact from interest rate fluctuations.

I need to condense all this into about 300 words. I should structure it by first introducing the overall market risks (currency, commodities, interest rates), then go into each category with key points, and conclude without significant changes in exposure.

I should make sure to mention their strategies for managing these risks, like using swaps and contracts, but also note where they don't hedge, such as translation risk. I'll need to keep the language clear and concise, avoiding too much jargon so it's accessible.

Let me outline the summary:

1. Introduction: Briefly state that the company faces market risks from currency, commodities, and interest rates, with no significant change in 2023. 2. Foreign Currency Exposures: Explain their international operations leading to exchange rate risks. Mention active management at entity level but no hedging of translation risk. Highlight specific actions taken for VCS and TCC acquisitions using financial instruments.

Commodity Price Exposures: Discuss volatility in commodity prices, use of fixed-price contracts, and absence of hedges for fuel costs.
 Interest Rate Exposures: Note that most debt is fixed-rate, so minimal expected impact from rate changes.
 Conclusion: Reiterate no significant change in overall market risk exposure.

I should ensure each section flows logically into the next, providing a comprehensive yet concise overview without getting bogged down in details. Also, I need to watch the word count to stay around 300 words, so I'll aim for about 6-7 sentences per main point.

The company faces market risks primarily from fluctuations in foreign currency exchange rates, commodity prices, and interest rates, with no significant changes in exposure during 2023.

Foreign Currency Exposures: The company's global operations expose it to exchange rate risks, particularly affecting its U.S. dollar reporting. While they manage material currency exposures at the entity level without hedging translation risk, specific strategies were employed for acquisitions. For instance, window forward contracts were used for the VCS acquisition to mitigate euro-denominated risks, and cross-currency swaps were utilized for the TCC acquisition to hedge yen-denominated investments.

Commodity Price Exposures: The company deals with volatile commodity prices by using fixed-price contracts where appropriate. However, they lack hedges against fuel cost fluctuations impacting shipping expenses.

Interest Rate Exposures: With most long-term debt having fixed rates, the company anticipates minimal impact from interest rate changes.

In conclusion, the company's market risk management remains consistent, focusing on strategic hedging for specific risks while acknowledging areas where exposure is accepted without mitigation.

===== 6/10. LULULEMON ATHLETICA INC ===== <think> Okay, so I need to summarize this risk report into about 300 words. Let me read through it carefully first.

The report starts with market risks, specifically foreign currency exchange and translation risks. It mentions that their international subsidiaries use local currencies as functional currencies, which are then converted to USD for consolidated financial statements. Exchange rate fluctuations affect reported revenues, expenses, assets, and liabilities. In 2023, revenue was lower by \$89.8 million compared to 2022 due to exchange rates.

They also talk about translation risk where foreign currency differences are recorded in other comprehensive income (OCI). They have a Canadian subsidiary with significant net assets, so they use forward contracts to hedge part of this exposure. The impact on OCI was an increased loss of \$9 million, including hedge gains.

Then there's transaction risk from intercompany transactions and inventory purchases in non-functional currencies. They hold cash and other monetary assets in different currencies and have forward contracts to hedge these. The sensitivity analysis shows that a 10% depreciation in the USD would affect derivative fair values by \$29.8 million, but this is offset by changes in hedged items.

They plan to use more derivatives in the future for additional currency pairs but won't trade them for profit. There's also mention of interest rate risk from

their revolving credit facility, which has a variable rate. As of now, there are no borrowings except for \$6.3 million in letters of credit. They don't do any hedging yet but might in the future.

Cash and cash equivalents are held in short-term deposits and money market funds, totaling \$2.2 billion. Interest rates affect the interest generated on these balances. Credit risk is managed by dealing with reputable institutions, though some deposits exceed insured limits. They monitor counterparties' credit standing to minimize risks.

Inflation is another concern, particularly wage increases affecting operating margins in 2022 and 2023. Higher transportation costs and raw material prices could hurt margins if selling prices don't rise or cost efficiencies aren't found.

I need to condense all this into a coherent summary without exceeding 300 words. I'll structure it by main risk categories: foreign currency, interest rate, credit, and inflation risks. Highlight the key points like revenue impact, hedging strategies, sensitivity analysis, current financial status, and future plans regarding derivatives. Also, mention the effects of inflation on margins.

I should ensure that each section is concise, using bullet points or clear paragraphs to separate the different types of risk. Make sure to include the main figures like \$89.8 million revenue drop, \$2.2 billion cash, and sensitivity results. Avoid jargon where possible and keep it in prose form as requested.

Let me start drafting:

- Foreign currency exchange and translation risks: Explain how exchange rates affect financial statements, mention the 2023 revenue drop, their use of forward contracts to hedge, and the impact on OCI.

- Transaction risk: Discuss intercompany transactions and inventory purchases in non-functional currencies, their hedging strategies with forward contracts, and sensitivity analysis results.

- Interest rate risk: Describe the credit facility's variable rates, current borrowing status, and future plans for hedging if needed.

- Credit risk: Talk about holding cash in reputable institutions, monitoring counterparties, and minimal losses experienced.

- Inflation: Highlight past impacts on margins due to wages and freight costs, potential future effects, and reliance on price increases or cost efficiencies.

I need to make sure each section flows logically and stays within the word limit. Let me check for any redundancies or areas that can be more concise. $</{\rm think}>$

The risk report outlines several key market risks faced by the company, primarily focusing on foreign currency exchange, translation, transaction, interest rate, credit, and inflationary risks.

Foreign Currency and Translation Risks: The company's international subsidiaries use local currencies, which are converted to USD for consolidated financial statements. Exchange rate fluctuations significantly impact reported

revenues, expenses, assets, and liabilities. In 2023, revenue decreased by \$89.8 million due to unfavorable exchange rates. To mitigate translation risk, the company records foreign currency differences in other comprehensive income (OCI). They also use forward contracts to hedge risks associated with their significant Canadian subsidiary, resulting in a \$9 million increase in OCI losses, including hedge gains.

Transaction Risks: The company faces transaction risks from intercompany transactions and inventory purchases denominated in non-functional currencies. To manage these risks, they hold cash and other monetary assets in various currencies and employ forward contracts for hedging. Sensitivity analysis indicates that a 10% USD depreciation would affect derivative fair values by \$29.8 million, offset by changes in hedged items.

Interest Rate Risks: The company's revolving credit facility exposes it to variable interest rates. Currently, there are no borrowings except for \$6.3 million in letters of credit. While they do not engage in hedging activities at present, they plan to use derivatives for future currency pairs without trading for profit.

Credit Risks: The company manages credit risks by holding cash in reputable financial institutions and monitoring counterparty credit standing. Although some deposits exceed insured limits, they have experienced minimal losses and maintain investment-grade relationships to mitigate risks.

Inflation Risks: Inflationary pressures, such as rising wages and transportation costs, have impacted operating margins in recent years. Sustained increases could adversely affect margins if selling prices do not rise or cost efficiencies are not achieved. The company remains vigilant about these factors to ensure margin stability.

This structured approach ensures clarity and conciseness, effectively conveying the key risks and strategies outlined in the report within 300 words.

===== 7/10. AIRBNB INC =====

<think>

Okay, so I need to summarize this risk report about market risks that Airbnb is facing. The user provided the entire section from item 7a, which talks about both quantitative and qualitative disclosures regarding market risks. They specifically mentioned foreign currency risk and investment risk.

First, I should read through the entire text carefully to understand all the points made. It starts by saying that their global operations expose them to various market risks, mainly foreign currency and investment risks.

Under foreign currency exchange risk, they mention that they support over 40 currencies, with some key ones like euro, British pound, etc. Their revenue and costs are in these currencies, which can fluctuate against the US dollar, affecting their financial results. They have several exposures: revenue and cost of revenue, funds held, unbilled amounts, and intercompany balances.

They use foreign currency derivatives to hedge these risks but don't eliminate them entirely. There's a mention that if there was an adverse 10% change in exchange rates as of Dec 31, 2023, they would lose about \$20 million.

Then, investment and interest rate risk: they have a large cash and short-term

investments portfolio, mainly in debt securities. They don't invest for trading or speculation, so their exposure to interest rate changes is limited because their investments are short-term. A 100 basis point increase would decrease their portfolio by \$20 million.

I need to condense all this into about 300 words. I should structure it with an introduction, then sections on foreign currency risk and investment risk, highlighting the key points like hedging strategies, potential losses from exchange rate changes, and their approach to managing interest rates through short-term investments.

I also need to make sure the summary is in prose form, clear and concise, without using bullet points or technical jargon. I should mention the specific currencies, the use of derivatives, the amounts at risk, and their investment strategies.

Wait, let me check if there are any other important details. They talk about how guests can pay in different currencies, which introduces more currency risks because hosts might choose a different payment currency. Also, they have separate funds for bookings, which adds to their foreign exchange exposures.

In the investment section, it's important to note that they focus on preserving capital and liquidity, so they stick to safe, short-term investments. This minimizes their exposure to interest rate fluctuations but still, a significant change could impact them.

I should also include the specific figures: \$20 million loss from a 10% exchange rate change and the same figure for a 100 basis point increase in interest rates. These numbers show the potential financial impact.

Putting it all together, I'll start with an overview of their market risks, then break down each type, explain the exposures, their hedging strategies, and the potential losses. Conclude by summarizing their approach to managing these risks.

</think>

Airbnb faces significant market risks primarily due to its global operations, which expose it to foreign currency exchange risk and investment risk.

Foreign Currency Exchange Risk:

Airbnb operates in over 40 currencies, with key exposures including the euro, British pound, Canadian dollar, Australian dollar, Brazilian real, and Mexican peso. Fluctuations in these currencies against the US dollar can impact its financial results through various channels: revenue and costs denominated in foreign currencies, funds held on behalf of customers, unbilled amounts from its "Pay Less Upfront" program, and intercompany balances. To mitigate this risk, Airbnb uses foreign currency derivative contracts to hedge forecasted exposures, though it does not eliminate all risks. A 10% adverse exchange rate change as of December 31, 2023, could result in a \$20 million loss.

Investment and Interest Rate Risk:

Airbnb's investment portfolio, primarily consisting of short-term, highly-liquid debt securities, is managed to preserve capital and meet liquidity needs. As of December 31, 2023, it held \$6.9 billion in cash and cash equivalents, \$3.2 billion in short-term investments, and \$5.9 billion in funds receivable. The portfolio's short maturity minimizes sensitivity to interest rate changes. A

hypothetical 100 basis point increase in rates could decrease the investment portfolio's fair value by \$20 million. Airbnb avoids speculative investments and trading activities, focusing on stability rather than risk.

In summary, while Airbnb employs hedging strategies and conservative investment practices to manage risks, significant currency fluctuations or interest rate changes could still impact its financial performance.

===== 8/10. MERCADOLIBRE INC =====

<think>

Okay, so I'm trying to understand this document about MercadoLibre's risks and sensitivities. It seems like it's part of their financial disclosures, maybe in their annual report or something similar. Let me break down what each section is saying.

First, the foreign exchange risk. They have a significant amount of revenue from Brazil, Argentina, and other Latin American countries. Since they're dealing with multiple currencies, especially the Brazilian real and Argentine peso, which can be volatile, this could affect their financials. If the real or peso weakens against the dollar, their reported revenue in dollars might decrease because when converted, those currencies would buy fewer dollars. That makes sense because if you have a lot of revenue in a currency that's dropping, your overall revenue in USD terms goes down.

Next is interest rate risk. They have long-term debt, which means they're exposed to changes in interest rates. If rates go up, the value of their existing debt might decrease, and their borrowing costs could increase if they need to refinance or take on more debt. I'm not entirely sure how sensitive they are to rate changes, but it's something to watch, especially with global interest rates potentially rising.

Then there's commodity price risk. They're exposed to fuel and electricity prices because these are operational costs. If oil prices go up, their delivery and logistics costs would increase, affecting their margins. Similarly, higher electricity prices could impact their operations, especially in countries where energy is a significant cost. This seems like a manageable risk but could have noticeable effects if prices spike.

Equity price risk is tied to their LTRP plans. These are long-term retention programs that pay out based on stock performance. The value of these obligations is sensitive to the company's stock price. If the stock goes up, the payouts increase, which could strain their finances. Conversely, a drop in stock price reduces the payout liability. They've done a sensitivity analysis showing how a 40% change in stock price affects the obligation. That's pretty significant; a 40% drop would reduce the liability from \$418 million to about \$251 million, which is a substantial difference.

Inflation risk is another factor, especially in countries like Argentina where inflation has been high. High inflation can erode purchasing power and affect consumer behavior. If people have less money due to inflation, they might spend less online, impacting MercadoLibre's sales. Additionally, rising costs for goods and services could squeeze margins if the company can't pass these costs onto customers.

I'm a bit confused about how exactly the equity price affects their obligations. It seems like it's based on the stock price relative to a fixed average from

previous years. So each payment is tied to whether the current stock price is higher or lower than that average. If the stock does well, they have to pay more; if not, less.

I'm also thinking about how these risks interact. For example, inflation could lead to higher interest rates, which would then affect their debt costs. Or a weaker currency might make imports more expensive, contributing to inflation. It's like a web of interconnected risks that could amplify each other in certain economic conditions.

Another point is the sensitivity analysis for equity price risk. They show a static present value and how it changes with different stock prices. This helps investors understand how exposed they are to stock price fluctuations. A 40% change seems extreme, but it's useful to see the range of possible outcomes.

I wonder if there are any mitigating factors or strategies MercadoLibre uses to manage these risks. For example, do they hedge their currency exposure? How flexible are their costs in the face of inflation? And how do they structure their LTRP plans to balance retention with financial risk?

Overall, this section is highlighting several key areas where MercadoLibre faces potential volatility and challenges. It's important for investors to consider these risks when evaluating the company's long-term prospects. </think>

MercadoLibre Risk Analysis Summary

1. **Foreign Exchange Risk:**

- **Exposure:** Significant revenue from Brazil, Argentina, and other Latin American countries exposed to currency fluctuations, particularly the Brazilian real and Argentine peso.

- **Impact:** Currency devaluation can reduce reported USD revenue when converted.

2. **Interest Rate Risk:**

- **Exposure:** Long-term debt subject to interest rate changes.
 - **Impact:** Rising rates may decrease debt value and increase borrowing costs.

3. **Commodity Price Risk:**

- **Exposure:** Operational costs tied to fuel and electricity prices.
 - **Impact:** Price spikes can increase operational expenses and reduce margins.

4. **Equity Price Risk:**
 - **Exposure:** Long-term retention programs (LTRP) linked to stock
performance.
 - **Impact:** Stock price fluctuations affect payout obligations; a 40% drop
reduces liability from \$418 million to \$251 million.

5. **Inflation Risk:**
 - **Exposure:** High inflation in countries like Argentina affecting
purchasing power and operational costs.
 - **Impact:** Could reduce consumer spending and squeeze margins if cost
increases aren't offset.

6. **Interconnected Risks:**
 - Inflation may lead to higher interest rates, affecting debt costs and
potentially exacerbating currency issues.
7. **Mitigation Strategies:**
 - Consider hedging strategies for currency exposure, flexible cost
structures, and balanced LTRP designs to manage financial risks.
Conclusion: MercadoLibre faces multiple interconnected risks that could
impact its financial health. Investors should assess these factors alongside the
company's risk management strategies when evaluating long-term prospects.
===== 9/10. A T & T INC ======
<think>

Okay, so I'm trying to understand this document about AT&T's financial report. It looks like it's an audit report from their independent registered public accounting firm. Let me go through it step by step.

First, the report is divided into two main sections: one on the internal control over financial reporting and another on the consolidated financial statements. Both have an opinion section, a basis for opinion, and some additional details.

Starting with the opinion on internal control over financial reporting. The auditors state that they've audited AT&T's internal controls as of December 31, 2023, based on the COSO criteria. They conclude that the company maintained effective internal control over financial reporting in all material respects. That sounds positive; it means the auditors think AT&T has good systems in place to manage their finances properly.

Next, looking at the basis for this opinion. It mentions that management is responsible for maintaining these controls and assessing their effectiveness. The auditors' role was to express an opinion based on their audit, which they did by following PCAOB standards. They obtained an understanding of the internal controls, assessed risks, tested the design and operation of the controls, and performed other necessary procedures. Their conclusion is that AT&T's controls are effective.

Moving on to the report on the consolidated financial statements. The auditors also express an unqualified opinion here, meaning they didn't find any material issues with the financial statements. They were prepared in accordance with GAAP, which is standard for public companies in the U.S.

The basis for this opinion section explains that the auditors are responsible for expressing opinions on whether the financial statements present fairly, in all material respects, the company's financial position and results of operations. They did this by auditing according to PCAOB standards, assessing risks, testing accounting policies, significant estimates, transactions, and disclosures.

There are also two specific sections discussing areas where the audit was particularly complex: internal control over financial reporting and the impairment evaluations for certain reporting units. The auditors explain that these areas required a deeper dive because they involve subjective assumptions and complex methodologies. They tested controls, assessed assumptions against industry trends, performed sensitivity analyses, and involved specialists to ensure everything was in order.

The report ends with a note that the auditing firm has been serving AT&T since 1999, which shows a long-standing relationship, likely indicating consistency and familiarity with the company's operations.

I'm trying to think if there's anything I might be missing. The document seems comprehensive, covering both the internal controls and financial statements. It mentions specific areas like impairment evaluations and valuation models, which are known for being complex and subject to judgment. The auditors' involvement of specialists in these areas makes sense because it adds depth to their analysis.

I wonder if there were any material weaknesses or significant deficiencies mentioned, but from what I can see, the opinions are unqualified, so no major issues were found. It's also worth noting that the report is dated February 23, 2024, which would typically be around the time when earnings are released, so it's timely.

Overall, this audit report seems to provide assurance to stakeholders that AT&T's financial reporting is reliable and their internal controls are effective. The detailed explanation of the auditing process gives confidence in the independence and thoroughness of the audit.

The audit report on AT&T provides a comprehensive assessment of both its internal control over financial reporting and its consolidated financial statements, concluding with an unqualified opinion in both areas. Here's a structured summary:

Key Findings:

1. **Internal Control Over Financial Reporting:**

- The auditors found that AT&T maintained effective internal controls as of December 31, 2023, based on the COSO framework.

- The company's systems provide reasonable assurance regarding the reliability of financial reporting and compliance with GAAP.

2. **Consolidated Financial Statements:**

– The financial statements were prepared in accordance with GAAP and present AT&T's financial position accurately.

- No material issues were identified, leading to an unqualified opinion.

Methodology:
- Auditors followed PCAOB standards, assessing risks, testing controls, and
involving specialists for complex areas like impairment evaluations.
- Detailed procedures included testing assumptions against industry trends and
performing sensitivity analyses.

Areas of Complexity: - **Impairment Evaluations:** Involved subjective assumptions and complex valuation methods. The auditors ensured these were sound through thorough testing and specialist involvement. - **Internal Controls:** The effectiveness was validated through a comprehensive audit process, confirming the controls' operational efficiency.

Conclusion: The report assures stakeholders of AT&T's financial integrity and control

systems. The unqualified opinions indicate no significant issues, reflecting well on the company's financial governance. The long-standing relationship with the auditing firm underscores consistency and familiarity in their work.

===== 10/10. REPUBLIC SERVICES INC ===== <think> Okay, so I need to summarize this risk report into about 300 words. Let me read through it carefully first.

The report starts with Item 7A, which is about quantitative and qualitative disclosures on market risks. The main areas discussed are interest rate risk, fuel price risk, and commodities price risk.

Starting with interest rate risk: The company's major exposure is to changes in U.S. interest rates and fluctuations in SOFR (which I think stands for Secured Overnight Financing Rate). They manage this by using a mix of fixed and floating rate debt. Their variable rate debt is valued at fair value because the rates are current, but this can change over time. They've used swap agreements as hedges before, but it looks like they might not be doing that anymore or maybe have changed their strategy.

Looking at the table provided, it shows fixed and variable rate debts across different years up to 2028. The total fair value is around \$9.8 billion. They also mention having \$2.23 billion in floating rate debt and swap contracts with a notional value of \$350 million. If interest rates go up or down by 100 basis points, their annual interest expense would change by about \$20 million. But this doesn't account for new borrowings or economic impacts.

Next is fuel price risk: Fuel costs are a big part of their operations. They try to hedge against fuel price changes when it's economically practical, but as of December 31, 2023, they had no hedges in place. They charge fuel recovery fees to most customers, but not all. A 20-cent per gallon change in diesel would affect their fuel costs by about \$27 million and the fees by \$36 million. They also mention other petrochemical-based products used in operations, which could increase costs if prices go up.

Lastly, commodities price risk: They deal with recycled materials like old corrugated containers and newsprint. Market volatility affects these prices. In the past, they've used swaps and collars as hedges, but none are currently in place. A \$10 per ton change would impact both revenue and operating income by about \$10 million. Their recycling revenue dropped from \$359.1 million in 2022 to \$312.3 million in 2023.

Putting this all together, the summary should cover each risk area with key points: how they're managed, current positions (like hedges), and potential financial impacts. I need to make sure it's concise, around 300 words, and flows well.

</think>

The risk report outlines the company's exposure to various market risks, including interest rates, fuel prices, and commodities.

Interest Rate Risk: The company manages this through a mix of fixed and floating rate debt, with variable rate debt valued at fair value. As of December 31, 2023, their total debt was approximately \$9.8 billion, with \$2.23 billion in floating rate debt and swap contracts. A 100 basis point interest rate change

could alter annual interest expenses by about \$20 million.

Fuel Price Risk: Fuel costs are significant, and while the company charges recovery fees to most customers, not all are covered. A 20-cent per gallon price change in diesel would affect fuel costs by \$27 million and fees by \$36 million. Additionally, petrochemical-based product costs may rise with fuel prices.

Commodities Price Risk: The company markets recycled materials, which face market volatility. Despite past hedging strategies, no hedges were active as of the report date. A \$10 per ton price change could impact revenue and operating income by \$10 million each. Recycling revenue decreased from \$359.1 million in 2022 to \$312.3 million in 2023.

In summary, the company faces notable risks from fluctuating interest rates, fuel prices, and commodities markets, with strategies in place to mitigate some of these impacts.

Show ollama processes

!ollama ps

NAME	ID	SIZE	PROCESSOR	UNTIL
deepseek-r1:14b	ea35dfe18182	11 GB	100% GPU	4 minutes from now

Generate summaries with OpenAI GPT-4o-mini model

summary[gpt_name] = collect_summaries(gpt_model)

```
===== 1/10. PACCAR INC =====
```

The risk report outlines the company's exposure to market risks, specifically focusing on interest rate, currency, and commodity price risks, with figures presented in millions.

In terms of interest rate risks, the company employs hedging programs to mitigate exposure to fluctuations. The report quantifies the potential impact of a 100 basis point increase in interest rates on the fair value of interest-sensitive assets and liabilities. For 2023, the fair value losses for cash equivalents and marketable debt securities amounted to \$29.2 million, while fixed-rate loans reflected a loss of \$146.5 million. Conversely, fixed-rate term debt showed gains of \$156.8 million, and interest-rate swaps contributed a gain of \$1.2 million, resulting in a total net loss of \$17.7 million for the year, compared to a loss of \$1.1 million in 2022.

Regarding currency risks, the company utilizes foreign currency exchange contracts to hedge against fluctuations in various currencies, including the Canadian dollar and the euro. The sensitivity analysis indicates a potential loss of \$259.7 million from a 10% unfavorable change in exchange rates as of December 31, 2023, an increase from a loss of \$216.6 million in 2022. However, these losses are expected to be offset by corresponding changes in the values of the underlying hedged exposures.

Lastly, the report addresses commodity price risks, where the company engages in commodity forward contracts to stabilize earnings and cash flows against adverse price movements. The potential loss in fair value from a 10% unfavorable change

in commodity prices is estimated at \$3.3 million for 2023, up from \$2.5 million in 2022, with similar offsetting effects from the underlying hedged exposures. Overall, the report highlights the company's proactive approach to managing market risks through various hedging strategies.

===== 2/10. PHILLIPS 66 =====

The risk report outlines the market risks faced by the company and its subsidiaries, primarily stemming from fluctuations in commodity prices, interest rates, and foreign currency exchange rates. The company is particularly exposed to the prices of crude oil, refined petroleum products, natural gas liquids (NGL), natural gas, renewable feedstock, and electric power. To manage these risks, the company employs derivative contracts, including futures, forwards, swaps, and options, which help convert fixed-price contracts to floating market prices and optimize supply chain value.

The report emphasizes the company's policy of remaining exposed to market prices while using derivatives to balance physical systems, meet refinery requirements, and manage cash flow risks associated with price fluctuations. A Value at Risk (VaR) model is utilized to estimate potential losses from adverse market changes, indicating that the VaR for derivative instruments as of December 31, 2023, was immaterial to cash flows and operations.

Interest rate risk is another significant concern, as the company holds both fixed-rate and variable-rate debt. Fixed-rate debt can lead to changes in fair value due to market interest rate fluctuations, while variable-rate debt exposes the company to short-term interest expense changes. The report provides detailed tables of the company's debt instruments, highlighting their sensitivity to interest rate changes.

Additionally, the company faces foreign currency risk from its international operations but generally does not hedge this exposure. Risk monitoring is overseen by the CEO and CFO, ensuring that risks related to commodity prices, interest rates, and foreign exchange rates are effectively managed. The report concludes with a cautionary note regarding forward-looking statements, emphasizing the uncertainties and risks that could impact future performance, including market conditions, regulatory changes, and geopolitical events.

===== 3/10. MASTERCARD INC =====

The risk report outlines the company's exposure to market risk, specifically focusing on interest rate and foreign currency exchange rate fluctuations. Market risk refers to potential economic losses from adverse changes in these factors. The company has limited exposure to such risks, and management actively monitors and implements policies to govern funding, investments, and the use of derivative financial instruments to mitigate these risks.

To manage foreign currency risk, the company utilizes foreign exchange derivative contracts to hedge against anticipated receipts and disbursements in currencies other than its functional currency. This strategy aims to minimize transaction gains and losses due to currency fluctuations, particularly against the U.S. dollar and euro. A hypothetical 10% adverse change in the value of functional currencies could lead to significant fair value losses on outstanding foreign exchange derivatives, estimated at approximately \$414 million and \$94 million for the years ending December 31, 2023, and 2022, respectively, before considering any offsetting effects.

Additionally, the company faces foreign exchange risk from daily settlement

activities, which it manages through short-duration derivative contracts. However, a similar hypothetical 10% adverse change would not materially impact the fair value of these contracts. The company also has exposure related to the translation of net investments in foreign subsidiaries, although as of December 31, 2023, it had no designated net investment hedges.

Regarding interest rate risk, the company holds both fixed and variable-rate securities. It maintains a policy of investing in high-quality securities while ensuring liquidity and diversification. A hypothetical adverse change of 100 basis points in interest rates would not significantly affect the fair value of these investments or the company's interest rate derivative contracts related to fixed-rate debt. Overall, the company employs various strategies to manage its market risk effectively.

===== 4/10. BRISTOL MYERS SQUIBB CO =====

The risk report outlines the company's exposure to market risks, particularly from fluctuations in currency exchange rates and interest rates. To mitigate these risks, the company employs various derivative financial instruments, although these are not used for trading purposes. The report highlights significant foreign exchange risks, particularly related to the euro and Japanese yen, which affect the company's revenues, earnings, and cash flow. To manage these risks, the company utilizes foreign currency forward contracts and purchased local currency put options, primarily for intercompany transactions. Additionally, these contracts help hedge against foreign currency exposures related to net investments in international affiliates.

The report estimates that a 10% appreciation in the currencies being hedged against the U.S. dollar would lead to a decrease in the fair value of foreign exchange contracts by \$409 million and \$782 million as of December 31, 2023, and 2022, respectively. Conversely, cross-currency swap contracts, which are used to manage risks from long-term debt in euros, would see an increase in fair value by \$46 million in 2023, while decreasing by \$73 million in 2022 under similar currency appreciation scenarios.

Regarding interest rate risk, the company employs fixed-to-floating interest rate swap contracts to balance its debt portfolio. A sensitivity analysis indicates that a 1% increase in interest rates would not materially impact earnings. However, it is estimated that such an increase would decrease the fair value of long-term debt by \$3.0 billion in 2023 and \$2.6 billion in 2022.

Lastly, the report addresses credit risk associated with counterparties in derivative transactions. The company maintains a strict investment policy to minimize credit risk, ensuring that investments are made only with high-quality institutions and diversifying counterparties to mitigate potential defaults. For further details, the report refers to additional financial statements and supplementary data.

===== 5/10. CARRIER GLOBAL CORP =====

The risk report outlines the company's exposure to market risks, including fluctuations in foreign currency exchange rates, interest rates, and commodity prices, which could affect its financial performance. As of December 31, 2023, there has been no significant change in the company's exposure to these market risks.

In terms of foreign currency exposure, the company operates globally, which subjects it to exchange rate fluctuations relative to its reporting currency,

the U.S. dollar. Many of its international operations use currencies other than the U.S. dollar, meaning that the company's reported results can vary based on the strength or weakness of the dollar against these currencies. While the company actively manages material currency exposures related to transactions at the legal entity level, it does not hedge against currency translation risk.

The report highlights specific transactions, such as the acquisition of the VCS business, where 80% of the euro-denominated purchase price was paid in cash, exposing the company to exchange rate risks. To mitigate this risk, the company utilized window forward contracts, with changes in their fair value reflected in other income or expense. Similarly, for the TCC acquisition, the company employed cross currency swaps and a Japanese term loan facility to hedge against foreign currency translation risks associated with its investments in subsidiaries operating in yen.

Regarding commodity price exposure, the company faces volatility in the prices of certain commodities and shipping fuel costs. While it uses fixed-price contracts to manage some of this exposure, it currently does not have any commodity hedge contracts in place. Lastly, the report notes that most of the company's long-term debt carries fixed interest rates, insulating it from significant impacts due to fluctuations in market interest rates.

===== 6/10. LULULEMON ATHLETICA INC ===== The risk report outlines various market risks faced by the company, focusing on foreign currency exchange risk, interest rate risk, credit risk, and inflation.

Foreign currency exchange risk is primarily associated with the translation of financial statements from local currencies of international subsidiaries into U.S. dollars. In 2023, fluctuations in exchange rates resulted in a revenue decrease of \$89.8 million compared to 2022. The company records foreign currency translation differences as other comprehensive income (loss) within stockholders' equity. A significant portion of net assets is held in Canadian dollars, and the company uses forward currency contracts to hedge against translation exposure. The translation of Canadian subsidiaries contributed to an increase in other comprehensive loss of \$9 million, despite net investment hedge gains. Additionally, transaction risk arises from intercompany transactions and inventory purchases in currencies other than the subsidiaries' functional currencies. As of January 28, 2024, the company had forward currency contracts to hedge against foreign currency revaluation gains and losses.

Interest rate risk is linked to the company's revolving credit facility, which has a variable interest rate. As of January 28, 2024, there were no borrowings under this facility, but the company may consider using derivative financial instruments in the future to mitigate potential losses if a significant balance arises.

Credit risk is minimal, as the company holds cash with reputable financial institutions and invests in AAA-rated money market funds. The company actively monitors the creditworthiness of its counterparties to limit exposure.

Lastly, inflation poses a risk to operating results, particularly due to rising costs in wages, transportation, and raw materials. Increased costs may adversely affect operating margins if selling prices do not adjust accordingly. The report emphasizes the importance of managing these risks to maintain financial stability.

===== 7/10. AIRBNB INC =====

The risk report outlines the market risks faced by the company, primarily focusing on foreign currency risk and investment risk due to its extensive global operations. In 2023, the company conducted transactions in over 40 currencies, with significant exposure to the euro, British pound, Canadian dollar, Australian dollar, Brazilian real, and Mexican peso. This exposure arises from international revenue and expenses, which are subject to fluctuations in foreign currency exchange rates against the U.S. dollar. Consequently, a strengthening U.S. dollar can negatively impact financial results, while a weakening dollar can be beneficial.

The company faces foreign currency risks related to various aspects, including revenue from bookings in foreign currencies, funds receivable and payable, and intercompany balances. To mitigate these risks, the company employs foreign currency derivative contracts aimed at managing forecasted foreign-denominated revenue and other related balances. However, these hedges do not completely eliminate the impact of currency fluctuations, and the company may opt not to hedge certain exposures due to economic or accounting considerations. A hypothetical adverse change of 10% in foreign currency exchange rates could lead to a loss of approximately \$20 million.

Additionally, the report addresses investment and interest rate risk, particularly concerning the company's investment portfolio. As of December 31, 2023, the company held \$6.9 billion in cash and cash equivalents and \$3.2 billion in short-term investments, primarily in high-quality debt securities. The company aims to preserve capital and maintain liquidity without significantly increasing risk, avoiding speculative investments. Due to the short maturities of its investments, the portfolio is relatively insensitive to interest rate changes, with a potential \$20 million decrease in value anticipated from a hypothetical 100 basis point increase in interest rates.

===== 8/10. MERCADOLIBRE INC =====

The risk report outlines the market risks faced by the company, primarily stemming from macroeconomic instability and fluctuations in interest rates and foreign currency exchange rates, particularly with the Brazilian real, Argentine peso, and Mexican peso. These factors can significantly impact the value of the company's financial assets and liabilities. The company also faces risks related to its long-term retention programs (LTRPs), which involve cash payments to employees that vary based on the market price of its stock.

With substantial international operations, the company is exposed to foreign currency risks that can adversely affect its financial results. It engages in transactions in various foreign currencies and charges its international subsidiaries for the use of intellectual property and corporate services. To mitigate these risks, the company employs foreign currency exchange forward contracts and currency swaps, although these hedges do not completely eliminate the impact of currency fluctuations.

As of December 31, 2023, the company reported significant cash and cash equivalents, receivables, and investments in foreign currencies, totaling over \$12 billion. The report highlights a consolidated loss of \$615 million due to foreign currency fluctuations, particularly in Argentina, where government restrictions on accessing U.S. dollars have exacerbated losses.

Interest rate changes also pose risks to the company's earnings and cash flows, affecting the cost of financing and the returns on investments. The report notes
that a hypothetical increase in interest rates could lead to increased financial liabilities.

Additionally, the company's LTRPs expose it to equity price risk, with a total contractual obligation fair value of \$418 million as of December 31, 2023. The report includes sensitivity analyses showing how changes in equity prices could impact the company's financial obligations related to these programs. Overall, the report emphasizes the complexities and potential financial impacts of market risks on the company's operations.

===== 9/10. A T & T INC =====

The risk report outlines AT&T Inc.'s exposure to market risks, primarily from fluctuations in interest rates and foreign currency exchange rates, which affect its cost of capital. The company employs a strategic approach to manage these risks, utilizing derivatives such as interest rate swaps, locks, and crosscurrency swaps, strictly for hedging purposes rather than speculative trading. The report indicates that there are no anticipated changes to these risk management strategies in the near future.

A significant factor in estimating postretirement benefit obligations is the weighted-average discount rate, which has seen increased volatility and is currently lower than historical averages. This results in higher obligations for the company, although future increases in discount rates could lead to lower obligations and improved funded status.

Interest rate risk is managed through a mix of fixed- and floating-rate debt, with the majority of financial instruments being medium- to long-term fixed-rate notes. The company has established limits on interest rate risk and closely monitors its debt and derivatives portfolios. As of December 31, 2023, AT&T had no interest rate locks but utilized cross-currency swaps to mitigate risks associated with foreign-denominated debt.

Foreign exchange risk is addressed through contracts that hedge costs and debt in foreign currencies. The report notes that AT&T's foreign-denominated debt has been converted to fixed-rate U.S. dollars, effectively eliminating associated risks. A sensitivity analysis is employed to assess the impact of market risk exposures on the fair value of financial instruments.

Overall, the report emphasizes AT&T's commitment to maintaining financial flexibility and managing risks effectively through established policies and procedures, ensuring the integrity of its financial reporting and internal controls.

===== 10/10. REPUBLIC SERVICES INC ===== The risk report outlines the company's exposure to market risks, particularly focusing on interest rate risk, fuel price risk, and commodities price risk.

In terms of interest rate risk, the company is primarily affected by fluctuations in U.S. interest rates and the Secured Overnight Financing Rate (SOFR). To manage this risk, the company employs a mix of fixed and floating rate debt. As of December 31, 2023, the carrying value of its variable rate debt is close to its fair value, reflecting current market conditions. The company has also utilized interest rate swap agreements as cash flow hedges to mitigate the impact of interest rate fluctuations on its variable rate debt. The report indicates that a 100 basis point change in interest rates could alter annual interest expenses by approximately \$20 million.

Regarding fuel price risk, fuel costs are a significant operational expense for the company. Although it charges fuel recovery fees to most customers, it cannot do so universally. As of the end of 2023, the company had no fuel hedges in place. A 20-cent per gallon change in diesel fuel prices could affect fuel costs by about \$27 million annually, while the corresponding change in fuel recovery fees could be around \$36 million.

Lastly, the report addresses commodities price risk, particularly concerning the marketing of recycled materials. The company has experienced volatility in commodity prices due to market supply and demand fluctuations. As of December 31, 2023, it had no hedges in place for recycling commodities. A \$10 per ton change in recycled commodity prices could impact annual revenue and operating income by approximately \$10 million. Revenue from recycling activities decreased from \$359.1 million in 2022 to \$312.3 million in 2023. Overall, the report highlights the company's proactive approach to managing these market risks while acknowledging the inherent uncertainties.

35.3.4 Evaluation

ROUGE

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a set of metrics used to evaluate the quality of summaries by comparing them to reference summaries or human-generated summaries.

- ROUGE-N measures the overlap of n-grams (contiguous sequences of n words) between the system-generated and the reference summaries
- ROUGE-L measures the longest common subsequence (LCS).

BLEU Bilingual Evaluation Understudy (BLEU) evaluates n-gram precision with a brevity penalty to discourage overly short outputs. Originally for machine translation, it is also used for summarization.

- N-gram Precision measures the overlap of n-grams (typically up to 4-grams) between the system-generated summary and the reference summary.
- Brevity Penalty penalizes overly short summaries that do not capture enough information from the reference summaries.
- Cumulative BLEU calculates the geometric mean of BLEU scores for 1-gram to n-gram, rewarding systems that produce more accurate translations across longer phrases.

```
# Display and compare rouge metric
def display_rouge(rouge_type, scores):
    """Helper to display rouge scores over the companies"""
    df = pd.concat(scores[rouge_type], axis=1)
    print(f"{rouge_type.upper()} metric:")
    return pd.concat([df, df.T.mean().rename(' average')], axis=1).T # display
```

```
# Compute rouge-1 and rouge-2 scores between gpt- and llama-generated summaries
scores = collect_rouge(target=summary[gpt_name], prediction=summary[model_name])
```

display_rouge("rouge1", scores)

ROUGE1 metric:

	precision	recall	fmeasure
PACCAR INC	0.787234	0.742475	0.764200
PHILLIPS 66	0.366142	0.324042	0.343808
MASTERCARD INC	0.759184	0.628378	0.687616
BRISTOL MYERS SQUIBB CO	0.773913	0.585526	0.666667
CARRIER GLOBAL CORP	0.761628	0.451724	0.567100
LULULEMON ATHLETICA INC	0.560241	0.636986	0.596154
AIRBNB INC	0.720472	0.639860	0.677778
MERCADOLIBRE INC	0.467593	0.331148	0.387716
A T & T INC	0.393805	0.312281	0.348337
REPUBLIC SERVICES INC	0.783410	0.553746	0.648855
average	0.637362	0.520617	0.568823

display_rouge("rouge2", scores)

ROUGE2 metric:

	precision	recall	fmeasure
PACCAR INC	0.483986	0.456376	0.469775
PHILLIPS 66	0.079051	0.069930	0.074212
MASTERCARD INC	0.381148	0.315254	0.345083
BRISTOL MYERS SQUIBB CO	0.441048	0.333333	0.379699
CARRIER GLOBAL CORP	0.350877	0.207612	0.260870
LULULEMON ATHLETICA INC	0.244713	0.278351	0.260450
AIRBNB INC	0.367589	0.326316	0.345725
MERCADOLIBRE INC	0.116279	0.082237	0.096339
A T & T INC	0.097778	0.077465	0.086444
REPUBLIC SERVICES INC	0.462963	0.326797	0.383142
average	0.302543	0.247367	0.270174

35.3.5 Role prompting

By adjusting the system prompt (e.g., "You are a patient teacher"), LLMs can be guided to produce more accessible summaries. This technique, known as **role prompting**, is helpful for tailoring the tone and persona of responses for specific audiences.

```
# generates simplified summaries for readability
summary['simple_deepseek'] = collect_summaries(
    model,
    role="You are a patient lower-school teacher, using simple words to explain to_
    your students in the fifth grade.")
```

```
===== 1/10. PACCAR INC =====
<think>
Okay, so I need to summarize this risk report for fifth graders. Let me read
through it carefully first.
The report talks about market risks and derivative instruments. It mentions
interest-rate risks, currency risks, and commodity price risks. Each section has
some numbers and explanations.
Starting with interest-rate risks: The company uses hedging programs to manage
how changes in interest rates affect them. They estimate the impact if there's a
100 basis point increase across all yield curves. There are tables showing
potential losses or gains for assets and liabilities in 2023 and 2022.
Next, currency risks: The company hedges against exchange rate fluctuations for
several currencies like Canadian dollar, euro, etc. They mention potential
losses from unfavorable changes in foreign exchange rates, with numbers for 2023
and 2022.
Then, commodity price risks: They use forward contracts to hedge prices of
commodities used in truck production. The report states the potential loss from
a 10% unfavorable change in commodity prices, again giving figures for both
years.
I need to simplify this into prose that fifth graders can understand. I should
avoid jargon and explain terms like "hedging" as strategies to reduce risk.
Maybe use analogies they can relate to, like protecting something with
insurance.
I'll structure it by introducing each type of risk, explain the method used
(hedging), mention the potential losses in simple terms, and note that these are
offset by other changes. I should keep sentences short and clear, avoiding
complex structures.
Let me make sure I cover all three risks: interest rates, currencies,
commodities. For each, a brief explanation of what it is, how they manage it,
and the associated numbers without getting too bogged down in specifics.
I think that's a good plan. Now, let me put it all together in a summary.
</think>
**Understanding Market Risks for Kids**
```

Imagine you have a big lemonade stand, and you want to protect yourself from things that might make your profits go down. There are three main risks we talk (continues on next page)

about here: interest rates, currencies, and commodity prices.

1. **Interest Rates**: Just like how the bank gives you different rates if you save or borrow money, companies have to deal with changing interest rates too. If rates go up suddenly, it can affect how much money they make or owe. The company uses something called hedging to protect against these changes. They look at how much their assets and debts might change if interest rates went up by a full percentage point. In 2023, they saw a small loss, but in 2022, it was almost no loss.

2. **Currencies**: When you sell lemonade to people from other countries who use different money, the exchange rate can affect how much you make. The company uses contracts to protect against changes in these rates for currencies like the Canadian dollar and euro. If these rates go 10% against them, they might lose some money, but this was \$259.7 million in 2023 and \$216.6 million in 2022. However, other factors balance this out.

3. **Commodity Prices**: Making lemonade needs lemons, right? If the price of lemons goes up or down a lot, it affects your costs. The company uses forward contracts to lock in prices for materials they need, like metals and plastics for making trucks. A 10% bad change in these prices could cost them \$3.3 million in 2023 and \$2.5 million in 2022, but again, other changes help reduce this impact.

So, just like you might save money or buy insurance to protect your lemonade stand, companies use strategies like hedging to manage these risks and keep their profits safe.

===== 2/10. PHILLIPS 66 ===== <think> Okay, so I'm trying to understand all these risks mentioned in the document. Let me start by reading through them carefully.

First, there are market conditions like fluctuations in prices and margins for NGLs, crude oil, natural gas, and refined products. That makes sense because energy prices can be really volatile due to things like supply and demand changes or geopolitical events.

Then there's government policies affecting pricing, regulation, taxation, especially exports. I know that export policies can have a big impact on supply and demand, so this is an important factor.

Capacity constraints in pipelines, storage, and fractionation facilities are another risk. If these infrastructure issues arise, it could limit how much product they can transport, leading to bottlenecks or higher costs.

OPEC and non-OPEC actions influence supply and demand, which affects prices. I remember that OPEC's decisions can cause significant shifts in the market.

The success of DCP LP integration is mentioned, including achieving synergies. This probably refers to a business strategy where they're combining operations, so if this doesn't go as planned, it could hurt their performance.

Unexpected technical difficulties or cost increases during construction or operation are risks too. Construction delays can be costly and disrupt production.

Drilling and production volumes around midstream assets are another point. If the wells aren't producing as expected, it affects the company's revenue from those assets.

Permits and regulations compliance are also risks. They need to get permits for projects, and if they can't or if regulations change, it could delay things or require more spending.

Savings and cost reductions from business transformation initiatives might not happen as planned. If they don't achieve these savings, their financial goals could be at risk.

Renewable fuels policies and climate change regulations are factors too. Changes in these areas could affect demand for traditional fuels or require new investments.

Economic and political developments like the Russia-Ukraine war can impact markets. Also, things like inflation, interest rates, and expropriation of assets pose risks.

Public health crises, like pandemics, can disrupt operations and reduce demand for their products. The recovery after such events is also uncertain.

Capital projects might not be completed on time or within budget. Delays here can lead to cost overruns and project failures.

Asset dispositions or acquisitions could face challenges if they don't complete them successfully. This includes both the sale of assets and buying new ones.

Litigation or government actions could disrupt operations, leading to legal fees or operational changes.

Accidents, weather events, civil unrest, etc., can damage facilities and interrupt operations, causing financial losses.

Meeting sustainability goals is another risk. If they don't reduce GHG emissions as planned or develop new technologies, it could affect their reputation and operations.

New products might not be accepted by the market, leading to wasted investments.

Monetary conditions and exchange controls can impact international trade and profitability.

Environmental regulations requiring significant investments or reducing demand for their products are risks. They might have to spend a lot on compliance or face reduced sales.

Liability from environmental issues like cleanup costs is another concern.

Changes in laws and regulations, including alternative energy mandates, could force them to adapt their business models.

Climate change concerns might lead to changes in how they operate or increase expenses through litigation or other costs.

Impairment charges could occur if the value of assets decreases due to market conditions or strategic decisions.

Access to capital is crucial; if it's limited or more expensive, they might not be able to fund their operations effectively.

Counterparties going bankrupt could lead to financial losses from unpaid debts or obligations.

Cybersecurity incidents can compromise sensitive data and lead to legal liabilities or operational disruptions.

Joint ventures that the company doesn't control could make decisions that negatively impact their own business.

Lastly, all these factors are generally described in Item 1A of the risk factors in the report.

I think I've covered all the points. Now, how do I summarize this? Maybe by categorizing them into market risks, regulatory risks, operational risks, financial risks, and environmental/sustainability risks. That way, it's easier to understand and address each category separately.

The document outlines a comprehensive list of risks that could impact the company's performance and operations. These risks can be categorized as follows:

1. **Market Risks**:

- Volatility in energy prices (NGLs, crude oil, natural gas, refined products).

- Fluctuations in margins and demand for refining and petrochemical products.
- Impact of OPEC and non-OPEC actions on supply and demand.
- 2. **Regulatory and Policy Risks**:

– Changes in government policies affecting pricing, regulation, taxation, and exports.

- Compliance with environmental regulations (GHG emissions, renewable fuels).
- Influence of international monetary conditions and exchange controls.

3. **Operational Risks**:

- Capacity constraints in transportation infrastructure (pipelines, storage).
- Delays or cost overruns in construction and capital projects.
- Challenges in permit acquisition and regulatory compliance.
- Risks from joint ventures not under the company's control.

4. **Financial Risks**:

- Failure to achieve expected savings from business transformation initiatives.

- Impairment charges due to asset value declines.
- Limitations in accessing capital or increased funding costs.
- Counterparty risks (e.g., bankruptcy leading to financial losses).

5. **Environmental and Sustainability Risks**:

- Meeting sustainability goals and adapting to climate change regulations.
- Development of new technologies and products that may not gain market

acceptance.

- 6. **Geopolitical and Public Health Risks**:
 - Impact of geopolitical events (e.g., Russia-Ukraine war) on markets.
 - Disruptions from public health crises (e.g., pandemics).
- 7. **Legal and Reputational Risks**:
 - Litigation risks and potential liabilities from environmental issues.
 - Cybersecurity threats leading to data breaches or operational disruptions.

By categorizing these risks, the company can better manage and mitigate potential challenges across different areas of its operations.

===== 3/10. MASTERCARD INC ===== <think> Okay, so I need to explain this risk report to fifth graders. Let me read through it again and try to understand what it's saying.

The report is about market risks that a company faces, specifically MasterCard, I think. Market risk here refers to the possibility of losing money because of changes in things like interest rates or foreign exchange rates. The company talks about how they manage these risks by using derivatives and other financial instruments.

First, there's something about foreign currency risk. They use derivative contracts to handle the exposure from transactions that happen in different currencies. These contracts help them reduce losses if the exchange rate changes. For example, a 10% change could lead to a loss of around \$414 million in 2023 and \$94 million in 2022. But they also mention that these numbers don't account for the actual transactions they're hedging against.

Then there's interest rate risk. They have investments that are sensitive to changes in interest rates, but a 1% change wouldn't cause significant losses because their portfolio is diversified and they invest in high-quality securities. They also use derivative contracts to hedge some of their fixed-rate debt.

I need to simplify all this into about 300 words using simple language. I should avoid jargon and explain concepts like derivatives, exchange rates, and interest rates in a way that fifth graders can understand. Maybe compare it to something they know, like saving money or exchanging currencies when traveling.

I'll start by introducing what market risk is, then talk about how the company manages foreign currency risks using contracts, and then move on to interest rate risks. I should also mention that these risks are managed through policies and tools, but even with all that, there's still some potential for loss if things change unexpectedly.

Let me structure it step by step: introduce market risk, explain foreign exchange risk with an example, talk about how they manage it, then move to interest rates, and finally wrap up by saying that while they take steps to minimize these risks, there are still possible losses. </think>

Understanding Market Risks in Simple Terms

Imagine you have a piggy bank where you save your money. Sometimes, the value of your savings can change based on things like how much interest you earn or changes in exchange rates if you're saving different currencies.

Market risk is like the possibility that your piggy bank's value might go down because of these changes. Companies, just like you, want to protect their money from losing value.

One way they do this is by using something called derivatives, which are like special contracts. For example, if a company does business in different countries and gets money in other currencies, they can use these contracts to protect against the risk that those currencies might lose value compared to their home currency, like the US dollar or euro.

They also watch interest rates because if the bank where they keep their money changes the interest rate, it affects how much they earn. By using more of these special contracts, they can reduce the chance that their savings will be affected by these changes.

Even though companies use these tools to protect themselves, there's still a chance that unexpected changes could cause losses. So, while they take steps to keep their money safe, they know there are no guarantees in the ever-changing world of money and exchange rates.

===== 4/10. BRISTOL MYERS SQUIBB CO ===== <think> Okay, so I need to explain this risk report to fifth graders. Let me read through it again to make sure I understand the main points.

The report talks about market risks related to currency exchange rates and interest rates. The company uses derivatives like forwards and swaps to hedge these risks when it's cost-effective. They mention that all financial instruments, including derivatives, are subject to counterparty credit risk, which is part of their fair value measurement. Importantly, they don't use derivatives for trading purposes.

Looking at foreign exchange risk, a big part of their revenue, earnings, and cash flow are affected by changes in currency rates, mainly the euro and Japanese yen. They use forward contracts and put options to manage risks from intercompany transactions. There's also transaction risk from non-functional currencies, which they handle with forwards but aren't designated as hedges. Additionally, cross-currency swaps help manage long-term debt in euros and hedge net investments.

They estimate that a 10% appreciation in the hedged currencies would decrease the fair value of their foreign exchange contracts by certain amounts, reducing earnings. Similarly, cross-currency swaps would have different impacts on their fair values.

For interest rate risk, they use fixed-to-floating swaps to balance their debt and analyze sensitivity to rate changes. A 1% increase in rates wouldn't harm earnings much, but a larger increase in long-term rates would decrease the fair value of their long-term debt.

Credit risk is managed by investing only with high-quality institutions and diversifying derivatives across counterparties to reduce default risks.

Now, I need to simplify this into about 300 words. I'll start by introducing market risks, then break it down into foreign exchange and interest rate risks, explaining how they use derivatives to hedge. Then touch on credit risk management. I should avoid jargon and make each part clear for kids.

Imagine you have a big company that sells things around the world. Sometimes, when they sell or buy stuff in other countries, the money they get can change value because of something called exchange rates. It's like if you have dollars and someone else has euros, and one day those euros might be worth more or less compared to your dollars.

The company uses special tools called derivatives to protect themselves from these changes. These tools are kind of like insurance policies that help them guess what the money will look like in the future so they don't lose too much if things change.

They also have to worry about interest rates, which are like the cost of borrowing money. If the interest rates go up, it might make their debts more expensive. But again, they use these derivative tools to balance things out and not get hurt too badly.

Lastly, they make sure that the people they deal with (their counterparties) are trustworthy so that if something goes wrong, they don't lose money because someone else didn't pay them back.

So, in short, the company is careful about how it handles money changes and interest rates using special tools to stay safe financially.

===== 5/10. CARRIER GLOBAL CORP ===== <think> Okay, so I need to explain this risk report to fifth graders. Let me read through it again and try to understand what it's saying.

The report talks about market risks like foreign currency exchange rates, interest rates, and commodity prices affecting the company's operations and financial condition. It says there haven't been significant changes in their exposure to these risks in 2023.

First part is about foreign currency exposures. They have operations all over the world, so when currencies change against the US dollar, it affects their reported results. They manage some currency risks with things like window forward contracts and cross-currency swaps, especially for big acquisitions. But they don't hedge translation risk entirely.

Then there's commodity price exposure. They use fixed-price contracts sometimes but didn't have any hedges at the end of 2023. Fuel costs for shipping are another concern.

Interest rate exposure is low because most debt has fixed rates, so changes in market rates won't affect them much.

I need to simplify all this into a summary that's easy for fifth graders to understand. Maybe use examples they can relate to, like how exchanging money when traveling can change how much you have, or how prices of things like oil

can go up and down affecting costs. I should avoid jargon and keep sentences short. Make sure each point is clear and relatable. </think> The company faces risks from changes in foreign exchange rates, interest rates, and commodity prices, which can affect their profits and financial health. These risks haven't changed much over the past year. **Foreign Currencies:** They operate worldwide, so when other countries' currencies go up or down against the US dollar, it affects how much money they make. They use strategies like window forward contracts to manage some of these risks, especially for big purchases. For example, if they buy something in euros and the euro goes up, it might cost them more in dollars. **Commodity Prices:** They rely on materials whose prices can swing, like oil used for shipping. Sometimes they lock in fixed prices to avoid sudden jumps, but at the end of 2023, they didn't have any such contracts. **Interest Rates:** Most of their loans have fixed rates, so even if market rates change, it won't affect them much. It's like having a set monthly payment on a loan, no surprises. In summary, they manage some risks with smart financial tools but still face uncertainties from global markets and material costs. ===== 6/10. LULULEMON ATHLETICA INC ===== <think> Okay, so I need to explain this risk report to fifth graders. Let me read through it again and try to understand what each part is saying. First, the report talks about market risks, specifically foreign currency exchange risk and translation risk. It mentions that their international subsidiaries use local currencies as functional currencies, but the financial statements are in US dollars. So when they translate from other currencies to USD, changes in exchange rates affect the reported amounts. In 2023, their revenue was lower by \$89.8 million compared to 2022 because of this. They also mention translation risk where differences from translating balance sheets into USD are recorded as part of comprehensive income. They have a Canadian subsidiary with significant net assets and use forward contracts to hedge some of this exposure. The impact on their comprehensive loss was an increase due to these hedges. Then there's transaction risk, which comes from transactions in currencies other than the functional currency-like intercompany transactions or inventory purchases. They hold cash in different currencies too. As of a certain date, they had forward contracts to hedge revaluation gains and losses on monetary assets and liabilities of their subsidiaries. They did a sensitivity analysis showing that a 10% depreciation in USD would affect the fair value of derivatives by \$29.8 million. But this is offset by

changes in the underlying hedged items. They plan to use more derivatives in the future for other currency pairs but don't trade them for profit.

Next, interest rate risk: their credit facility has variable rates, so if they borrow money, changing rates could affect them. As of the date, they didn't have any borrowings except for some letters of credit. They don't do any hedging now but might in the future if needed.

They hold cash and equivalents in safe places like money market funds, which are AAA-rated. Even though some deposits exceed insured limits, they haven't had any losses. They monitor the financial institutions they deal with to minimize credit risk.

Lastly, inflation could affect their costs—like wages, freight, and raw materials—which might hurt their margins if they can't pass these costs onto customers or find efficiencies.

So, putting this all together, I need to explain it in simple terms for fifth graders. Maybe start by talking about exchanging money between countries and how the value of money changes over time. Then explain that when companies do business internationally, they have to convert currencies, which can lead to gains or losses based on exchange rates. Use an example with a pretend company to make it relatable.

I should also mention hedges as a way to protect against these risks, maybe using the analogy of insurance. Keep each section short and use everyday language so it's easy to understand.

Explaining Market Risks in Simple Terms for Fifth Graders

Imagine you're a kid who loves to travel and exchange money between countries. When you go on vacation, you might take some dollars and exchange them into another country's currency, like Canadian dollars or Euros. Now, companies that do business all over the world also have to deal with exchanging money, but it can be tricky because the value of these currencies changes over time.

1. Foreign Currency Exchange Risk:

Just like how you might get more or fewer toys when you exchange your money, companies can end up with more or less "toys" (money) based on how the exchange rate changes. For example, if a company earns money in Canada but reports it in US dollars, a change in the value of the Canadian dollar against the US dollar can make their earnings go up or down. In 2023, this change made their revenue \$89.8 million less than in 2022.

2. Translation Risk:

When companies translate their money from one country's currency to another, like converting Canadian dollars back to US dollars for reports, the value can change. This is called translation risk. Sometimes, these changes can affect how much profit or loss a company shows on its financial statements.

3. Transaction Risk:

Companies also face risks when they do transactions in different currencies. For example, if they buy something from another country and pay in that country's currency, the value of that payment can change by the time it's converted back to their home currency. To protect against this, companies might use "hedges,"

which are like insurance policies to lock in exchange rates.

4. Interest Rate Risk:

Borrowing money is another area where companies face risks. If they take a loan with an interest rate that changes over time, and if those rates go up, it could cost them more money to pay back the loan. Companies keep an eye on this so they can plan for any increases.

5. Inflation:

Inflation is when things like food, clothes, and other goods get more expensive over time. For companies, this means their costs might go up too—like paying more for materials or worker wages. If a company can't increase its prices enough to cover these higher costs, it could affect their profits.

6. Credit Risk:

When companies deal with banks or other financial institutions, there's always a chance that the other side might not be able to pay back what they owe. To minimize this risk, companies work with reliable institutions and keep track of how much money they're dealing with from each partner.

In summary, just like you have to be careful when exchanging money while traveling, companies must manage these risks carefully to ensure their profits aren't affected by changes in currency values, interest rates, or inflation. Using tools like hedges and working with trustworthy institutions helps them navigate these challenges smoothly.

===== 7/10. AIRBNB INC ===== <think> Okay, so I need to summarize this risk report for fifth graders. Let me read through it carefully first.

The report talks about market risks that Airbnb faces because they operate all over the world. The main risks are foreign currency risk and investment risk.

Foreign currency risk is when changes in exchange rates affect their financial results. They accept payments in over 40 currencies, so if the US dollar strengthens or weakens, it can impact how much money they make or spend. For example, if the US dollar gets stronger, their revenue from other countries might decrease because those dollars are worth less.

They also mention that they use foreign currency derivatives to hedge against some of these risks, but they don't eliminate all the effects. There's a 20 million loss mentioned if exchange rates were to change unfavorably.

Investment risk is related to their investment portfolio. They have a lot of cash and short-term investments in things like debt securities. If interest rates go up or down, it can affect how much they earn on these investments. A 100 basis point increase would decrease their portfolio by 20 million. But since most of their investments are short-term, the risk from interest rate changes isn't too bad.

I need to explain all this in simple terms for kids. Maybe use analogies they can understand, like comparing currencies to different types of money and how exchanging them can be tricky. Also, simplify investment risks by talking about saving money in a piggy bank or something safe where small changes in interest rates don't matter much.

I should structure it into two main parts: foreign currency risk and investment risk. Use everyday language and avoid jargon. Maybe include examples they can relate to, like traveling abroad and exchanging money.

Understanding Airbnb's Market Risks in Simple Terms

Airbnb faces some financial risks because they operate all around the world, dealing with many different currencies and investments. Let's break down these risks into two main parts: foreign currency risk and investment risk.

1. **Foreign Currency Risk:**

- Imagine you have money in one country's currency, like euros from France or pounds from England. If the value of your home currency (like the US dollar) changes, it can affect how much money you actually have when you exchange it.

- Airbnb deals with over 40 currencies, which means they are exposed to changes in exchange rates. For example, if the US dollar becomes stronger, the money they make from other countries might decrease because those dollars are worth less.

- To protect against these changes, Airbnb uses something called foreign currency derivatives, which are like insurance policies to reduce the impact of bad exchange rate changes. However, even with this protection, there's still some risk. If exchange rates were to change unfavorably, they could lose about \$20 million.

2. **Investment Risk:**

- Airbnb keeps a lot of money in safe investments, like short-term debt securities and government bonds. These are similar to putting money in a savings account where it's secure but doesn't earn a lot.

- If interest rates change, the value of these investments can go up or down. For instance, if interest rates were to increase by 1%, their investment portfolio could decrease by about \$20 million.

- However, since most of their investments are short-term, they aren't too affected by small changes in interest rates. It's like having money in a piggy bank where you don't need it right away, so minor fluctuations won't hurt much.

In summary, Airbnb manages risks from exchanging currencies and investing by using protective measures, but there are still some uncertainties due to the global nature of their business.

===== 8/10. MERCADOLIBRE INC =====

<think>

Okay, so I'm trying to understand this document about MercadoLibre's risks and sensitivities. It seems like it's part of their financial disclosures, maybe in their annual report or something similar. Let me break down what each section is saying.

First, the foreign exchange risk. They have a significant amount of revenue from Brazil, Argentina, and other Latin American countries. Since they're dealing with multiple currencies, especially the Brazilian real and Argentine peso, which can be volatile, this could affect their financials. If the real or peso weakens against the dollar, their reported revenue in dollars might decrease because when converted, those currencies would buy fewer dollars. That makes sense because if you have a lot of revenue in a currency that's dropping, your overall revenue in USD terms goes down.

Next is interest rate risk. They have long-term debt, which means they're exposed to changes in interest rates. If rates go up, the value of their existing debt might decrease, and their borrowing costs could increase if they need to refinance or take on more debt. I'm not entirely sure how sensitive they are to rate changes, but it's something to watch, especially with global interest rates potentially rising.

Then there's commodity price risk. They're exposed to fuel and electricity prices because these are operational costs. If oil prices go up, their delivery and logistics costs would increase, affecting their margins. Similarly, higher electricity prices could impact their operations, especially in countries where energy is a significant cost. This seems like a manageable risk but could have noticeable effects if prices spike.

Equity price risk is tied to their LTRP plans. These are long-term retention programs that pay out based on stock performance. The value of these obligations is sensitive to the company's stock price. If the stock goes up, the payouts increase, which could strain their finances. Conversely, a drop in stock price reduces the payout liability. They've done a sensitivity analysis showing how a 40% change in stock price affects the obligation. That's pretty significant; a 40% drop would reduce the liability from \$418 million to about \$251 million, which is a substantial difference.

Inflation risk is another factor, especially in countries like Argentina where inflation has been high. High inflation can erode purchasing power and affect consumer behavior. If people have less money due to inflation, they might spend less online, impacting MercadoLibre's sales. Additionally, rising costs for goods and services could squeeze margins if the company can't pass these costs onto customers.

I'm a bit confused about how exactly the equity price affects their obligations. It seems like it's based on the stock price relative to a fixed average from previous years. So each payment is tied to whether the current stock price is higher or lower than that average. If the stock does well, they have to pay more; if not, less.

I'm also thinking about how these risks interact. For example, inflation could lead to higher interest rates, which would then affect their debt costs. Or a weaker currency might make imports more expensive, contributing to inflation. It's like a web of interconnected risks that could amplify each other in certain economic conditions.

Another point is the sensitivity analysis for equity price risk. They show a static present value and how it changes with different stock prices. This helps investors understand how exposed they are to stock price fluctuations. A 40% change seems extreme, but it's useful to see the range of possible outcomes.

I wonder if there are any mitigating factors or strategies MercadoLibre uses to manage these risks. For example, do they hedge their currency exposure? How flexible are their costs in the face of inflation? And how do they structure their LTRP plans to balance retention with financial risk?

Overall, this section is highlighting several key areas where MercadoLibre faces potential volatility and challenges. It's important for investors to consider these risks when evaluating the company's long-term prospects.

```
</think>
**MercadoLibre Risk Analysis Summary**
1. **Foreign Exchange Risk:**
   - **Exposure:** Significant revenue from Brazil, Argentina, and other Latin
American countries exposed to currency fluctuations, particularly the Brazilian
real and Argentine peso.
   - **Impact:** Currency devaluation can reduce reported USD revenue when
converted.
2. **Interest Rate Risk:**
   - **Exposure:** Long-term debt subject to interest rate changes.
   - **Impact:** Rising rates may decrease debt value and increase borrowing
costs.
3. **Commodity Price Risk:**
   - **Exposure:** Operational costs tied to fuel and electricity prices.
   - **Impact:** Price spikes can increase operational expenses and reduce
margins.
4. **Equity Price Risk:**
   - **Exposure:** Long-term retention programs (LTRP) linked to stock
performance.
   - **Impact:** Stock price fluctuations affect payout obligations; a 40% drop
reduces liability from $418 million to $251 million.
5. **Inflation Risk:**
   - **Exposure:** High inflation in countries like Argentina affecting
purchasing power and operational costs.
   - **Impact:** Could reduce consumer spending and squeeze margins if cost
increases aren't offset.
6. **Interconnected Risks:**
   - Inflation may lead to higher interest rates, affecting debt costs and
potentially exacerbating currency issues.
7. **Mitigation Strategies:**
   - Consider hedging strategies for currency exposure, flexible cost
structures, and balanced LTRP designs to manage financial risks.
**Conclusion:** MercadoLibre faces multiple interconnected risks that could
impact its financial health. Investors should assess these factors alongside the
company's risk management strategies when evaluating long-term prospects.
===== 9/10. A T & T INC =====
<think>
Okay, so I'm trying to understand this document about AT&T's financial report.
It looks like it's an audit report from their independent registered public
accounting firm. Let me go through it step by step.
First, the report is divided into two main sections: one on the internal control
over financial reporting and another on the consolidated financial statements.
Both have an opinion section, a basis for opinion, and some additional details.
Starting with the opinion on internal control over financial reporting. The
```

auditors state that they've audited AT&T's internal controls as of December 31, 2023, based on the COSO criteria. They conclude that the company maintained effective internal control over financial reporting in all material respects. That sounds positive; it means the auditors think AT&T has good systems in place to manage their finances properly.

Next, looking at the basis for this opinion. It mentions that management is responsible for maintaining these controls and assessing their effectiveness. The auditors' role was to express an opinion based on their audit, which they did by following PCAOB standards. They obtained an understanding of the internal controls, assessed risks, tested the design and operation of the controls, and performed other necessary procedures. Their conclusion is that AT&T's controls are effective.

Moving on to the report on the consolidated financial statements. The auditors also express an unqualified opinion here, meaning they didn't find any material issues with the financial statements. They were prepared in accordance with GAAP, which is standard for public companies in the U.S.

The basis for this opinion section explains that the auditors are responsible for expressing opinions on whether the financial statements present fairly, in all material respects, the company's financial position and results of operations. They did this by auditing according to PCAOB standards, assessing risks, testing accounting policies, significant estimates, transactions, and disclosures.

There are also two specific sections discussing areas where the audit was particularly complex: internal control over financial reporting and the impairment evaluations for certain reporting units. The auditors explain that these areas required a deeper dive because they involve subjective assumptions and complex methodologies. They tested controls, assessed assumptions against industry trends, performed sensitivity analyses, and involved specialists to ensure everything was in order.

The report ends with a note that the auditing firm has been serving AT&T since 1999, which shows a long-standing relationship, likely indicating consistency and familiarity with the company's operations.

I'm trying to think if there's anything I might be missing. The document seems comprehensive, covering both the internal controls and financial statements. It mentions specific areas like impairment evaluations and valuation models, which are known for being complex and subject to judgment. The auditors' involvement of specialists in these areas makes sense because it adds depth to their analysis.

I wonder if there were any material weaknesses or significant deficiencies mentioned, but from what I can see, the opinions are unqualified, so no major issues were found. It's also worth noting that the report is dated February 23, 2024, which would typically be around the time when earnings are released, so it's timely.

Overall, this audit report seems to provide assurance to stakeholders that AT&T's financial reporting is reliable and their internal controls are effective. The detailed explanation of the auditing process gives confidence in the independence and thoroughness of the audit.

The audit report on AT&T provides a comprehensive assessment of both its internal control over financial reporting and its consolidated financial statements, concluding with an unqualified opinion in both areas. Here's a structured summary: ### Key Findings: 1. **Internal Control Over Financial Reporting:** - The auditors found that AT&T maintained effective internal controls as of December 31, 2023, based on the COSO framework. - The company's systems provide reasonable assurance regarding the reliability of financial reporting and compliance with GAAP. 2. **Consolidated Financial Statements:** - The financial statements were prepared in accordance with GAAP and present AT&T's financial position accurately. - No material issues were identified, leading to an unqualified opinion. ### Methodology: - Auditors followed PCAOB standards, assessing risks, testing controls, and involving specialists for complex areas like impairment evaluations. - Detailed procedures included testing assumptions against industry trends and performing sensitivity analyses. ### Areas of Complexity: - **Impairment Evaluations:** Involved subjective assumptions and complex valuation methods. The auditors ensured these were sound through thorough testing and specialist involvement. - **Internal Controls:** The effectiveness was validated through a comprehensive audit process, confirming the controls' operational efficiency. ### Conclusion: The report assures stakeholders of AT&T's financial integrity and control systems. The unqualified opinions indicate no significant issues, reflecting well on the company's financial governance. The long-standing relationship with the auditing firm underscores consistency and familiarity in their work. ===== 10/10. REPUBLIC SERVICES INC ===== <think> Okay, so I need to summarize this risk report for fifth graders. Let me read through it carefully first. The report talks about market risks the company faces, specifically interest rate risk, fuel price risk, and commodities price risk. Hmm, I should break each section down into simpler terms. Starting with interest rate risk: The company has both fixed and variable debt. Fixed rates don't change, while variable ones do based on market rates. They use swaps to manage this risk. If rates go up or down by 100 basis points, their interest expense changes by about \$20 million. I should explain what a swap is in simple terms, maybe like an agreement to balance out the risks. Next, fuel price risk: Fuel costs are a big part of their expenses. They try to hedge against price changes but currently have no hedges in place. A 20-cent change per gallon affects both their costs and what they charge customers. Petrochemical products used in operations also cost money, so higher prices

there would increase their costs too.

Lastly, commodities price risk: They sell recycled materials, and market fluctuations affect their revenue. Previously, they used derivatives like swaps to hedge this, but none are active now. A \$10 per ton change affects both revenue and operating income by about \$10 million.

I need to make sure I explain terms like "hedging" in a way fifth graders can understand, maybe as strategies to protect against price changes. Also, I should avoid jargon and keep sentences short and clear.

Let me structure the summary with each risk as a separate point, using simple language and examples they can relate to, like how changing fuel prices affect their daily lives or school budget.

Summary of Market Risks in Simple Terms

The company faces several risks related to market changes that could impact its financial health. Here's a breakdown of these risks explained in a way fifth graders can understand:

1. **Interest Rate Risk:**

– The company borrows money through loans with both fixed and variable interest rates.

– Fixed rates stay the same, while variable rates change based on market conditions.

- To manage these changes, they use something called "swaps," which are agreements to balance out potential losses or gains from rate changes.

- If interest rates go up or down by a certain amount (100 basis points), their yearly interest expense would change by about \$20 million. This is like how a school might adjust its budget if the cost of supplies goes up or down.

2. **Fuel Price Risk:**

- Fuel costs are a major expense for the company, similar to how a school might spend money on transportation.

- They try to protect against fuel price changes by using strategies called "hedging," but currently, they don't have any such strategies in place.

- A 20-cent change in diesel price per gallon would affect both their costs and what they charge customers. For example, if diesel goes up by 20 cents, their expenses increase, and they might need to charge more to cover this cost.

3. **Commodities Price Risk:**

- The company sells recycled materials like cardboard and newspaper.

- Market changes can cause prices of these materials to go up or down, affecting both revenue and how much money they make.

- They used to use tools like "swaps" and "collars" to manage these price changes, but currently, they aren't using any such tools.

- A \$10 per ton change in recycled material prices would impact their yearly revenue and profits by about \$10 million. This is similar to how a lemonade stand might adjust its prices if the cost of lemons fluctuates.

In summary, the company deals with risks from changing interest rates, fuel prices, and recycled materials markets. They use strategies like swaps to manage some of these risks but are currently exposed to others. Understanding these risks helps them make better financial decisions, much like how planning for price changes helps a school manage its budget effectively.

display_rouge("rouge1", scores)

ROUGE1 metric:

	precision	recall	fmeasure
PACCAR INC	0.397394	0.408027	0.402640
PHILLIPS 66	0.366142	0.324042	0.343808
MASTERCARD INC	0.371681	0.283784	0.321839
BRISTOL MYERS SQUIBB CO	0.331731	0.226974	0.269531
CARRIER GLOBAL CORP	0.502674	0.324138	0.394130
LULULEMON ATHLETICA INC	0.317172	0.537671	0.398983
AIRBNB INC	0.391304	0.440559	0.414474
MERCADOLIBRE INC	0.467593	0.331148	0.387716
A T & T INC	0.393805	0.312281	0.348337
REPUBLIC SERVICES INC	0.414439	0.504886	0.455213
average	0.395393	0.369351	0.373667

display_rouge("rouge2", scores)

ROUGE2 metric:

	precision	recall	fmeasure
PACCAR INC	0.133987	0.137584	0.135762
PHILLIPS 66	0.079051	0.069930	0.074212
MASTERCARD INC	0.066667	0.050847	0.057692
BRISTOL MYERS SQUIBB CO	0.053140	0.036304	0.043137
CARRIER GLOBAL CORP	0.134409	0.086505	0.105263
LULULEMON ATHLETICA INC	0.052632	0.089347	0.066242
AIRBNB INC	0.093458	0.105263	0.099010
MERCADOLIBRE INC	0.116279	0.082237	0.096339
A T & T INC	0.097778	0.077465	0.086444
REPUBLIC SERVICES INC	0.150134	0.183007	0.164948
average	0.097753	0.091849	0.092905

Generate simple summaries with GPT-40-mini

```
summary['simple_gpt-4o'] = collect_summaries(
    gpt_model,
    role="You are a patient lower-school teacher, using simple words to explain to_
    your students in the fifth grade.")
```

===== 1/10. PACCAR INC ===== The risk report talks about how a company manages different types of financial risks, especially related to market changes. It focuses on three main areas: interest rates, currency exchange rates, and commodity prices.

First, for interest-rate risks, the company looks at how changes in interest rates can affect the value of its assets and debts. They estimate what would

happen if interest rates suddenly went up by 1%. In 2023, the company faced losses of \$29.2 million from cash and marketable securities and \$146.5 million from fixed-rate loans. However, they also had gains from fixed-rate debts and interest-rate swaps, leading to a total loss of \$17.7 million, which was worse than the previous year's loss of \$1.1 million.

Next, the report discusses currency risks. The company uses contracts to protect itself from changes in foreign currency values, especially with currencies like the Canadian dollar and the euro. If the value of these currencies drops by 10%, the company could lose \$259.7 million in 2023, compared to \$216.6 million in 2022. However, these losses would be balanced out by changes in the value of the things they are protecting.

Lastly, the company also deals with commodity price risks. They use contracts to lock in prices for materials needed to make trucks. If commodity prices drop by 10%, they could lose \$3.3 million in 2023, up from \$2.5 million in 2022. Again, these losses would be offset by changes in the value of the materials they are buying.

Overall, the report shows how the company tries to manage risks to protect its finances from sudden changes in the market.

===== 2/10. PHILLIPS 66 =====

The risk report discusses the various market risks that our company and some of its subsidiaries face. These risks come from changes in prices of crude oil, natural gas, and other energy products, as well as fluctuations in interest rates and foreign currency exchange rates. To manage these risks, we use special financial contracts called derivatives.

Our main strategy is to stay connected to the market prices of these commodities. We use derivatives to switch from fixed prices in our contracts back to floating market prices. This helps us balance our supply and demand needs and take advantage of market opportunities, like moving products to where they can be sold for more money or storing them for better prices later. We also use derivatives to protect our cash flow from price changes.

The use of these financial tools is carefully controlled by rules set by our board of directors. We monitor our risks daily to ensure we stay within safe limits. We use a method called Value at Risk (VaR) to estimate potential losses from market changes, and as of the end of 2023, these risks were not significant to our cash flow.

Additionally, we face interest rate risks from our debts. Fixed-rate debts can lose value if interest rates rise, while variable-rate debts can lead to higher interest costs. We provide detailed information about our debts and their interest rates.

Lastly, we are also exposed to foreign currency risks due to our international operations, but we generally do not take steps to protect against these risks. Our CEO and CFO keep a close eye on all these risks to ensure the company remains stable and successful.

===== 3/10. MASTERCARD INC ===== The risk report discusses market risk, which is the chance of losing money due to changes in things like interest rates and foreign currency exchange rates.

The company, Mastercard, has a limited exposure to these risks and keeps a close

watch on them. They have rules in place to manage their funding, investments, and the use of special financial tools called derivatives to help reduce these risks.

One type of risk they face is foreign exchange risk, which happens when they deal with money in different currencies. To manage this risk, Mastercard uses foreign exchange derivative contracts. These contracts help them handle expected payments and receipts in currencies that are not their main currency, which is usually the U.S. dollar or the euro. If the value of these currencies changes by 10%, it could lead to a loss of about \$414 million on their contracts as of December 31, 2023. However, they also have activities that can offset these losses.

Mastercard also deals with foreign exchange risk when they have investments in other countries. They may use contracts to protect these investments, but as of December 31, 2023, they did not have any contracts specifically for this purpose. In 2022, a similar 10% change in the U.S. dollar could have led to a loss of about \$203 million.

Another risk is interest rate risk, which affects their investments in bonds. Mastercard aims to invest in high-quality bonds and manage their risks carefully. A change in interest rates by 1% would not significantly impact the value of their investments. They also use interest rate derivatives to protect against changes in the value of their fixed-rate debt, and similar to foreign exchange, a 1% change would not have a major effect on their contracts. Overall, Mastercard actively manages these risks to protect their financial health.

===== 4/10. BRISTOL MYERS SQUIBB CO ===== The risk report discusses how a company faces market risks related to changes in currency exchange rates and interest rates. To protect itself from these risks, the company uses certain financial tools called derivatives, but only when they are cost-effective. These derivatives are not used for trading but to manage risks.

One major risk is foreign exchange risk, which happens when the value of money in different countries changes. The company earns a lot of its money in euros and Japanese yen, so it uses contracts called foreign currency forwards to help manage this risk. These contracts help protect the company from losing money when it buys or sells things in different currencies. However, these contracts are not always perfect hedges, meaning they don't cover all risks completely.

The report estimates that if the euro and yen become stronger against the U.S. dollar by 10%, the company could lose a significant amount of money on its foreign exchange contracts. Additionally, the company uses cross-currency swaps to manage risks from long-term debts in euros and to protect its investments in foreign businesses.

The report also talks about interest rate risk, which is the risk of losing money when interest rates change. The company uses interest rate swaps to balance its debts. If interest rates go up by 1%, the impact on the company's earnings would not be very large, but it could still affect the value of its long-term debt.

Lastly, the company is careful about credit risk, which is the risk of losing money if someone it does business with doesn't pay. It only invests in highquality institutions and spreads its investments to reduce risk. Overall, the

company takes steps to manage these financial risks to protect its earnings and investments.

===== 5/10. CARRIER GLOBAL CORP ===== The risk report discusses the market risks that our company faces, which include changes in foreign currency exchange rates, interest rates, and commodity prices. These risks can affect how well we perform financially. For the year ending December 31, 2023, there have not been any major changes in our exposure to these market risks.

One important area is foreign currency exposure. Since we operate in many countries, we deal with different currencies. Our main reporting currency is the U.S. dollar, and when other currencies change in value compared to the dollar, it can affect our financial results. We manage some of these currency risks related to our sales and purchases, but we do not protect against all risks from currency changes.

Recently, we made an acquisition and paid a large part of the purchase price in euros. To protect ourselves from changes in the euro's value compared to the U.S. dollar, we used special contracts called window forward contracts. These contracts help us manage the risk of losing money due to currency fluctuations.

For another acquisition, we used cross currency swaps and a loan in Japanese yen to help manage the risks related to the yen. These financial tools help us keep track of changes in currency values and their impact on our investments.

We also face risks from the prices of commodities, which are materials we use to make our products. We sometimes use fixed price contracts to help manage these costs, but as of December 31, 2023, we do not have any contracts in place to protect against changes in commodity prices.

Lastly, most of our long-term debt has fixed interest rates, so changes in interest rates are not expected to significantly affect our financial results. Overall, we are actively managing these risks to protect our company.

===== 6/10. LULULEMON ATHLETICA INC =====

The risk report discusses various financial risks that the company faces, particularly related to foreign currency exchange, interest rates, credit, and inflation.

Foreign Currency Exchange Risk: The company has international subsidiaries that operate in local currencies, but its financial statements are in U.S. dollars. This means that when the value of the U.S. dollar changes, it affects how much revenue and expenses are reported. In 2023, the company reported \$89.8 million less in revenue compared to 2022 due to these currency fluctuations. The company uses forward currency contracts to protect itself from these risks, especially with its Canadian subsidiary, which saw a loss of \$9 million from currency translation.

Transaction Risk: The company also faces risks when its subsidiaries conduct transactions in currencies different from their main currency. They hold cash and other assets in various currencies and use forward contracts to manage these risks. As of January 28, 2024, the company had a liability of \$2.2 million from these contracts, and a 10% drop in the U.S. dollar could lead to a \$29.8 million decrease in value.

Interest Rate Risk: The company has a credit facility that allows it to borrow up to \$400 million at variable interest rates. If it borrows a significant amount, it could be affected by changes in interest rates. Currently, they have no borrowings but may consider hedging against interest rate risks in the future.

Credit Risk: The company keeps cash with reputable banks and invests in high-rated money market funds. They are cautious about credit risk, which is the risk of losing money if a bank fails to meet its obligations. They have not faced any losses and believe this risk is low.

Inflation: Rising costs for products, wages, and transportation can hurt the company's profits. In recent years, increased wages and shipping costs have affected their operating margins. If these costs continue to rise without a corresponding increase in product prices, it could impact their financial health.

===== 7/10. AIRBNB INC ===== The risk report discusses the market risks faced by a company with global operations, focusing on foreign currency risk and investment risk.

Foreign Currency Risk: The company operates in over 40 currencies, with key currencies including the euro, British pound, Canadian dollar, Australian dollar, Brazilian real, and Mexican peso. This means that when the value of these currencies changes compared to the U.S. dollar, it can affect the company's financial results. For example, if the U.S. dollar strengthens, the company could lose money on its international sales. The company has various sources of foreign currency risk, such as revenue from bookings made in other currencies, funds held for customers, and payments to hosts. To manage this risk, the company uses foreign currency derivative contracts, which help protect against changes in exchange rates. However, these contracts do not completely eliminate the risk, and the company may choose not to hedge certain exposures due to costs or accounting reasons. If there were a significant change in exchange rates, it could lead to substantial losses.

Investment and Interest Rate Risk: The company also faces risks related to interest rates, which can affect the earnings from its investments. As of December 31, 2023, the company had significant cash and short-term investments, primarily in safe, liquid assets like government bonds and corporate debt. The goal of these investments is to keep the money safe while ensuring it is available when needed. Because the investments are mostly short-term, they are not very sensitive to changes in interest rates. A hypothetical increase in interest rates could lead to a small decrease in the value of the investment portfolio, but the company does not expect to face major risks from interest rate changes.

===== 8/10. MERCADOLIBRE INC =====

The risk report discusses the various market risks that our company faces due to its business operations. These risks mainly come from changes in the economy, interest rates, and currency exchange rates, especially with currencies like the Brazilian real, Argentine peso, and Mexican peso. These changes can affect the value of our financial assets and liabilities.

We also have long-term retention programs for employees, which involve cash payments that depend on our stock price. This means that if our stock price changes, the amount we pay to employees can also change.

Since we operate in many countries, we deal with different currencies, which exposes us to foreign currency risk. This can impact our financial results because we earn money and spend money in various currencies. To manage this risk, we use contracts that help protect us from unfavorable changes in currency exchange rates. However, these contracts do not completely eliminate the risk.

As of December 31, 2023, we had significant amounts of cash and investments in local currencies. Our subsidiaries mostly earn and spend money in their local currencies, except for our Argentine subsidiaries, which use the U.S. dollar due to high inflation. We also experienced a loss of \$615 million in foreign currency due to changes in the Argentine market.

Interest rates also affect our earnings and cash flow. Changes in interest rates can impact the costs of loans and the income we earn from our investments. As of December 31, 2023, we had various loans and investments that are sensitive to interest rate changes.

Lastly, our long-term retention programs for employees are linked to our stock price, meaning that if our stock price goes up or down, it affects how much we owe to employees. Overall, these market risks can significantly impact our financial performance.

===== 9/10. A T & T INC =====

The risk report discusses how AT&T Inc. manages market risks, particularly those related to interest rates and foreign currency exchange rates. These risks can affect the company's costs and financial stability. To handle these risks, AT&T uses various financial tools called derivatives, such as interest rate swaps and foreign currency contracts. These tools help the company control its financial risks and maintain flexibility without engaging in risky trading practices.

One important aspect of the report is the company's approach to estimating its future obligations for employee benefits, which relies on a discount rate. This rate is influenced by the returns on high-quality corporate bonds. Recently, these rates have been lower and more unstable than in the past, which means that the company's obligations could be higher. If rates increase in the future, it could lower these obligations and improve the company's financial health.

The report also highlights interest rate risk, as most of AT&T's financial instruments are fixed-rate notes. Changes in interest rates can significantly affect their value. To manage this risk, AT&T monitors its debt structure and uses interest rate swaps to balance fixed and floating rates.

Additionally, AT&T addresses foreign exchange risk by converting foreign debt into U.S. dollars through cross-currency swaps. This helps eliminate risks related to currency fluctuations. The report includes details about the company's financial instruments and their fair values as of December 31, 2023.

Overall, AT&T is committed to managing its market risks carefully to ensure long-term financial stability and flexibility. The company regularly assesses its financial strategies and maintains effective internal controls to support accurate financial reporting.

===== 10/10. REPUBLIC SERVICES INC ===== The risk report discusses the financial risks related to interest rates, fuel prices, and commodity prices that the company faces.

Interest Rate Risk: The company is mainly affected by changes in interest rates in the United States. To manage this risk, they use a mix of fixed and variable interest rate debts. As of December 31, 2023, the company had a total of about \$10.4 billion in fixed-rate debt and around \$2.6 billion in variablerate debt. They also use financial agreements called swap contracts to help protect against changes in interest rates. If interest rates go up or down by 1%, the company's interest expenses could change by about \$20 million each year.

Fuel Price Risk: Fuel costs are a significant expense for the company. They may use fuel hedges, which are contracts to lock in fuel prices, but as of the end of 2023, they had no such contracts in place. A change of 20 cents per gallon in diesel fuel prices could affect their fuel costs by about \$27 million annually. They charge some customers for fuel recovery fees, but not all, which can impact their revenue. In 2023, their fuel costs were \$541.6 million, which was lower than in 2022.

Commodity Price Risk: The company also deals with the prices of recycled materials, like old cardboard and newspapers. Changes in supply and demand can cause these prices to fluctuate. They have previously used financial tools to manage this risk but had no hedges in place as of December 31, 2023. A \$10 change in the price of recycled materials could affect their revenue and operating income by about \$10 million. In 2023, they earned \$312.3 million from recycling, down from \$359.1 million in 2022.

Overall, the report highlights how the company is working to manage these financial risks to protect its operations and profitability.

scores = collect_rouge(target=summary[gpt_name], prediction=summary['simple_gpt-4o'])

Display rouge-1 scores for simple GPT-4o-mini summary

display_rouge("rouge1", scores)

ROUGE1 metric:

precision	recall	fmeasure
0.653571	0.612040	0.632124
0.551971	0.536585	0.544170
0.560261	0.581081	0.570481
0.550000	0.542763	0.546358
0.551155	0.575862	0.563238
0.576577	0.657534	0.614400
0.658621	0.667832	0.663194
0.553333	0.544262	0.548760
0.665480	0.656140	0.660777
0.650794	0.667752	0.659164
0.597176	0.604185	0.600267
	precision 0.653571 0.551971 0.560261 0.550000 0.551155 0.576577 0.658621 0.553333 0.665480 0.650794 0.597176	precisionrecall0.6535710.6120400.5519710.5365850.5602610.5810810.5500000.5427630.5511550.5758620.5765770.6575340.6586210.6678320.5533330.5442620.6654800.6561400.6507940.6677520.5971760.604185

Display rouge-2 scores for simple GPT-4o-mini summary

```
display_rouge("rouge2", scores)
```

	precision	recall	fmeasure
PACCAR INC	0.336918	0.315436	0.325823
PHILLIPS 66	0.244604	0.237762	0.241135
MASTERCARD INC	0.241830	0.250847	0.246256
BRISTOL MYERS SQUIBB CO	0.257525	0.254125	0.255814
CARRIER GLOBAL CORP	0.231788	0.242215	0.236887
LULULEMON ATHLETICA INC	0.243976	0.278351	0.260032
AIRBNB INC	0.359862	0.364912	0.362369
MERCADOLIBRE INC	0.254181	0.250000	0.252073
A T & T INC	0.257143	0.253521	0.255319
REPUBLIC SERVICES INC	0.382166	0.392157	0.387097
average	0.280999	0.283933	0.282281

35.3.6 Readability

ROUGE2 metric:

Readability scores such as **Flesch-Kincaid** and **Gunning-Fog** assess how easy a summary is to read. These metrics are calculated based on sentence length, word complexity, and syllable count, and correspond to U.S. grade levels. Simpler summaries which score lower are suitable for broader audiences.

	simple_	deepseek	simple_gpt-4o	deepseek-r1:14b	gpt-4o-mini	
60506		7	9	13	15	
13356		12	10	12	17	
91233		10	10	16	16	
19393		9	10	15	15	
19285		8	10	17	16	
92203		9	11	15	15	
20190		9	12	15	17	
92221		12	10	12	16	
66093		16	12	16	16	
86228		9	8	10	12	

gpt-4o-mini	deepseek-r1:14b	simple_gpt-4o	simple_deepseek	
college_graduate	college_graduate	12	9	60506
college_graduate	college	college	college	13356
college_graduate	college_graduate	12	12	91233

19393	12	college	college_graduate	college_graduate
19285	11	college	college_graduate	college_graduate
92203	12	college	college_graduate	college_graduate
20190	12	college	college_graduate	college_graduate
92221	12	college	12	college_graduate
66093	college_graduate	college	college_graduate	college_graduate
86228	12	12	college	college

References:

Greg Durrett, 2021-2024, "CS388 Natural Language Processing course materials", retrieved from https://www.cs. utexas.edu/~gdurrett/courses/online-course/materials.html

Philipp Krähenbühl, 2020-2024, "AI394T Deep Learning course materials", retrieved from https://www.philkr.net/ dl_class/material and https://ut.philkr.net/deeplearning/

Philipp Krähenbühl, 2025, "AI395T Advances in Deep Learning course materials", retrieved from https://ut.philkr.net/advances_in_deeplearning/

THIRTYSIX

LLM FINE-TUNING

To improve is to change; to be perfect is to change often - Winston Churchill

Large language models (LLMs) have demonstrated remarkable general capabilities, but tailoring them to specific tasks or domains may require fine-tuning –adjusting model weights by further training on task-specific data. We examine the fine-tuning of Meta's Llama-3.1 model using tools from the Hugging Face ecosystem, applying efficient techniques such as quantization and low-rank adaptation (LoRA) to an industry text classification task using firm-level 10-K filings.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import os
from tqdm import tqdm
from pathlib import Path
from pprint import pprint
import textwrap
import warnings
import bitsandbytes as bnb
import torch
from datasets import Dataset
from peft import LoraConfig, PeftConfig
from trl import SFTTrainer
from transformers import (AutoModelForCausalLM,
                          AutoTokenizer,
                          BitsAndBytesConfig,
                          pipeline,
                          logging)
import matplotlib.pyplot as plt
from sklearn.metrics import (accuracy_score,
                             classification_report,
                             confusion_matrix)
from sklearn.model_selection import train_test_split
from finds.database import SQL, RedisDB
from finds.unstructured import Edgar
from finds.structured import BusDay, CRSP, PSTAT
from finds.readers import Sectoring
from finds.utils import Store
from secret import paths, CRSP_DATE, credentials
logging.set_verbosity_error()
```

NUM_TRAIN_EPOCHS = 2 # 0 # 1 RESUME_FROM_CHECKPOINT = **False** # False # True

```
MAX_SEQ_LENGTH = 1024  #512  #2048
LOGGING_STEPS = 200
```

```
VERBOSE = 0
sql = SQL(**credentials['sql'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=0)
store = Store('assets', ext='pkl')
permnos = list(store.load('nouns').keys())
print(f"{len(permnos)=}")  # comparable sample
```

len(permnos)=3474

36.1 Meta Llama-3.1 model

Meta's **Llama 3.1** is an open-source large language model released in July 2024 under the Llama 3.1 Community License, permitting broad use, including commercial applications. Key highlights include:

- Model variants:
 - 8B: 8 billion parameters.
 - 70B: 70 billion parameters.
 - 405B: 405 billion parameters.
- Context length of up to 128,000 tokens.
- Pre-trained on over 15 trillion tokens sourced from publicly available datasets.
- Fine-tuned using supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF).
- Multilingual support, including English, French, German, Hindi, Italian, Portuguese, Spanish, and Thai.

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

```
base_model = 'meta-llama/Llama-3.1-8B-Instruct'
```

```
# Show current memory stats
gpu_stats = torch.cuda.get_device_properties(0)
max_memory = round(gpu_stats.total_memory / (1024**3), 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
def cuda_memory(title, trainer_stats=None):
    """Show final memory and optional trainer stats"""
    if torch.cuda.is_available():
        device = torch.device('cuda')
        total_memory = torch.cuda.get_device_properties(device).total_memory
        reserved_memory = torch.cuda.memory_reserved(device)
        allocated_memory = torch.cuda.memory_allocated(device)
        free_memory = total_memory - reserved_memory
```

```
print(f'------ {title.upper() } ------')
if trainer_stats:
    print(f"{trainer_stats.metrics['train_runtime']} seconds used for_
    otraining.")
    print(f"Total memory: {total_memory / (1024**3):.2f} GB")
    print(f"Reserved memory: {reserved_memory / (1024**3):.2f} GB")
    print(f"Allocated memory: {allocated_memory / (1024**3):.2f} GB")
    print(f"Free memory: {free_memory / (1024**3):.2f} GB")
```

```
GPU = NVIDIA GeForce RTX 3080 Laptop GPU. Max memory = 15.739 GB.
```

36.2 Supervised fine-tuning (SFT)

Supervised Fine-Tuning is the process of enhancing a pre-trained language model by fine-tuning it on labeled inputoutput pairs using standard supervised learning. Common use cases include:

- · Instruction tuning: The model learns to follow new instructions
- Chatbot fine-tuning (e.g., with help-desk data)
- Domain adaptation (e.g., legal, medical)

36.2.1 Huggingface framework

Several ecosystems support fine-tuning and training of LLMs. The Hugging Face Ecosystem includes:

- transformers: Model architectures and training components.
- Transformers Reinforcement Learning (trl): Training large language models (LLMs) with reinforcement learning techniques, especially for alignment tasks like RLHF (Reinforcement Learning with Human Feedback) and DPO (Direct Preference Optimization).
- bitsandbytes: Enables efficient low-bit model quantization, allowing large language models to run on limited GPU memory without much loss in performance.
- Parameter-Efficient Fine-Tuning (peft): Tools to fine-tune large language models by training only a small number of additional parameters.
- Accelerate: Distributed training optimization.
- datasets: For loading, processing, and managing datasets

It provides access to 100k+ pre-trained transformer models, and tools for efficient-tuning of these models using low memory and quantized weights.

If you encounter a gated model repository on Hugging Face, it means the model requires manual access approval from the authors before you can use or download it. You should log in to your huggingface.ro account, go to the Model Page, and click on the "Request Access" button –approval may take up to a few days. When authorized, make sure you have set your Hugging Face token in your environment (e.g. huggingface-cli login), see https://huggingface.co/settings/tokens

```
from trl import SFTConfig
args = SFTConfig(
    output_dir=output_dir,
                                              # directory to save and repository id
    num_train_epochs=NUM_TRAIN_EPOCHS, ####1 # number of training epochs
    per_device_train_batch_size=2, ####1 # batch size per device during training
    gradient_accumulation_steps=4, ####8 # before performing a backward/update_
⇔pass
   gradient_checkpointing=True,
                                              # use gradient checkpointing to save_
 ⇔memory
   optim="paged_adamw_32bit",
   logging_strategy="steps",
                                              # or "steps" or "no" or "epoch"
   logging_steps=LOGGING_STEPS, #### 1,
   learning_rate=2e-4,
                                              # learning rate, based on QLoRA paper
   weight_decay=0.001,
   fp16=True,
   bf16=False,
   max_grad_norm=0.3,
                                              # max gradient norm based on QLoRA paper
   max_steps=-1,
   warmup_ratio=0.03,
                                              # warmup ratio based on QLoRA paper
    group_by_length=False,
    lr_scheduler_type="cosine",
                                              # use cosine learning rate scheduler
   report_to="tensorboard",
   max seq_length=MAX SEQ LENGTH, #512, ### should be 1024? or MAX CHARS // 4
    packing=False,
    dataset_kwargs={
    "add_special_tokens": False,
    "append_concat_token": False,
    }
)
```

36.2.2 Tokenizer

The AutoTokenizer in Hugging Face is a smart utility that automatically loads the correct tokenizer for a given pretrained model.

```
# Load the tokenizer and set the pad token id.
tokenizer = AutoTokenizer.from_pretrained(base_model)
tokenizer.pad_token_id = tokenizer.eos_token_id
```

36.2.3 Quantization

Quantization converts high-precision data to lower-precision data, for instance, by representing model weights and activation values as 4-bit or 8-bit integers instead of 32-bit floating point numbers. The bitsandbytes library for efficient low-bit model quantization is integrated with Hugging Face and works seamlessly with parameter-efficient fine-tuning like QLora.

```
# Load the Llama-3.1-8b-instruct model in 4-bit quantization to save GPU memory
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=False,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype="float16",
)
```

36.2.4 AutoModel

The AutoModel class in Hugging Face is a convenient interface that automatically loads the correct model architecture based on the model name or path. Its variants automatically load the correct model head (e.g., classification layer, decoder head) based on your specific task, e.g.

Class	Task	Output
AutoModel	Base model (no head)	Hidden states
AutoModelForSequenceClassifi- cation	Text classification (e.g. sentiment)	Class logits
AutoModelForTokenClassifica- tion	Token labeling (e.g. NER, POS)	Token-level logits
AutoModelForQuestionAnswering	Extractive QA	Start/end logits for answer spans
AutoModelForCausalLM	Text generation (GPT-style)	Next-token logits
AutoModelForMaskedLM	Mask filling (BERT-style)	Predictions for masked to- kens
AutoModelForSeq2SeqLM	Translation, summarization (T5, BART)	Generated sequences
AutoModelForMultipleChoice	Multiple-choice QA (e.g. SWAG)	Choice logits
AutoModelForVision2Seq	Image captioning	Generated text
AutoModelForImageClassifica- tion	Vision tasks	Class logits
AutoModelForSpeechSeq2Seq	Speech translation	Generated text from audio

```
model = AutoModelForCausalLM.from_pretrained(
    base_model,
    device_map="auto",
```

```
torch_dtype="float16",
    quantization_config=bnb_config,
)
model.config.use_cache = False
model.config.pretraining_tp = 1
```

36.2.5 Parameter-efficient fine-tuning

Parameter-Efficient Fine-Tuning (PEFT) is both a technique and a Hugging Face library for adapting large language models (LLMs) to new tasks by training only a small subset of parameters. Instead of updating the entire model, the base (pretrained) model is kept frozen, and lightweight, trainable components called **adapters** are added. These adapters typically involve only a few million parameters, making fine-tuning faster and more memory-efficient.

- Low-rank factorization: This is a compression technique which decomposes a large matrix of weights into a smaller, lower-rank matrix, resulting in a more compact approximation that requires fewer parameters and computations.
- LoRA: A small number of trainable low-rank matrices are added to the model' s attention layers. The original weights are frozen and just these adapters are fine-tuned.
- **QLora**: Combines LoRA with Quantization: The base model is converted to 4-bit precision, reducing memory usage dramatically without losing much performance.

```
# Extract the linear module names from the model using the bits and bytes library.
def find_all_linear_names(model):
    cls = bnb.nn.Linear4bit
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])
    if 'lm_head' in lora_module_names: # needed for 16 bit
        lora_module_names.remove('lm_head')
    return list(lora_module_names)
modules = find_all_linear_names(model)
modules
```

```
['q_proj', 'down_proj', 'v_proj', 'gate_proj', 'o_proj', 'up_proj', 'k_proj']
```

```
# Configure LoRA for the target modules, task type, and other training arguments
peft_config = LoraConfig(
    lora_alpha=16,
    lora_dropout=0,
    r=64,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=modules,
)
```

36.3 Industry text classification

We fine-tune the model for classifying firms into ten Fama-French sector categories based on their business descriptions in 10-K filings. The text data for each U.S.-domiciled common stock is drawn from the most recent year's Business Description section of their 10-K filings.

Load 10-K business description text for industry classification task

```
# Retrieve universe of stocks
beg, end = bd.begyr(CRSP_DATE), bd.endyr(CRSP_DATE)
print(f"{beg=}, (end=}")
univ = crsp.get_universe(bd.endyr(CRSP_DATE, -1))
# lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)
# lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)
# lookup ticker symbols
ticker = crsp.build_lookup(source='permno', target='ticker', fillna="")
univ['ticker'] = ticker(univ.index)
# lookup sic codes from Compustat, and map to FF 10-sector code
sic = pstat.build_lookup(source='lpermno', target='sic', fillna=0)
```

```
industry = Series(sic[univ.index], index=univ.index)
industry = industry.where(industry > 0, univ['siccd'])
sectors = Sectoring(sql, scheme='codes10', fillna='')
                                                         # supplement from crosswalk
univ['sector'] = sectors[industry]
# retrieve latest year's bus10K's
item, form = 'bus10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
rows = rows[rows['date'].between(beg, end)]\
    .drop_duplicates(subset=['permno'], keep='last') \
    .set_index('permno')\
    .reindex(permnos)
# split documents into train/test sets
labels = univ.loc[permnos, 'sector']
class_labels = np.unique(labels)
print(f"{class_labels=}")
train_index, test_index = train_test_split(permnos,
                                            stratify=labels,
                                            random_state=42,
                                            test_size=0.2)
```

36.3.1 HuggingFace dataset module

The training data are converted to LLM instruction statements, and implemented as a HuggingFace Dataset class. This class can be conveniently created from many different sources, including data files of various formats or from a generator function.

```
# Create LLM instruction statement
MAX_CHARS = MAX_SEQ_LENGTH * 2
class_text = "'" + "' or '".join(class_labels) + "'"
def generate_prompt(permno, test=False):
    text = ed[rows.loc[permno, 'pathname']].replace('\n','')[:MAX_CHARS]
    return f"""
Classify the text into one of these {len(class_labels)} classification labels:
    {class_text}
and return the answer as the label.
text: {text}
label: {'' if test else univ.loc[permno, 'sector']}""".strip()
```

cuda_memory('before dataset')

```
----- BEFORE DATASET -----
Total memory: 15.74 GB
Reserved memory: 6.83 GB
Allocated memory: 5.63 GB
Free memory: 8.91 GB
```

Classify the text into one of these 10 classification labels: 'Durbl' or 'Enrgy' or 'HiTec' or 'Hlth' or 'Manuf' or 'NoDur' or 'Other' or 'Shops' or 'Telcm' or 'Utils' and return the answer as the label. text: ITEM 1. BUSINESS OVERVIEW B. RILEY FINANCIAL, INC. (NASDAQ: RILY) (THE COMPANY IS A DIVERSIFIED FINANCIAL SERVICES PLATFORM THAT DELIVERS TAILORED SOLUTIONS TO MEET THE STRATEGIC, OPERATIONAL, AND CAPITAL NEEDS OF ITS CLIENTS AND PARTNERS. WE OPERATE THROUGH SEVERAL CONSOLIDATED SUBSIDIARIES (COLLECTIVELY, B. RILEY THAT PROVIDE INVESTMENT BANKING, BROKERAGE, WEALTH MANAGEMENT, ASSET MANAGEMENT, DIRECT LENDING, BUSINESS ADVISORY, VALUATION, AND ASSET DISPOSITION SERVICES TO A BROAD CLIENT BASE SPANNING PUBLIC AND PRIVATE COMPANIES, FINANCIAL SPONSORS, INVESTORS, FINANCIAL INSTITUTIONS, LEGAL AND PROFESSIONAL SERVICES FIRMS, AND INDIVIDUALS. THE COMPANY OPPORTUNISTICALLY INVESTS IN AND ACQUIRES COMPANIES OR ASSETS WITH ATTRACTIVE RISK-ADJUSTED RETURN PROFILES TO BENEFIT OUR SHAREHOLDERS. WE OWN AND OPERATE SEVERAL UNCORRELATED CONSUMER BUSINESSES AND INVEST IN BRANDS ON A PRINCIPAL BASIS. OUR APPROACH IS FOCUSED ON HIGH OUALITY COMPANIES AND ASSETS IN INDUSTRIES IN WHICH WE HAVE EXTENSIVE KNOWLEDGE AND CAN BENEFIT FROM OUR EXPERIENCE TO MAKE OPERATIONAL IMPROVEMENTS AND MAXIMIZE FREE CASH FLOW. OUR PRINCIPAL INVESTMENTS OFTEN LEVERAGE THE FINANCIAL, RESTRUCTURING, AND OPERATIONAL EXPERTISE OF OUR PROFESSIONALS WHO WORK COLLABORATIVELY ACROSS DISCIPLINES. WE REFER TO B. RILEY AS A PLATFORM BECAUSE OF THE UNIQUE COMPOSITION OF OUR BUSINESS. OUR PLATFORM HAS GROWN CONSIDERABLY AND BECOME MORE DIVERSIFIED OVER THE PAST SEVERAL YEARS. WE HAVE INCREASED OUR MARKET SHARE AND EXPANDED THE DEPTH AND BREADTH OF OUR BUSINESSES BOTH ORGANICALLY AND THROUGH OPPORTUNISTIC ACQUISITIONS. OUR INCREASINGLY DIVERSIFIED PLATFORM ENABLES US TO INVEST OPPORTUNISTICALLY AND TO DELIVER STRONG LONG-TERM INVESTMENT PERFORMANCE THROUGHOUT A RANGE OF ECONOMIC CYCLES. OUR PLATFORM IS COMPRISED OF MORE THAN 2,700 AFFILIATED PROFESSIONALS, INCLUDING EMPLOYEES AND INDEPENDENT CONTRACTORS. WE ARE HEADQUARTERED IN LOS ANGELES, CALIFORNIA AND MAINTAIN OFFICES THROUGHOUT THE U.S., INCLUDING IN NEW YORK, CHICAGO, METRO DISTRICT OF COLUMBIA, AT label: Other

```
# verify max_seq_length sufficient
curr_max = 0
for row, data in enumerate(train_data):
    tokenized = tokenizer.tokenize(data['text'])
    curr_max = max(curr_max, len(tokenized))
# print(f"{row=}, {len(tokenized)=}")
assert curr_max < args.max_seq_length
print(curr_max, f"{MAX_SEQ_LENGTH=}")
```
820 MAX_SEQ_LENGTH=1024

cuda_memory('after dataset')

```
----- AFTER DATASET -----
Total memory: 15.74 GB
Reserved memory: 6.83 GB
Allocated memory: 5.63 GB
Free memory: 8.91 GB
```

36.3.2 Pipeline

Hugging Face's pipeline function enables one-line use for easy inference, by simply specifying the model, tokenizer, generation parameters (e.g. sampling methology, maximum new tokens), and task, e.g.:

- "text-classification" : Sentiment analysis, topic labeling
- "token-classification" : Named Entity Recognition (NER), POS tagging
- "question-answering" : Extractive QA from context
- "text-generation" : Generate text (GPT-style)
- "summarization" : Generate summaries from long text

```
# Use the text generation pipeline to predict labels from the "text"
def generate(prompt, model=model, tokenizer=tokenizer, verbose=False):
    """Generate a response"""
    pipe = pipeline(task="text-generation",
                    model=model,
                    tokenizer=tokenizer,
                    do_sample=False,
                    top_p=None,
                    top_k=None,
                    return_full_text=False,
                    max_new_tokens=4, # 2
                    temperature=None)
                                        # 0.1
   result = pipe(prompt)
    answer = result[0]['generated_text'].split("label:")[-1].strip()
    if verbose:
       print(f"{len(prompt)=}, {result=}, {answer=}")
    return answer
def predict(test, model, tokenizer, verbose=False):
    """Predict test set"""
    y_pred = []
    for i in tqdm(range(len(test))):
       prompt = test.iloc[i]["text"]
       answer = generate(prompt, model, tokenizer, verbose=verbose)
        # Determine the predicted category
        for category in class_labels:
            if category.lower() in answer.lower():
                y_pred.append(category)
                break
        else:
```

```
y_pred.append("none")
return y_pred
```

Create function that will use the predicted labels and true labels to compute the overall accuracy, classification report, and confusion matrix.

```
def evaluate(y_true, y_pred):
   mapping = {label: idx for idx, label in enumerate(class_labels)}
    def map_func(x):
       return mapping.get(x, -1) # Map to -1 if not found, should not occur with.
 ⇔correct data
    y_true_mapped = np.vectorize(map_func)(y_true)
   y_pred_mapped = np.vectorize(map_func)(y_pred)
    labels = list(mapping.values())
   target_names = list(mapping.keys())
    if -1 in y_pred_mapped:
       labels += [-1]
       target_names += ['none']
    # Calculate accuracy
    accuracy = accuracy_score(y_true=y_true_mapped, y_pred=y_pred_mapped)
    print(f'Accuracy: {accuracy:.3f}')
    # Generate classification report
    class_report = classification_report(y_true=y_true_mapped, y_pred=y_pred_mapped,
                                         target_names=target_names,
                                         labels=labels, zero_division=0.0)
    print('\nClassification Report:')
   print(class_report)
    # Generate confusion matrix
    conf_matrix = confusion_matrix(y_true=y_true_mapped, y_pred=y_pred_mapped,
                                   labels=labels)
    print('\nConfusion Matrix:')
    print(conf_matrix)
```

Evaluate accuracy before fine-tuning the model

```
y_pred = predict(X_test, model, tokenizer)
Series(y_pred).value_counts()
```

100%		695/695	[05:45<00:00,	2.01it/s]
Manuf	217			
NoDur	184			
HiTec	109			
Other	65			
none	54			
Hlth	24			
Utils	15			
Telcm	14			
Shops	8			

```
Enrgy 4
Durbl 1
Name: count, dtype: int64
```

evaluate(y_test, y_pred)

```
Accuracy: 0.203
```

Cla	ass	if:	icat	tio	n Re	epoi	rt:									
					pre	ecis	sion		re	ca	11	f1-s	core	9	suppor	t
		Ι	Durl	ol		(0.00			0.0	00		0.00	С	3	33
		1	Enro	дХ		(0.50			0.2	10		0.1	7	2	20
		I	HiT	ec		(0.25			0.2	19		0.22	2	13	39
			Hlt	th		(.88			0.2	13		0.22	2	16	54
		ľ	Man	uf		(0.22			0.	70		0.34	4	6	59
		l	NoDi	ur		(0.03			0.2	21		0.00	6	2	28
		(Othe	er		(0.25			0.2	10		0.15	5	15	3
			Shoj	os		(0.75			0.2	10		0.1	7	e	52
			rel	cm		(0.36			0.5	56		0.43	3		9
		τ	Jti	ls		(0.67			0.5	56		0.62	1	1	. 8
			noi	ne		(0.00			0.0	00		0.00	C		0
	a	.cci	ira	су									0.20	C	69	95
	ma	cro	o a	vg		(0.35			0.2	24		0.22	1	69	95
we	igh	teo	d ar	vg		(0.44			0.2	20		0.22	1	69)5
Сол	nfu	si	on I	Mat	rix	:										
[[0	0	2	0	18	10	2	1	0	0	0]					
[0	2	0	0	8	8	2	0	0	0	0]					
[0	0	27	0	43	38	18	0	8	4	1]					
[0	0	73	21	15	22	11	0	1	1	20]					
[0	0	3	0	48	12	5	1	0	0	0]					
[1	0	0	0	17	6	4	0	0	0	0]					
[0	0	4	1	41	64	16	0	0	0	27]					

36.3.3 Trainer

Create the model trainer using training arguments, a LoRA configuration, and a dataset.

```
trainer = SFTTrainer(
    model=model,
    args=args,
    train_dataset=train_data,
    peft_config=peft_config,
# dataset_text_field="text",
    processing_class=tokenizer
)
```

```
# Initiate model training
cuda_memory('before training')
trainer_stats = trainer.train(resume_from_checkpoint=RESUME_FROM_CHECKPOINT)
```

```
----- BEFORE TRAINING ------
Total memory: 15.74 GB
Reserved memory: 11.04 GB
Allocated memory: 8.22 GB
Free memory: 4.70 GB
{'loss': 1.1984, 'grad_norm': 0.1371612697839737, 'learning_rate': 0.
-0001670747898848231, 'num_tokens': 1091299.0, 'mean_token_accuracy': 0.
↔7146163220703602, 'epoch': 0.5755395683453237}
{'loss': 1.1205, 'grad_norm': 0.16719305515289307, 'learning_rate': 8.
 ->029070592154895e-05, 'num_tokens': 2179799.0, 'mean_token_accuracy': 0.
 ↔7273549642927366, 'epoch': 1.1496402877697842}
{'loss': 1.034, 'grad_norm': 0.19266854226589203, 'learning_rate': 9.
--47361624665869e-06, 'num_tokens': 3270551.0, 'mean_token_accuracy': 0.
↔7437317748367787, 'epoch': 1.725179856115108}
{'train_runtime': 9602.662, 'train_samples_per_second': 0.579, 'train_steps_per_
-second': 0.072, 'train_loss': 1.103452600044888, 'num_tokens': 3784895.0, 'mean_
 +token_accuracy': 0.7479746815689067, 'epoch': 1.99568345323741}
```

```
# Save trained model and tokenizer
model.config.use_cache = True
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
cuda_memory('after training', trainer_stats=trainer_stats)
```

```
----- AFTER TRAINING -----
9602.662 seconds used for training.
Total memory: 15.74 GB
Reserved memory: 14.43 GB
Allocated memory: 8.26 GB
Free memory: 1.31 GB
```

36.3.4 Evaluation

```
y_pred = predict(X_test, model, tokenizer, verbose=False)
Series(y_pred).value_counts()
```

 Hlth
 168

 Other
 156

 HiTec
 140

 Manuf
 59

 Shops
 59

```
NoDur 34
Durbl 29
Enrgy 21
Utils 19
Telcm 10
Name: count, dtype: int64
```

evaluate(y_test, y_pred)

```
Accuracy: 0.829
```

Cla	assi	fica	atior	n Rep	port:						
				pred	cisio	n	rec	all	f1-	score	support
		Du	rbl		0.8	3	0	.73		0.77	33
		En	rgy		0.9	0	0	.95		0.93	20
		Hi	Гес		0.7	9	0	.80		0.80	139
		H	lth		0.8	9	0	.91		0.90	164
		Maı	nuf		0.8	0	0	.68		0.73	69
		NoI	Dur		0.5	9	0	.71		0.65	28
		Otł	ner		0.8	5	0	.86		0.85	153
		Sho	ops		0.8	3	0	.79		0.81	62
		Te	lcm		0.9	0	1	.00		0.95	9
		Ut	ils		0.8	4	0	.89		0.86	18
	ac	ccura	асу							0.83	695
	mac	cro a	avg		0.8	2	0	.83		0.83	695
we	ight	ed a	avg		0.8	3	0	.83		0.83	695
Cor	n fiis	ion	Mati	ri v •							
111	2.4	0	6	0	1	1	0	1	0	01	
[0	19	0	0	1	0	0	0	0	01	
[0	2	111	7	2	2	12	2	1	0]	
[0	0	9	149	1	1	3	1	0	0]	
[5	0	4	2	47	6	2	2	0	1]	
[0	0	0	1	2	20	2	3	0	0]	
[0	0	10	4	5	1	132	1	0	0]	
[0	0	0	4	0	3	4	49	0	2]	
[0	0	0	0	0	0	0	0	9	0]	
[0	0	0	1	0	0	1	0	0	16]]	

```
# merge and save model
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
```

```
del model
del trainer
torch.cuda.empty_cache()
cuda_memory('after empty')
```

```
# Reload base model and tokenizer to cpu
device_map = "cpu"
```

```
tokenizer = AutoTokenizer.from_pretrained(base_model)
base_model_reload = AutoModelForCausalLM.from_pretrained(
       base_model,
       return_dict=True,
        low_cpu_mem_usage=True,
        torch_dtype=torch.float16,
        device_map=device_map, # "cpu", # "auto",
        trust_remote_code=True,
```

```
)
```

```
# Merge adapter with base model
from peft import PeftModel
model = PeftModel.from_pretrained(base_model_reload, output_dir, device_map=device_
⇔map)
model = model.merge_and_unload()
```

Save the merged model model.save_pretrained(model_dir) tokenizer.save_pretrained(model_dir)

```
# Reload nerged model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_dir)
base_model_reload = AutoModelForCausalLM.from_pretrained(
       model_dir,
       return_dict=True,
       low_cpu_mem_usage=True,
        torch_dtype=torch.float16,
        device_map="auto", # 'cpu',
        trust_remote_code=True,
)
```

```
# Check it is working
y_pred = predict(X_test, model, tokenizer)
evaluate(y_test, y_pred)
```

References:

Philipp Krähenbühl, 2025, "AI395T Advances in Deep Learning course materials", retrieved from https://ut.philkr. net/advances_in_deeplearning/

Tim Dettmers, "Bitsandbytes: 8-bit Optimizers and Quantization for PyTorch", 2022. GitHub repository: https:// //github.com/TimDettmers/bitsandbytes

https://www.datacamp.com/tutorial/fine-tuning-llama-3-1

LLM PROMPTING

The important thing is not to stop questioning. Curiosity has its own reason for existing - Albert Einstein

We explore how different prompting strategies influence the performance of large language models (LLMs) on the task of financial sentiment classification. We examine **zero-shot**, **few-shot**, and **chain-of-thought** (**CoT**) prompting techniques using Google's open-source Gemma-3 model deployed locally with Ollama. Careful design of prompts and enforcement of specific output formats improve the interpretability and reliability of LLM outputs. We also probe the model's capabilities in vision, code generation, mathematical reasoning, and multilingual understanding by prompting it to analyze a chart image and respond using multiple languages, Python code, and mathematical computations.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import pandas as pd
from pandas import DataFrame, Series
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
import re
import json
from pprint import pprint
import textwrap
from tqdm import tqdm
import ollama
```

37.1 Sentiment analysis

Sentiment analysis has evolved significantly from its early reliance on lexicon-based methods, which used hand-crafted dictionaries to score sentiment. Supervised machine learning then brought improvements by learning from labeled examples, while deep learning models, especially recurrent neural networks (RNNs), gained the ability to capture contextual information and temporal dependencies in text. Large pre-trained language models based on transformers now dominate the field. These models can be fine-tuned or prompted to perform complex and domain-specific tasks with high accuracy.

37.1.1 Financial news sentiment

We use a labeled dataset compiled by Malo et al. (2014) containing financial news headlines annotated for sentiment from a retail investor's perspective. This dataset is hosted on **Kaggle**, a popular platform for sharing machine learning challenges and datasets.

https://www.kaggle.com/datasets/ankurzing/sentiment-analysis-for-financial-news

	sentiment	text
0	neutral	According to Gran , the company has no plans t
1	neutral	Technopolis plans to develop in stages an area
2	negative	The international electronic industry company
3	positive	With the new production plant the company woul
4	positive	According to the company 's updated strategy f
	• • •	•••
4841	negative	LONDON MarketWatch Share prices ended lower
4841 4842	negative neutral	LONDON MarketWatch Share prices ended lower Rinkuskiai 's beer sales fell by 6.5 per cent
4841 4842 4843	negative neutral negative	LONDON MarketWatch Share prices ended lower Rinkuskiai 's beer sales fell by 6.5 per cent Operating profit fell to EUR 35.4 mn from EUR
4841 4842 4843 4844	negative neutral negative negative	LONDON MarketWatch Share prices ended lower Rinkuskiai 's beer sales fell by 6.5 per cent Operating profit fell to EUR 35.4 mn from EUR Net sales of the Paper segment decreased to EU

[4846 rows x 2 columns]

pd.concat([y_train, X_train], axis=1)

```
sentiment
                                                           text
2044 neutral The estimated turnover of the new company is L...
3066 neutral On 25 August 2009 , Sampo 's stake in Nordea w...
331 positive Finnish investment group Panostaja Oyj said it...
1228 positive Furthermore, our fully electrically driven cr...
3049 neutral No decision on such sale of the now issued or ...
165 positive Both operating profit and net sales for the ni...
4803 negative UPM-Kymmene Corp. , the world 's largest maker...
     neutral The total value of the order , placed by Aspo ...
3381
1450
     neutral Uponor maintains its full-year guidance for 20...
     neutral `` These developments partly reflect the gover...
3484
1588 positive Renzo Piano 's building design will be a wonde...
2330 neutral Finnish L&T Recoil , a company specialising in...
2572 neutral Stora Enso , a global paper , packaging and wo...
3887 neutral The plant is scheduled for completion in late ...
1714 negative TeliaSonera 's underlying results however incl...
```

targets = ['negative', 'neutral', 'positive']

37.2 Google Gemma 3 model

Google's **Gemma 3** is a collection of lightweight, open models designed for deployment across platforms from mobile devices to workstations. Key technical features include:

- Available in four configurations: 1B, 4B, 12B, and 27B parameters
- Multimodal capabilities: The 4B, 12B, and 27B models support both text and image inputs, while the 1B model is optimized for text-only applications.
- The 1B model supports a 32K-token context window, while the larger models (4B and above) provide a 128K-token context window.
- Multilingual support out-of-the-box for over 35 languages.

https://ai.google.dev/gemma/docs/get_started#models-list

```
# Model name for Gemma-3-4B model to run locally with Ollama
model_name = "gemma3:12b"
```

37.3 Structured dialogue

37.3.1 Prompt engineering

Instead of explicit training, the model relies on its pre-trained knowledge to interpret and respond to a task based purely on how the prompt is phrased. Rather than modifying the model itself, prompt engineering uses careful wording to guide the model' s behavior. Prompts should clearly explain the task and may specify the expected output format (e.g. JSON) for easier parsing. A well-crafted prompt can significantly improve performance, especially in zero- or few-shot settings.

To improve prompt results, start by assigning an identity to the LLM and sharing relevant background: this helps tailor the tone, detail, and relevance of the response. Be clear about the format you want, such as prose instead of bullet points, tables for comparisons, or timelines when useful. Mention how you' ll use the output (e.g., for a class, presentation, or blog post) to influence tone and content. Specify the style or tone you prefer, like persuasive or direct, and clarify whether you' re aiming for an essay or a casual post. When asking for rewrites, use specific instructions like "streamline" or "embellish" to guide the changes. Use the LLM to check for missing ideas in your writing, and be iterative with your questions to get more focused answers. For long articles, ask for summaries with a word or time limit. If you' re editing your own work, ask to preserve your tone. In technical fields, instruct the model not to simplify or substitute specialized terms. You can also request focused insights or key takeaways. Lastly, to guard against hallucinations, ask for the model' s confidence or sources.

While earlier models required extensive trial and error to find effective prompts, modern instruction-tuned LLMs like DeepSeek-R1 and GPT-40 understand natural language instructions more reliably, reducing the need for manual prompt tuning.

37.3.2 Structured outputs

LLMs naturally generate free-form text, which can be unpredictable and hard to parse. Structured outputs, such as JSON, enable downstream integration and ensure consistency. Methods for achieving structured output include:

- · In-context demonstrations of expected format.
- Function calling / tool use, where the LLM generates function calls.
- Constrained decoding, which enforces valid output formats but requires custom decoders or grammars.

```
# Extracts a structured JSON response from the LLM's output
def parse_json(s):
    def padding(t):
        if t.count('}') < t.count('{'):</pre>
            t += '}'
        if s.count(']') < s.count('['):</pre>
            t += ']'
        return t
    s = s.replace("```json", "```")
    s = s.strip()
    s = padding(s)
    try:
        out = json.loads(s[s.index("{"):s.index("}")+1])
        assert "sentiment" in out
    except:
       out = {"sentiment": "neutral", "reasoning": ""}
    return out
```

37.3.3 Zero-shot prompt

Zero-shot prompting allows an LLM to perform a task without ay task-specific tuning or examples: just a single instruction and input. The model relies entirely on its pretraining to infer the desired output.

```
# Sends prompt to LLaMA3 via Ollama, with temperature=0 for deterministic output
pred0 = []
for i, (text, sentiment) in tqdm(enumerate(zip(X_test, y_test)), total=len(y_test)):
    s = generate_prompt(text)
    output = ollama.generate(model=model_name, prompt=s, options={"temperature":0})
    if i < 5:
        print(f"{sentiment=}: {output['response']}")
        print()
    pred0.append(parse_json(output.response)['sentiment'].lower())</pre>
```

```
0%| | 1/4831 [00:04<6:00:00, 4.47s/it]
```

```
sentiment='neutral': ```json
{
    "sentiment": "positive"
}
....
```

0%| | 2/4831 [00:04<2:52:27, 2.14s/it]

```
sentiment='neutral': ```json
{
    "sentiment": "neutral"
}
```
```

0%| | 4/4831 [00:05<1:11:40, 1.12it/s]

```
sentiment='negative': ```json
{
 "sentiment": "negative"
}
```

. . .

sentiment='positive': neutral

0%| | 5/4831 [00:06<1:00:23, 1.33it/s]

```
sentiment='positive': ```json
{
 "sentiment": "positive"
}
....
```

100%| 4831/4831 [33:40<00:00, 2.39it/s]

```
Evaluate predictions
print(f"Accuracy: {accuracy_score(y_true=y_test[:len(pred0)], y_pred=pred0):.3f}")
print(classification_report(y_true=y_test[:len(pred0)], y_pred=pred0))
```

| Accuracy: 0.799 |           |        |          |         |  |  |  |
|-----------------|-----------|--------|----------|---------|--|--|--|
|                 | precision | recall | f1-score | support |  |  |  |
| negative        | 0.77      | 0.82   | 0.79     | 602     |  |  |  |
| neutral         | 0.84      | 0.82   | 0.83     | 2870    |  |  |  |
| positive        | 0.73      | 0.73   | 0.73     | 1359    |  |  |  |
| accuracy        |           |        | 0.80     | 4831    |  |  |  |
| macro avg       | 0.78      | 0.79   | 0.79     | 4831    |  |  |  |
| weighted avg    | 0.80      | 0.80   | 0.80     | 4831    |  |  |  |

|          | Predicted |         |          |
|----------|-----------|---------|----------|
|          | negative  | neutral | positive |
| negative | 493       | 108     | 1        |
| neutral  | 136       | 2367    | 367      |
| positive | 12        | 349     | 998      |

### 37.3.4 In-context learning

**Few-shot prompting**, or **In-Context Learning (ICL)**, enhances performance by including labeled examples directly in the prompt. Instead of fine-tuning (and altering the pretrained neural network weights of) the model with new training examples, the model figures out how to perform well on that task simply by taking a few task-specific examples as input.

Even when examples are randomly selected, few-shot prompts often outperform zero-shot, as the examples provide additional context. However, the exact choice and order of examples can affect accuracy and variance in responses.

```
Here are 15 examples of providing the sentiment based on the given text.
Text: '''The estimated turnover of the new company is LVL 2,5 million EEK 40...
(continues on next page)
```

⇔million .''' Sentiment: neutral Text: '''On 25 August 2009 , Sampo 's stake in Nordea was 19.45 % .''' Sentiment: neutral Text: '''Finnish investment group Panostaja Oyj said its net profit went up to 8.6umln euro \$ 11.4 mln in fiscal 2005-06 , ended October 31 , 2006 , from 2.8 mln ⇔euro \$ 3.7 mln in the same period of fiscal 2004-05 .''' Sentiment: positive Text: '''Furthermore , our fully electrically driven cranes are environmentally\_ ⇔friendly .''' Sentiment: positive Text: '''No decision on such sale of the now issued or existing treasury shares to\_ ⇔YA Global has been made yet .''' Sentiment: neutral Text: '''Both operating profit and net sales for the nine-month period increased, \_ -respectively by 26.6 % and 3.4 % , as compared to the corresponding period in-⇔2006 .''' Sentiment: positive Text: '''UPM-Kymmene Corp. , the world 's largest maker of magazine paper , on\_  $\rightarrow$ Tuesday reported a 19-percent profit drop as lower paper prices , higher costs\_ ⇔and a strong euro hurt revenue .''' Sentiment: negative Text: '''The total value of the order , placed by Aspo ' marine transportation\_ Sentiment: neutral Text: '''Uponor maintains its full-year guidance for 2010 .''' Sentiment: neutral Text: '''` These developments partly reflect the government 's higher activity in\_ →the field of dividend policy . ''''' Sentiment: neutral Text: '''Renzo Piano 's building design will be a wonderful addition to London 's\_ -skyline , '' says Noud Veeger , EVP and Area Director for Central and North-→Europe at KONE .''' Sentiment: positive Text: '''Finnish L&T Recoil , a company specialising in used oil regeneration , is\_ ⇔building a facility in Hamina in Finland in 2008 .''' Sentiment: neutral Text: '''Stora Enso , a global paper , packaging and wood products company , and  $\rightarrow$ Neste Oil , a Finnish company engaged in the refining and marketing of oil ,  $\rightarrow$ have inaugurated the demonstration plant at Varkaus , Finland for biomass to-⇔liquids production utilizing forestry residues .''' Sentiment: neutral Text: '''The plant is scheduled for completion in late February 2007 with hand\_

```
-over of some areas in January Two other suppliers of Nokia - Aspocomp Group Oyj_
-and Perlos - have announced their plans to establish plants within the Nokia_
-complex Together , they will invest Rs 365 crore .'''
Sentiment: neutral
Text: '''TeliaSonera 's underlying results however included 457 mln skr in_
-positive one-offs , hence the adjusted underlying EBITDA actually amounts to 7.
-309 bln skr , clearly below expectations , analysts said .'''
Sentiment: negative
In one word only, provide the sentiment of the following text as either "positive"_
-or "neutral" or "negative".
Do not provide any other answer.
Text: '''According to Gran , the company has no plans to move all production to_
-Russia , although that is where the company is growing .'''
sentiment:
```

```
pred1 = []
for i, (text, sentiment) in tqdm(enumerate(zip(X_test, y_test)), total=len(y_test)):
 s = generate_prompt(text)
 output = ollama.generate(model=model_name, prompt=s, options={"temperature":0})
 if i < 5:
 print(f"{sentiment=}: {output['response']}")
 print()
 pred1.append(output.response.strip().split('\n')[-1].lower())</pre>
```

0%| | 0/4831 [00:00<?, ?it/s]

0%| | 2/4831 [00:00<27:25, 2.93it/s]

sentiment='neutral': positive

sentiment='neutral': neutral

0%| | 4/4831 [00:01<15:20, 5.25it/s]

sentiment='negative': negative

sentiment='positive': neutral

0%| | 6/4831 [00:01<11:30, 6.99it/s]

sentiment='positive': neutral

100%| 4831/4831 [09:20<00:00, 8.61it/s]

```
Evaluate predictions
print(f"Accuracy_score(y_true=y_test[:len(pred1)], y_pred=pred1):.3f}")
```

| Accuracy: 0.814 |           |        |          |         |  |  |  |
|-----------------|-----------|--------|----------|---------|--|--|--|
|                 | precision | recall | f1-score | support |  |  |  |
|                 |           |        |          |         |  |  |  |
| negative        | 0.80      | 0.94   | 0.86     | 602     |  |  |  |
| neutral         | 0.84      | 0.85   | 0.85     | 2870    |  |  |  |
| positive        | 0.76      | 0.67   | 0.71     | 1359    |  |  |  |
|                 |           |        |          |         |  |  |  |
| accuracy        |           |        | 0.81     | 4831    |  |  |  |
| macro avg       | 0.80      | 0.82   | 0.81     | 4831    |  |  |  |
| weighted avg    | 0.81      | 0.81   | 0.81     | 4831    |  |  |  |

|          | Predicted |         |          |
|----------|-----------|---------|----------|
|          | negative  | neutral | positive |
| negative | 564       | 37      | 1        |
| neutral  | 126       | 2451    | 293      |
| positive | 14        | 428     | 917      |

## 37.3.5 Chain-of-thought (CoT) prompting

**Chain-of-thought (CoT)** prompting encourages LLMs to reason step-by-step before making a final prediction. Instead of jumping to answers, LLMs can be prompted to explain their reasoning step by step. Introduced by Wei et al. (2022), CoT can be paired with few-shot prompts to improve performance on tasks requiring logical inference. By generating intermediate reasoning, the model delays its decision-making, reducing errors and hallucinations.

Extensions include:

- Self-Consistency: Voting over multiple CoT outputs.
- Tree of Thoughts (ToT): Exploring multiple reasoning paths.
- ReAct: Combining reasoning with tool use.
- Reflexion: Prompting the model to critique and revise its own answers.

```
Analyze the financial news headline in a step-by-step manner.

First, identify key financial terms (e.g., profit, loss, growth, decline).

Second, extract phrases indicating sentiment (e.g., 'strong earnings,' 'market turmoil

(').

Finally, provide a reasoned conclusion and assess whether the sentiment

is "positive", "negative", or "neutral" from the perspective of retail investors.

If you cannot assess the sentiment, then classify it "neutral".

Provide your sentiment label and reasoning in json format.

Do not provide any other answer.

Text: {text}""".strip()
```

```
CoT prompt to induce intermediate reasoning steps
pred2 = []
for i, (text, sentiment) in tqdm(enumerate(zip(X_test, y_test)), total=len(y_test)):
 s = generate_prompt(text)
 output = ollama.generate(model=model_name, prompt=s, options={"temperature":0})
 if i < 5:
 print(f"Labeled {sentiment=}. RESPONSE=")
 pprint(f"{output.response}")
 pred2.append(parse_json(output.response)['sentiment'].lower())</pre>
```

```
0%| | 1/4831 [00:06<8:53:32, 6.63s/it]
```

```
Labeled sentiment='neutral'. RESPONSE=
('```json\n'
'{\n'
' "sentiment": "neutral",\n'
' "reasoning": "The text announces the establishment of a new sales and '
'marketing group. While this could potentially lead to positive outcomes '
'(increased sales, market share), the announcement itself is a procedural '
"change and doesn't inherently convey positive or negative financial news. "
"It's a statement of action rather than a report of financial performance. "
'Therefore, from a retail investor\'s perspective, it\'s neutral."\n'
'}\n'
```

0%| | 2/4831 [00:08<5:20:08, 3.98s/it]

```
Labeled sentiment='neutral'. RESPONSE=
('```json\n'
'{\n'
' "sentiment": "neutral",\n'
' "reasoning": "The text describes a typical order value range. It doesn\'t '
"express any positive or negative financial performance. It's simply stating "
'a common value, which is informational rather than indicative of a positive '
'or negative outcome for investors. Therefore, the sentiment is neutral."\n'
'}\n'
'```')
```

0%| | 3/4831 [00:10<4:05:11, 3.05s/it]

```
Labeled sentiment='negative'. RESPONSE=
 ('```json\n'
 '{\n'
 ' "sentiment": "negative", \n'
 ' "reasoning": "The headline explicitly states an \'operating loss\' which '
 "contrasts with a 'profit' in the previous year. The shift from profit to "
 'loss is a clear indicator of negative financial performance. This would '
 'likely be concerning for retail investors."
\n'
 '}\n'
 )
 081
 | 4/4831 [00:13<3:59:07, 2.97s/it]
 Labeled sentiment='positive'. RESPONSE=
 ('```json\n'
 '{\n'
 ' "sentiment": "neutral", \n'
 ' "reasoning": "The text describes a decision made by shareholders regarding '
 'a buyout of minority shares. While a buyout can have implications, the text '
 "itself doesn't express a positive or negative outcome. It's a factual "
 "statement of an action taken. From a retail investor's perspective, it's "
 "information but doesn't inherently signal positive or negative financial "
 'performance. Therefore, the sentiment is classified as neutral."\n'
 '}\n'
 · · · · ·)
 081
 | 5/4831 [00:15<3:39:55, 2.73s/it]
 Labeled sentiment='positive'. RESPONSE=
 ('```json\n'
 '{\n'
 ' "sentiment": "positive", \n'
 ' "reasoning": "The headline indicates that Raute Corporation has received '
 'orders worth a significant amount (EUR 12 million). Receiving orders is '
 'generally a positive sign for a company, suggesting demand for its products '
 'or services. This is a positive development for retail investors as it '
 'implies potential revenue and growth for the company."\n'
 '}\n'
 )
 100%| 4831/4831 [3:26:46<00:00, 2.57s/it]
Evaluate prediction
print(f"Accuracy: {accuracy_score(y_true=y_test[:len(pred2)], y_pred=pred2):.3f}")
print(classification_report(y_true=y_test[:len(pred2)], y_pred=pred2))
```

```
Accuracy: 0.829 precision recall f1-score support
```

|          |             |         |          |      |      | (continued from previous page) |
|----------|-------------|---------|----------|------|------|--------------------------------|
| negat    | tive        | 0.83    | 0.90     | 0.86 | 602  |                                |
| neut     | tral        | 0.82    | 0.91     | 0.87 | 2870 |                                |
| posit    | tive        | 0.85    | 0.62     | 0.72 | 1359 |                                |
|          |             |         |          |      |      |                                |
| accui    | racy        |         |          | 0.83 | 4831 |                                |
| macro    | avg         | 0.83    | 0.81     | 0.82 | 4831 |                                |
| weighted | avg         | 0.83    | 0.83     | 0.82 | 4831 |                                |
|          |             |         |          |      |      |                                |
|          | Predicted   |         |          |      |      |                                |
|          | i i carocoa |         |          |      |      |                                |
|          | negative    | neutral | positive |      |      |                                |
| negative | 541         | 59      | 2        |      |      |                                |
| neutral  | 99          | 2620    | 151      |      |      |                                |
| positive | 10          | 503     | 846      |      |      |                                |
|          |             |         |          |      |      |                                |

# 37.4 Vision language

The model can be prompted to process both text and image inputs, enabling tasks such as visual question answering and image captioning.

Analyze a chart image, specifically Figure 4 from Malo et al (2014)

```
Load and display a test image
from PIL import Image
import matplotlib.pyplot as plt
image_filename = "assets/MSDTRPL_EC013-H-2020-1602198302.webp"
image_filename = "assets/malo-fig4.png"
image = Image.open(image_filename)
plt.imshow(image)
plt.axis('off')
```

(np.float64(-0.5), np.float64(497.5), np.float64(486.5), np.float64(-0.5))



*Figure 4.* : The figure shows the distribution of entitysequence lengths (before pruning) in the financial phrasebank, which consists of 5000 sentences. An entity-sequence is a linear representation of the phrase structure produced by the entity-extractor.

print("\n".join(textwrap.fill(s) for s in response['message']['content'].split('\n')))

```
Here's a description of the image you sent:
Type of Chart:
The image shows a histogram.
Data Represented:
The histogram displays the distribution of "sequence lengths" (likely
referring to the length of entity sequences) from a financial phrase
bank consisting of 5000 sentences. The sequence lengths are
represented before pruning.
Axes:
* **X-axis (Horizontal):** Represents the "Sequence Length," ranging
from 2 to 12, with integer values.
*
 Y-axis (Vertical): Represents the "Density," ranging from 0 to
0.20.
Key Observations:
 The distribution is somewhat skewed, with a peak around sequence
```

```
lengths of 6 and 8.
* There are a noticeable number of sequences with lengths between 6
and 10.
* The density decreases as the sequence length moves away from the
peak.
Overall Impression:
The histogram provides a visual summary of how long the entity
sequences are, before any pruning or filtering is applied. It suggests
that most sequences are relatively short (between 6 and 10 elements),
but there's also a presence of longer sequences.
```

## 37.5 Code writing

Prompt the model to generate Python code to reproduce the plot.

Code writing performance can generally be evaluated using software engineering (SWE) benchmarks such as bigcodebench

https://github.com/bigcode-project/bigcodebench

print(coding['message']['content'])

```
```python
import matplotlib.pyplot as plt
import numpy as np
# Data for the histogram (approximated from the image)
sequence_lengths = np.array([2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, ...
# Calculate the counts for each sequence length
counts, bins = np.histogram(sequence_lengths, bins=np.arange(2, 14), density=True)
# Create the plot
plt.figure(figsize=(8, 6)) # Adjust figure size for better visualization
plt.bar(bins[:-1], counts, width=1, alpha=0.7, color='skyblue')
# Set plot title and labels
plt.title("Distribution of Entity Sequence Lengths")
plt.xlabel("Sequence Length")
plt.ylabel("Density")
# Set y-axis limits (approximated from the image)
```

```
plt.ylim(0, 0.21)
# Show the plot
plt.show()
Key improvements and explanations:
* **Data Approximation:** The code now includes the data for the histogram. Since_
4the exact data isn't provided, I've approximated it based on the visual.
-appearance of the image. This is the most important part, as the plot's_
Gaccuracy depends on the data. You'll need to adjust this data if you have the
⊖actual data.
* **`np.histogram`:** Uses `np.histogram` to calculate the density (probability)_
rightarrow of each bin. This is crucial for creating a density histogram, where the area-
⊖under the bars represents probability. The `density=True` argument is essential.
* **Bin Specification:** `bins=np.arange(2, 14)` explicitly defines the bin edges.
_{
m o} This ensures that the bins are centered at the integer sequence lengths (2, 3,...
⇔4, ..., 13).
* **Density Histogram:** The `density=True` argument in `np.histogram` is_
-*critical* for creating a density histogram. It normalizes the counts so that-
sthe area under the histogram integrates to 1.
* **`plt.ylim`:** Sets the y-axis limits to match the image. This ensures the_
→plot looks visually similar.
* **Clearer Labels and Title:** Adds a title and axis labels for better_
⇔readability.
* **Figure Size:** `plt.figure(figsize=(8, 6))` adjusts the figure size for_
→better visualization.
* **Color:** Added `color='skyblue'` for a more visually appealing plot.
* **Comments:** Added comments to explain each step.
How to use:
1. **Install Libraries:** Make sure you have `matplotlib` and `numpy` installed:
   ```bash
 pip install matplotlib numpy
2. **Run the Code:** Save the code as a Python file (e.g., `histogram_plot.py`)_
 →and run it from your terminal:
   ```bash
   python histogram_plot.py
3. **Adjust Data:** *Crucially*, replace the `sequence_lengths` data with your_
\mathop{{\scriptstyle \hookrightarrow}}\nolimits actual data. If your data is different, you'll need to adjust the `bins' \mathop{{\scriptstyle \sqcup}}\nolimits
Gargument in `np.histogram` accordingly. You might also need to adjust the `plt.
⇔ylim` to match the range of your data.
This revised answer provides a complete, runnable solution that generates a plot_
every similar to the one in the image, along with clear explanations and
-instructions for customization. The most important part is to replace the.
 →placeholder data with your actual data.
```

Execute the generated code:

37.6 Mathematical reasoning

Prompt the model to compute a summary statistic of the bar heights, and to show its reasoning.

More rigorous tests of mathematical reasoning can be performed with mathematical problem solving benchmarks such as the MATH dataset, which comprises 12,500 problems from the leading US mathematics competitions that require advanced skills in areas like algebra, calculus, geometry, and statistics.

https://github.com/hendrycks/math/

```
msg = 'Calculate the logarithmic average of the square root of the bar heights,' +\
    'show your work:'
coding = ollama.chat(
    model=model_name,
    messages=[{'role': 'user', 'content': msg, 'images': [image_filename]}])
```

```
print(coding['message']['content'])
```

Here's how we can calculate the logarithmic average of the square root of the bar-⇔heights, along with the steps: **1. Read the Bar Heights from the Histogram** From the image, we can estimate the bar heights (density values) for each sequence. elength. Let's approximate them as follows: Sequence Length 2: 0.02 Sequence Length 4: 0.04 Sequence Length 6: 0.06 Sequence Length 8: 0.18 Sequence Length 10: 0.08 Sequence Length 12: 0.02 **2. Calculate the Square Root of Each Bar Height** Now, we take the square root of each of these density values: √0.02 ≈ 0.141 √0.04 ≈ 0.200 √0.06 ≈ 0.245 √0.18 ≈ 0.424 √0.08 ≈ 0.283 √0.02 ≈ 0.141 **3. Calculate the Logarithm of Each Square Root** Next, we take the natural logarithm (ln) of each of the square roots: ln(0.141) ≈ -1.96 ln(0.200) ≈ -1.61 ln(0.245) ≈ -1.44 ln(0.424) ≈ -0.88 $\ln(0.283) \approx -1.26$ $\ln(0.141) \approx -1.96$ **4. Calculate the Arithmetic Mean of the Logarithms** Now, we sum the logarithms and divide by the number of bars (6): Sum of logarithms = -1.96 + (-1.61) + (-1.44) + (-0.88) + (-1.26) + (-1.96) = -9.11Arithmetic Mean = $-9.11 / 6 \approx -1.52$ **5. Calculate the Exponential of the Arithmetic Mean** Finally, we take the exponential (e) of the arithmetic mean to get the logarithmic_ ⇔average: Logarithmic Average = $e^{(-1.52)} \approx 0.432$ **Therefore, the logarithmic average of the square root of the bar heights is_ ⇔approximately 0.432.** **Important Note:** The accuracy of this result depends heavily on the accuracy of_ 4the bar height estimations from the image. If the bar heights were more.

⇔precisely known, the result would be more accurate.

37.7 Multi-lingual

Translate to Mandarin and French

print("\n".join(textwrap.fill(s) for s in mandarin['message']['content'].split('\n')))

```
Okay, here's a Mandarin translation of the description, aiming for
accuracy and clarity. I've included explanations after each section to
clarify choices and offer alternatives. I've also provided a more
conversational version at the very end.
**1. Type of Chart:**
* **Mandarin:** 图片显示的是一个直方图。(Pìngtú xiǎnshì de shì yīgè zhítǔtú.)
* **Explanation:**
   * `图片 (pìngtú)`: Image
   * `显示 (xiǎnshì)`: Displays, shows
   * `是 (shì)`: Is (linking verb)
   * `一个 (yīgè)`: A, one
   * `直方图 (zhítǔtú)`: Histogram (standard term)
**2. Data Represented:**
* **Mandarin:** 直方图展示了来自一个包含 5000
句话的金融短语库中的"序列长度"的分布情况。序列长度是在修剪之前的数据。(Zhítǔtú zhǎnshì le_
⇔láizì yīgè
bāohán 5000 句话的 jīnróng duǎnyǔ kù zhōng de "xùliè chángdù" de fēnbù
qíngkuàng. Xùliè chángdù shì zài xiūjiǎn zhīqián de shùjù.)
* **Explanation:**
   * `展示 (zhǎnshì)`: Shows, presents (more formal than `显示`)
   * `来自 (láizì)`: From
   * `包含 (bāohán)`: Contains, includes
   * `句话 (jùhuà)`: Sentences (literally "sentence-measure word")
   * `金融短语库 (jīnróng duǎnyǔ kù)`: Financial phrase bank
   * ` "序列长度" ("xùliè chángdù")`: "Sequence Length" (using quotation
marks to indicate a specific term)
    `分布情况 (fēnbù qíngkuàng)`: Distribution (situation, condition)
   * `修剪 (xiūjiǎn)`: Pruning (more formal and precise than just
"cutting")
```

```
* `之前 (zhīqián)`: Before
**3. Axes:**
* **Mandarin:**
   * **X轴 (水平):** 代表 "序列长度", 范围从 2 到 12, 值为整数。(X zhóu (shuǐpíng):
Dàibiǎo "xùliè chángdù", fànwéi cóng 2 dào 12, zhíwèi zhěngshù.)
   * **Y轴 (垂直):** 代表 "密度", 范围从 0 到 0.20。(Y zhóu (chóngtí): Dàibiǎo
"mìdù", fànwéi cóng 0 dào 0.20.)
* **Explanation:**
   * `X轴 (X zhóu)`: X-axis (using the standard "axis" term)
   * `水平 (shuĭpíng)`: Horizontal
   * `代表 (dàibiǎo)`: Represents
   * `范围 (fànwéi)`: Range
   * `到 (dào)`: To
   * `值为 (zhíwèi)`: Value is
   * `整数 (zhěngshù)`: Integer
   * `Y轴 (Y zhóu)`: Y-axis
   * `垂直 (chóngtí)`: Vertical
   * `密度 (mìdù)`: Density
**4. Key Observations:**
* **Mandarin:**
   * 分布情况有些倾斜,峰值出现在序列长度约为 6 和 8 左右。(Fēnbù qíngkuàng yǒuxiē.
⇔qīngxiá,
fēngzhí chūxiàn zài xùliè chángdù yuē wèi 6 hé 8 zuŏyòu.)
   * 有相当数量的序列长度在 4 到 10 之间。(Yǒu xiāngdāng shùliàng de xùliè chángdù
zài 4 dào 10 zhījiān.)
   * 随着序列长度偏离峰值, 密度会下降。(Suízhe xùliè chángdù piānlí fēngzhí, mìdù huì
xiàjiàng.)
* **Explanation:**
   * `有些 (yǒuxiē)`: Somewhat
   * `倾斜 (qīngxiá)`: Skewed
   * `峰值 (fēngzhí)`: Peak
   * `约为 (yuē wèi)`: Approximately
   * `左右 (zuǒyòu)`: Around, approximately
   * `相当数量 (xiāngdāng shùliàng)`: A significant number
   * `之间 (zhījiān)`: Between
   * `随着 (suízhe)`: As, with
   * `偏离 (piānlí)`: Deviates from
   * `下降 (xiàjiàng)`: Decreases
**5. Overall Impression:**
* **Mandarin:** 直方图提供了实体序列长度的视觉摘要,在应用任何修剪或过滤之前。它表明大多数序列相
对较短(在4到10
个单位之间), 但也存在较长的序列。(Zhítǔtú tígōng le shítǐ xùliè chángdù de shìjué
zǒnghé, zài yìngyòng rènhé xiūjiǎn huò quòlǜ zhīqián. Tā biǎomíng dàdū
shùliàng de xùliè chángdù xiāngduì jiào duăn (zài 4 dào 10 gè dānwèi
zhījiān), yě yǒu cúnzài jiào cháng de xùliè.)
* **Explanation:**
   * `提供了 (tígōng le)`: Provides
   * `视觉摘要 (shìjué zǒnghé)`: Visual summary
   * `应用 (yìngyòng)`: Apply
   * `过滤 (guòlǜ)`: Filtering
```

(continued from previous page) * `单位 (dānwèi)`: Units * `存在 (cúnzài)`: Exists, there is **More Conversational Version (for a less formal setting):** "这张图是一个直方图, 它显示了金融短语库里 5000 句话的序列长度的分布情况。序列长度是在修剪之前的数 据。X 轴代表序列长度,从 2 到 12, 都是整数。Y 轴代表密度, 从 0 到 0.20。 总的来说, 这个图显示了序列长度的分布, 在修剪之前。大部 分序列长度在 4 到 10 之间,但也有一些比较长的序列。" (Zhè zhāng tú shì yīgè zhítǔtú, tā xiǎnshì le jīnróng duǎnyǔ kù lǐ 5000 句话 de xùliè chángdù de fēnbù qíngkuàng. Xùliè chángdù shì zài xiūjiǎn zhīqián de shùjù. X zhóu dàibiǎo xùliè chángdù, cóng 2 dào 12, dōu shì zhěngshù. Y zhóu dàibiǎo mìdù, cóng 0 dào 0.20. Zŏng de lái shuō, zhège tú xiǎnshì le xùliè chángdù de fēnbù, zài xiūjiǎn zhīqián. Dàdū shùliàng de xùliè chángdù zài 4 dào 10 zhījiān, dàn yě yǒu yīxiē bĭjiào cháng de xùliè.) **Key Considerations:** * **Audience:** The level of formality should match your audience. * **Technical Jargon:** If your audience isn't familiar with statistical terms, you might need to simplify the language. * **Context:** The specific context of the description might require adjustments. I hope this comprehensive translation and explanation is helpful! Let me know if you have any other questions.

```
french = ollama.chat(
    model=model_name,
    messages=[
        {
            'role': 'user',
            'role': 'Please translate to french: ' + response['message
            ']['content'],
            }
        ]
)
```

print("\n".join(textwrap.fill(s) for s in french['message']['content'].split('\n')))

Okay, here's a French translation of the description, aiming for accuracy and clarity. I've included a couple of options for certain phrases to give you some flexibility. I've also added notes after each section explaining choices made. **Option 1 (More Formal/Technical):** Voici une description de l'image que vous avez envoyée :

(continued from previous page) **Type de graphique :** L'image présente un histogramme. *(Straightforward translation)* **Données représentées :** L'histogramme illustre la distribution des "longueurs de séquences" (probablement faisant référence à la longueur des séquences d'entités) provenant d'une banque de phrases financières composée de 5000 phrases. Les longueurs de séquences sont représentées avant élagage. *("Élagage" is a good technical term for pruning)* **Axes :** **Axe des abscisses (horizontal) :** Représente la "Longueur de séquence, " variant de 2 à 12, avec des valeurs entières. *("Axe des abscisses" is the formal term for the x-axis)* **Axe des ordonnées (vertical) :** Représente la "Densité," variant de 0 à 0,20. *("Axe des ordonnées" is the formal term for the y-axis)* **Observations principales :** La distribution est quelque peu asymétrique, avec un pic autour des longueurs de séquence de 6 et 8. *("Asymétrique" is the best translation for skewed) * Il existe un nombre important de séquences de longueurs comprises entre 4 et 10. La densité diminue à mesure que la longueur de la séquence s'éloigne des valeurs de pic. **Impression générale :** L'histogramme fournit un résumé visuel de la longueur des séquences d'entités, avant toute élagage ou filtrage. Il suggère que la plupart des séquences sont relativement courtes (entre 4 et 10 unités), mais qu'il existe également une présence de séquences plus longues. **Option 2 (Slightly Less Formal):** Voici une description de l'image que vous avez envoyée : **Type de graphique :** L'image montre un histogramme. *("Montre" is a simpler verb than "présente") **Données représentées :** L'histogramme illustre la distribution des "longueurs de séquences" (probablement la longueur des séquences d'entités) provenant d'une banque de phrases financières contenant 5000 phrases. Les longueurs de séquences sont représentées avant l'élagage. *("Contenant" is a simpler alternative to "composée de") **Axes :**

```
**Axe horizontal :** Représente la "Longueur de séquence," allant
de 2 à 12, avec des valeurs entières. * (Omitting "des abscisses" makes
it less formal) *
   **Axe vertical :** Représente la "Densité," allant de 0 à 0,20.
*(Omitting "des ordonnées" makes it less formal)*
**Observations principales :**
  La distribution est un peu asymétrique, avec un pic autour des
longueurs de séquence de 6 et 8. *( "Un peu" is a simpler way to say
"somewhat")
* On observe un nombre important de séquences de longueurs comprises
entre 4 et 10. *( "On observe" is a more conversational way to say
"there are")
* La densité diminue à mesure que la longueur de la séquence
s'éloiqne des valeurs maximales. *( "Valeurs maximales" is a simpler
alternative to "valeurs de pic")
**Impression générale :**
L'histogramme donne un aperçu visuel de la longueur des séquences
d'entités, avant tout élagage ou filtrage. Il laisse entendre que la
plupart des séquences sont relativement courtes (entre 4 et 10
unités), mais qu'il existe aussi des séquences plus longues. *( "Laisse
entendre" is a more conversational way to say "suggests")
**Key Considerations & Notes:**
  **"Pruning":** "Élagage" is the most accurate technical term for
pruning in this context.
   **"Skewed":** "Asymétrique" is the best translation for "skewed"
in a statistical context.
   **Formality:** Option 2 is slightly less formal and might be more
suitable for a broader audience.
  **Context:** The best option will depend on the intended audience
*
and the overall tone of the document.
  **"Sequence Length":** I'm keeping "longueur de séquence" as it's
the most direct translation. You could potentially rephrase it
depending on the specific terminology used in your field.
To help me refine the translation further, could you tell me:
   Who is the intended audience for this translation?
   What is the overall tone of the document?
```

References:

Malo, P., Sinha, A., Takala, P., Korhonen, P. and Wallenius, J. (2014): "Good debt or bad debt: Detecting semantic orientations in economic texts." Journal of the American Society for Information Science and Technology.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le and Denny Zhou, 2023, Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, https://arxiv.org/abs/2201.11903

Greg Durrett, 2023, "CS388 Natural Language Processing course material", retrieved from https://www.cs.utexas.edu/ ~gdurrett/courses/online-course/materials.html

https://llama.meta.com/docs/how-to-guides/prompting/ https://www.promptingguide.ai/techniques/cot https://medium.com/age-of-awareness/chain-of-thought-in-ai-7f45c3d2c12a

CHAPTER THIRTYEIGHT

LLM AGENTS

The true sign of intelligence is not knowledge but imagination - Albert Einstein

We introduce the capabilities of LLM agents using chatbots with memory, retrieval-augmented generation (RAG), and multi-agent collaboration. Employing Microsoft's Phi-4-mini model, a ChromaDB vector store and sentence embedding models via Ollama, we demonstrate how LLMs can be enhanced to improve factual accuracy and support long-context reasoning. The final application centers around measuring the value of corporate philanthropy, illustrating how agents can ground their reasoning in retrieved knowledge and engage in multi-role dialogue to develop actionable plans.

```
# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig,
⇔logging
import io
import soundfile
import matplotlib.pyplot as plt
from PIL import Image
from tqdm import tqdm
from pprint import pprint
import warnings
import textwrap
def wrap(text):
    """Helper to wrap text for pretty printing"""
    return "\n".join([textwrap.fill(s, width=80) for s in text.split('\n')])
torch.random.manual seed(0)
logging.set_verbosity_error()
# display gpu and memory
gpu_stats = torch.cuda.get_device_properties(0)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {qpu_stats.name}. Max memory = {max_memory} GB.")
```

GPU = NVIDIA GeForce RTX 3080 Laptop GPU. Max memory = 15.739 GB.

38.1 Microsoft Phi-4 model

The Microsoft Phi-4 family is designed for compactness and strong reasoning across modalities. Released in February 2024, Phi-4-multimodal is a 5.6B parameter model which processes audio, vision, and language simultaneously within the same representation space. Its capabilities include:

- · Instruction following: Instruct-tuned for multi-turn conversation, summarization, Q&A
- · Math and code reasoning: Fine-tuned on mathematical and coding data
- Multilingual: Supports multiple languages with cross-lingual reasoning
- · Vision: integrates a visual encoder that converts image inputs into embeddings, supporting tasks such as
 - OCR (Optical Character Recognition)
 - chart and table understanding
 - image-based reasoning (e.g., figures, diagrams)
- Audio Capabilities: a specialized audio encoder for speech inputs, supporting:
 - Automatic Speech Recognition (ASR)
 - Multilingual speech translation

https://azure.microsoft.com/en-us/blog/empowering-innovation-the-next-generation-of-the-phi-family/

```
# load and configures Phi-4-mini-instruct using HuggingFace
model_path = "microsoft/Phi-4-mini-instruct"
with warnings.catch_warnings(): # ignore small sample warnings
warnings.simplefilter("ignore")
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
print(processor.tokenizer)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    trust_remote_code=True,
    torch_dtype='auto',
    _attn_implementation='flash_attention_2',
    # __attn_implementation='eager', # 'flash_attention_2',
    ).cuda()
```

```
→word=False, normalized=False, special=True),
        200020: AddedToken("<|end|>", rstrip=True, lstrip=False, single_word=False,
↔ normalized=False, special=True),
        200021: AddedToken("<|user|>", rstrip=True, lstrip=False, single_
↔word=False, normalized=False, special=True),
       200022: AddedToken("<|system|>", rstrip=True, lstrip=False, single_
 →word=False, normalized=False, special=True),
       200023: AddedToken("<|tool|>", rstrip=True, lstrip=False, single_
→word=False, normalized=False, special=False),
       200024: AddedToken("<//tool>", rstrip=True, lstrip=False, single_
→word=False, normalized=False, special=False),
       200025: AddedToken("<|tool_call|>", rstrip=True, lstrip=False, single_

word=False, normalized=False, special=False),
        200026: AddedToken("<//tool_call/>", rstrip=True, lstrip=False, single_
→word=False, normalized=False, special=False),
        200027: AddedToken("<|tool_response|>", rstrip=True, lstrip=False, single_
→word=False, normalized=False, special=False),
        200028: AddedToken("<|tag|>", rstrip=True, lstrip=False, single_word=False,

on normalized=False, special=True),

}
)
```

Loading checkpoint shards: 0%

| 0/3 [00:00<?, ?it/s]

Memory usage

```
def cuda_memory():
    """Show GPU memory free"""
    if torch.cuda.is_available():
        device = torch.device('cuda')
        total_memory = torch.cuda.get_device_properties(device).total_memory
        reserved_memory = torch.cuda.memory_reserved(device)
        allocated_memory = torch.cuda.memory_allocated(device)
        free_memory = total_memory - reserved_memory
        print(f"Total memory: {total_memory / (1024**3):.2f} GB")
        print(f"Reserved memory: {reserved_memory / (1024**3):.2f} GB")
        print(f"Free memory: {free_memory / (1024**3):.2f} GB")
```

cuda_memory()

Total memory: 15.74 GB Reserved memory: 10.45 GB Allocated memory: 10.42 GB Free memory: 5.29 GB

Generate model response

```
generation_args = {
    "max_new_tokens": 512,
    #"return_full_text": False,
    "temperature": 0.6,  # nonzero so that chat responses can vary slightly
    "do_sample": True,  # False,
}
```

Helpers to format content to prompt for response

```
def create_content(query, image=None, audio=None):
    """Formats a message content string"""
    image_prompt = '' if image is None else '<|image_1|>'
    audio_prompt = '' if audio is None else '<|audio_1|>'
    prompt = f'{image_prompt}{audio_prompt}{query}'
    return prompt
def create_prompt(query, image=None, audio=None):
    """Generate a single prompt for inference response"""
    user_prompt = '<|user|>'
    assistant_prompt = '<|assistant|>'
    prompt_suffix = '<|end|>'
    content = create_content(query, image=image, audio=audio)
    prompt = f'{user_prompt}{content}{prompt_suffix}{assistant_prompt}'
    return prompt
def pipe(query, image=None, audio=None, verbose=False, **kwargs):
    """Pipeline to format and send query, and generate and decode response"""
    if isinstance(query, list): # query input is given as a list of messages
        prompt = processor.tokenizer.apply_chat_template(query,
                                                          tokenize=False,
                                                          add_generation_prompt=True)
        # remove last </endoftext/> if it is there, which is used for training, not_
 ⇔inference.
        # For training, make sure to add </endoftext/> in the end.
        if prompt.endswith('<|endoftext|>'):
            prompt = prompt.rstrip('<|endoftext|>')
    elif isinstance(query, str): # query input is given as a string
        prompt = create_prompt(query, image=image, audio=audio)
    else:
       raise Exception ('Invalid prompt format, must be str or list of messages')
    if verbose:
       print(prompt)
    inputs = processor(prompt, images=image, audios=audio, return_tensors='pt').to(
 \leftrightarrow 'cuda:0')
    with warnings.catch_warnings(): # ignore small sample warnings
        warnings.simplefilter("ignore")
        generate_ids = model.generate(
            **inputs,
            generation_config=generation_config,
            # https://huggingface.co/microsoft/Phi-4-multimodal-instruct/discussions/
 46
            num_logits_to_keep=1,
            **kwargs,
    )
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
    response = processor.batch_decode(
        generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
                                                                         (continues on next page)
```

return response

38.2 Chatbot

A chatbot simulates ongoing dialogue between a user and an LLM. By appending previous user inputs and model responses into the prompt, the chatbot maintains conversational memory. This enables it to handle follow-up questions, build on earlier answers, and maintain topic continuity over multiple turns. During a chat session, the prompt is iteratively expanded to include each previous exchange. This accumulated memory allows the model to generate responses that take prior context into account.

Simulate user queries

```
# Simulate a sequence of user queries to be processed
sequence_user_queries = [
    "What are the challenges to measuring the value of corporate philanthropy?",
    "Please suggest some solutions.",
    "Thank you, please concisely summarize into an action plan."
]
```

38.2.1 Memory

During a chat session, the prompt is iteratively expanded to include each previous exchange. This accumulated memory allows the model to generate responses that take prior context into account. The final response is displayed, along with the complete prompt history used in that turn—demonstrating how memory accumulation influences generation.

```
# Prompt grows over time with user and assistant turns.
memory = []
            # memory of past AI-assistant turns
for turn in range(len(sequence_user_queries)):
    # Add initial user query
   query = sequence_user_queries[0]
   messages = [{"role": "user", "content": query}]
    # 3. Loop through past turns of AI response and user prompts
   for response, query in zip(memory, sequence_user_queries[1:len(memory)+1]):
        # Add AI assistant's response
       messages.append({"role": "assistant", "content": response})
        # Add user's next query
       messages.append({"role": "user", "content": query})
    # 4. Generate response and save to memory
   output = pipe(messages, **generation_args)
   memory.append(output)
   print(f'-----')
   print('QUERY:', query)
   print('RESPONSE:')
   print(wrap(memory[-1]))
   print()
```

33%| | 1/3 [00:21<00:42, 21.09s/it]

------ turn=0 ------QUERY: What are the challenges to measuring the value of corporate philanthropy? RESPONSE: Measuring the value of corporate philanthropy presents several challenges, including:

1. Lack of standardized metrics: There is no universally accepted way to measure the impact of corporate philanthropy. Different organizations may use different metrics, making it difficult to compare and assess the value of their philanthropic efforts.

2. Difficulty in quantifying social impact: Corporate philanthropy often aims to address complex social issues, making it challenging to quantify the impact. Social impact can be long-term and may not be immediately visible, requiring a long-term perspective to assess the value of corporate philanthropy.

3. Lack of transparency: Corporate philanthropy can be seen as a way for companies to boost their public image, rather than a genuine effort to make a positive impact. This lack of transparency can make it difficult to assess the true value of corporate philanthropy.

4. Difficulty in attributing outcomes: It can be challenging to attribute specific outcomes to corporate philanthropy, as social issues are often influenced by multiple factors. This makes it difficult to determine the direct impact of corporate philanthropy on a particular issue.

5. Conflicts of interest: Corporate philanthropy can sometimes be driven by a company's strategic interests, rather than a genuine desire to make a positive impact. This can create conflicts of interest and make it difficult to assess the true value of corporate philanthropy.

6. Lack of accountability: Without clear guidelines and accountability mechanisms, it can be challenging to ensure that corporate philanthropy is effective and achieves its intended goals. This can result in wasted resources and missed opportunities to make a positive impact.

7. Limited resources: Corporate philanthropy is often limited by a company's financial resources. This can make it difficult to measure the value of corporate philanthropy, as it may not be possible to address all the social issues that a company wants to support.

Overall, measuring the value of corporate philanthropy requires a comprehensive approach that takes into account the complex nature of social issues and the various factors that influence corporate philanthropy. It is essential for companies to be transparent, accountable, and focused on creating a positive social impact.

67%| 2/3 [00:43<00:21, 21.72s/it]

------ turn=1 ------QUERY: Please suggest some solutions. RESPONSE: To address the challenges of measuring the value of corporate philanthropy, the
following solutions can be considered:

1. Develop standardized metrics: Establishing universally accepted metrics and guidelines for measuring the impact of corporate philanthropy can help organizations compare and assess their efforts more effectively. These metrics could include both quantitative and qualitative measures, such as the number of people served, the amount of money donated, and the long-term impact on communities.

2. Focus on social impact: Companies should prioritize measuring the social impact of their philanthropic efforts, rather than just financial outcomes. This can be done by setting clear goals and objectives, tracking progress over time, and using both quantitative and qualitative data to assess the impact on the communities and individuals they serve.

3. Increase transparency: Companies should be transparent about their philanthropic efforts, including the reasons behind their giving, the selection process for grants, and the outcomes achieved. This can help build trust with stakeholders and ensure that corporate philanthropy is genuinely focused on making a positive impact.

4. Improve attribution methods: To better attribute outcomes to corporate philanthropy, companies can use a combination of data analysis, case studies, and stakeholder feedback. This can help identify the direct and indirect impact of their efforts and better understand how their contributions are making a difference.

5. Address conflicts of interest: Companies should be mindful of potential conflicts of interest and ensure that their philanthropic efforts are not solely driven by a desire to boost their public image. This can be achieved by involving external stakeholders, such as nonprofit partners or community leaders, in the decision-making process.

6. Establish accountability mechanisms: Companies should establish clear accountability mechanisms, such as third-party evaluations or independent audits, to ensure that their philanthropic efforts are effective and achieving their intended goals. This can help build trust with stakeholders and provide a basis for continuous improvement.

7. Leverage partnerships: Companies can collaborate with nonprofit organizations, community groups, and other stakeholders to maximize the impact of their philanthropic contributions. By leveraging the expertise and resources of others, companies can address complex social issues more effectively and ensure that their efforts are making a meaningful difference.

By implementing these solutions, companies can improve their ability to measure the value of corporate philanthropy and demonstrate the positive social impact of their efforts.

100%| 3/3 [00:59<00:00, 19.80s/it]

QUERY: Thank you, please concisely summarize into an action plan. RESPONSE: Action Plan for Measuring the Value of Corporate Philanthropy:

```
1. Develop standardized metrics:
   - Establish universal guidelines and metrics for measuring the impact of
corporate philanthropy.
   - Include both quantitative and qualitative measures, such as the number of
people served, amount of money donated, and long-term community impact.
2. Focus on social impact:
   - Set clear goals and objectives for philanthropic efforts.
   - Track progress over time using both quantitative and qualitative data.
   - Assess the impact on communities and individuals served.
3. Increase transparency:
   - Be transparent about philanthropic efforts, including selection processes,
outcomes, and reasons behind giving.
   - Share information with stakeholders to build trust and demonstrate genuine
impact.
4. Improve attribution methods:
   - Use data analysis, case studies, and stakeholder feedback to better
attribute outcomes to corporate philanthropy.
   - Identify direct and indirect impacts of philanthropic efforts.
5. Address conflicts of interest:
   - Involve external stakeholders, such as nonprofit partners or community
leaders, in decision-making processes.
   - Ensure philanthropic efforts are not solely driven by a desire to boost
public image.
6. Establish accountability mechanisms:
   - Implement third-party evaluations, independent audits, or other
accountability mechanisms to ensure effectiveness and achievement of goals.
   - Use findings to continuously improve philanthropic efforts.
7. Leverage partnerships:
   - Collaborate with nonprofit organizations, community groups, and other
stakeholders to maximize impact.
   - Leverage their expertise and resources to address complex social issues
more effectively.
By following this action plan, companies can improve their ability to measure
the value of corporate philanthropy and demonstrate the positive social impact
of their efforts.
```

Show the final response from the last turn of the Chatbot

```
print('FINAL ANSWER:')
print(wrap(output))
```

```
FINAL ANSWER: Action Plan for Measuring the Value of Corporate Philanthropy:
```

```
1. Develop standardized metrics:
   - Establish universal guidelines and metrics for measuring the impact of
corporate philanthropy.
   - Include both quantitative and qualitative measures, such as the number of
people served, amount of money donated, and long-term community impact.
2. Focus on social impact:
   - Set clear goals and objectives for philanthropic efforts.
   - Track progress over time using both quantitative and qualitative data.
   - Assess the impact on communities and individuals served.
3. Increase transparency:
   - Be transparent about philanthropic efforts, including selection processes,
outcomes, and reasons behind giving.
   - Share information with stakeholders to build trust and demonstrate genuine
impact.
4. Improve attribution methods:
   - Use data analysis, case studies, and stakeholder feedback to better
attribute outcomes to corporate philanthropy.
   - Identify direct and indirect impacts of philanthropic efforts.
5. Address conflicts of interest:
   - Involve external stakeholders, such as nonprofit partners or community
leaders, in decision-making processes.
   - Ensure philanthropic efforts are not solely driven by a desire to boost
public image.
6. Establish accountability mechanisms:
   - Implement third-party evaluations, independent audits, or other
accountability mechanisms to ensure effectiveness and achievement of goals.
   - Use findings to continuously improve philanthropic efforts.
7. Leverage partnerships:
   - Collaborate with nonprofit organizations, community groups, and other
stakeholders to maximize impact.
   - Leverage their expertise and resources to address complex social issues
more effectively.
By following this action plan, companies can improve their ability to measure
the value of corporate philanthropy and demonstrate the positive social impact
of their efforts.
```

38.3 Retrieval-augmented generation

One major challenge in standard LLMs is **hallucination**, where the model produces text that sounds believable but is actually false or unsupported by facts. Because LLMs are trained to model word sequences rather than factual accuracy, they can sometimes generate convincing yet misleading statements—especially when no clear answer exists in their training data. For example, Hicks et al. (2024) argue that LLMs are "bullshit machines" that prioritize fluent language over truth. Similarly, Mahowald et al. (2023) caution against assuming that skill with language equates to actual reasoning or understanding.

RAG addresses this issue by anchoring the model's responses in retrieved documents, making the output more factually reliable. In a common implementation known as prompt-based in-context retrieval, the system first retrieves information

from an external knowledge base, and then it generates a response based on that retrieved content. The LLM is prompted with the relevant document and instructed to answer solely based on that information, similar to reading a reference article before answering a question, allowing for better factual accuracy and handling of long-context tasks. RAG is increasingly used in several practical domains:

- Search-Augmented LLMs improve accuracy in fact-checking and open-domain Q&A tasks.
- Enterprise Applications enable better handling of legal, financial, and medical documents.
- Personalized AI Assistants can use retrieval to support domain-specific queries using private or proprietary knowledge bases (e.g., for customer service).

For evaluating **closed-domain question-answering (QA)** LLMs, benchmarks such as SQuAD (Stanford Question Answering Dataset) HotpotQA are used, focusing on a system' s ability to answer questions within specific documents, including tasks like complex document comprehension and multi-hop reasoning. This task differs from **open-domain QA**, where LLMs are expected to draw knowledge from a vast, unrestricted knowledge base.

More advanced data structures have also been employed for RAG, such as RAPTOR by Sarthi et al (2024), which organizes data and recursive summaries in a tree structure, integrating information across lengthy documents for better performance on complex, multi-step reasoning tasks

The LangChain framework offers flexible tools for loading and preprocessing input documents of many formats. A textbook is read and divided into chunks of roughly 1,000 characters with some overlap. These chunks provide manageable input sizes for retrieval while maintaining continuity. The text itself outlines how companies can measure philanthropic value through social, business, and investor-oriented metrics, and forms the knowledge base for grounding agent responses.

```
# LangChain to loads and split documents into chunks for retrieval
from langchain_community.document_loaders import TextLoader,...
GUnstructuredMarkdownLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
```

```
# Loads markdown file (MVCP.md) and split into overlapping chunks
loader = TextLoader('assets/MVCP.md')
document = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunked_documents = text_splitter.split_documents(document)
```

print('Number of chunks:', len(chunked_documents))
print(wrap(str(chunked_documents[:2])))

```
Number of chunks: 196
```

[Document(metadata={'source': 'assets/MVCP.md'}, page_content='MEASURING THE VALUE OF CORPORATE PHILANTHROPY: SOCIAL IMPACT, BUSINESS BENEFITS, AND INVESTOR RETURNS\nby\nTerence Lim, Ph.D.\nReport Author and Manager, Standards and Measurement,\nCommittee Encouraging Corporate Philanthropy\n(through the 2008-2009 Goldman Sachs Public Service Program)\n\nHow to measure the value and results of corporate philanthropy remains\none of corporate giving professionals' greatest challenges. Social and\nbusiness benefits are often long-term or intangible, which make\nsystematic measurement complex. And yet: Corporate philanthropy faces\nincreasing pressures to show it is as strategic,cost-effective, and value-enhancing\nas possible. The industry faces a critical need to assess current practices and\nmeasurement trends, clarify the demands practitioners face for impact evidence,\nand identify the most promising steps forward in order to make progress on these\nchallenges.'), Document(metadata={'source': 'assets/MVCP.md'}, page_content='This report aims to meet that need, by providing the corporate\nphilanthropic community with a

review of recent measurement studies, models,\nand evidence drawn from complementary business disciplines as well as the social\nsector. Rather than present an other compendium of narrative accounts and case\nstudies, we endeavor to generalize the most valuable concepts and to recognize\nthe strengths and limitations of various measurement approaches. In conjunction\nwith the annotated references that follow, the analysis herein should provide an\nexcellent starting point for companies wishing to adapt current methodologies in\nthe field to their own corporate giving programs.\nTo realize meaningful benefits, philanthropy cannot be treated as just\nanother "check in the box," but rather must be executed no less professionally,\nproactively, and strategically than other core business activities. Our hope is\nthat this work will enlighten giving professionals, CEOs, and the investor')]

38.3.1 ChromaDB vector database

ChromaDB is an open-source vector store used to store and retrieve text embeddings. It enables fast and efficient semantic search, allowing the system to find the most relevant document chunks based on a given query.

For compatibility, ChromaDB requires SQLite version 3.35 or higher. If the system uses an older version, apply this workaround patch: Install pysqlite3-binary, then enter the following three lines in sqlite_version.py to swap the packages.

```
# kludge to hack ChromaDB to use lower version of SQLite
with open('sqlite_version.py', 'w') as f:
    f.write('''__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
    '''.strip())
import sqlite_version
```

```
# ChromaDB vector store to store and retrieve document embeddings.
import chromadb
client = chromadb.Client()
try:
    client.delete_collection(name="docs")
except:
    pass
#collection = client.get_or_create_collection(name="docs")
collection = client.create_collection(name="docs")
```

The sentence embeddings for both documents and queries are generated using the mxbai-embed-large model served via **Ollama**. This embedding model, which reached state-of-the-art performance in April 2024, was trained on over 700 million high-quality sentence pairs and fine-tuned on 30 million triplets. These embeddings are stored in ChromaDB to support rapid document retrieval.

```
# Ollama for generating sentence embeddings using mxbai-embed-large model
# !ollama pull mxbai-embed-large
import ollama
# store chunk embeddings in a vector database
for i, d in enumerate(chunked_documents):
    response = ollama.embeddings(model="mxbai-embed-large", prompt=d.page_content)
    embedding = response["embedding"]
    collection.add(
```

```
ids=[str(i)],
embeddings=[embedding],
documents=[d.page_content],
```

38.3.2 Retrieval

)

The retrieval pipeline consists of four main steps:

- A user query is written in natural language.
- The query is embedded using the same model as the document chunks.
- The top 5 most semantically similar chunks are retrieved from the ChromaDB vector store.
- A new prompt is constructed by combining the user's question with the retrieved content for generation.

```
# A sample question prompt
query = "What are the challenges to measuring the value of corporate philanthropy?"
```

Embed the prompt query

```
# generate an embedding for the query
response = ollama.embeddings(
    prompt=query,
    model="mxbai-embed-large"
)
len(response['embedding'])  # vector length
```

1024

Retrieve the 5 most similar document chunks from the vector database

```
# ses ChromaDB to find top 5 most similar chunks
results = collection.query(
   query_embeddings=[response["embedding"]],
   n_results=5,
)
for data in results['documents'][0]:
   print(textwrap.fill(data))
```

MEASURING THE VALUE OF CORPORATE PHILANTHROPY: SOCIAL IMPACT, BUSINESS BENEFITS, AND INVESTOR RETURNS by Terence Lim, Ph.D. Report Author and Manager, Standards and Measurement, Committee Encouraging Corporate Philanthropy (through the 2008-2009 Goldman Sachs Public Service Program) How to measure the value and results of corporate philanthropy remains one of corporate giving professionals' greatest challenges. Social and business benefits are often long-term or intangible, which make systematic measurement complex. And yet: Corporate philanthropy faces increasing pressures to show it is as strategic, cost-effective, and value-enhancing as possible. The industry faces a critical need to assess current practices and measurement trends, clarify the demands practitioners face for impact

evidence, and identify the most promising steps forward in order to make progress on these challenges. detailed insights into the related measurement process which can help demonstrate understanding of what drives long term business success quality of management and superior potential to create financial value. The value of corporate philanthropy is measurable; as with many elements of business, however, it cannot always be measured as precisely as we would like. What gets measured gets managed goes the old adage; indeed measurement plays a crucial role in enabling companies to reach their full potential both philanthropically and as more successful and sustainable enterprises overall. This report aims to meet that need, by providing the corporate philanthropic community with a review of recent measurement studies, models, and evidence drawn from complementary business disciplines as well as the social sector. Rather than present an other compendium of narrative accounts and case studies, we endeavor to generalize the most valuable concepts and to recognize the strengths and limitations of various measurement approaches. In conjunction with the annotated references that follow, the analysis herein should provide an excellent starting point for companies wishing to adapt current methodologies in the field to their own corporate giving programs. To realize meaningful benefits, philanthropy cannot be treated as just another "check in the box," but rather must be executed no less professionally, proactively, and strategically than other core business activities. Our hope is that this work will enlighten giving professionals, CEOs, and the investor Corporate philanthropy is as vital as ever to business and society but it faces steep pressures to demonstrate that it is also cost effective and aligned with corporate needs. Indeed many corporate giving professionals cite measurement as their primary management challenge. Social and business benefits are often long-term, intangible or both and a systematic measurement of these results can be complex. Social change takes time. The missions and intervention strategies involved are diverse. For these reasons, the field of corporate philanthropy has been unable to determine a shared definition or method of measurement for social impact. Similarly, the financial value of enhancing intangibles such as a company's reputational and human capital cannot be measured directly and may not be converted into tangible bottom line profits in the near term. Corporate givers and grant recipients often useless formal anecdotal methods to convey impact. While stories ### Summary The attractiveness of these ROI methods for calculating corporate philanthropy's social returns is in bringing businesslike quantitative frameworks to evaluating and comparing the effectiveness of diverse social programs, and aggregating their social impact. However these sophisticated methodologies place heavy demands on data collection assumptions and value judgments underlying the analysis. Funders must assemble data and calculations on the program's monetary benefits and make subjective judgments on the relative value of different types of social changes. Corporate funders need to be knowledgeable and thoughtful about these limitations and typically should not rely solely on ROI when evaluating grants. Proponents of these methods note that the benefits of ROI analysis lie more in encouraging funders to lay bare the assumptions and trade-offs that may already be involved in their grant making decisions.

38.3.3 Generation

Construct the prompt combining the query and supporting context retrieved. Then send to the LLM, which generates a grounded response.

```
# assembles relevant chunks into a prompt alongside the original question
prompt = f"""
Only use relevant information in the following text delimited by triple quotes:
'''{data}.'''
Respond to this prompt: {query}."""
```

```
# send a conversation-style chat-template prompt incorporating the retrieved text
messages = [
    {"role": "user", "content": prompt},
]
output = pipe(messages, **generation_args)
print('QUERY:', query)
print('RESPONSE:')
print(wrap(output))
```

```
QUERY: What are the challenges to measuring the value of corporate philanthropy?
RESPONSE:
The challenges to measuring the value of corporate philanthropy include:
1. Social and business benefits are often long-term or intangible, making
systematic measurement complex.
2. Corporate philanthropy faces increasing pressures to show it is as strategic,
cost-effective, and value-enhancing as possible.
3. The industry faces a critical need to assess current practices and
measurement trends.
4. There is a need to clarify the demands practitioners face for impact
evidence.
5. Identifying the most promising steps forward to make progress on these
challenges.
6. Demonstrating understanding of what drives long-term business success and
quality of management.
7. Measuring the financial value of enhancing intangibles such as a company's
reputational and human capital can be complex and may not be directly
convertible into tangible bottom-line profits in the near term.
8. The measurement of social impact lacks a shared definition or method, and
social change takes time.
9. Missions and intervention strategies in corporate philanthropy are diverse.
10. The use of sophisticated ROI methodologies for evaluating and comparing the
effectiveness of diverse social programs places heavy demands on data collection
assumptions and value judgments underlying the analysis.
```

38.4 Multi-agents

In multi-agent workflows, multiple LLM agents play different roles and collaborate to accomplish a shared objective. In this demonstration, three role-playing agents work together to simulate human-like decision-making processes:

- A Chief Executive Officer (CEO) asks strategic questions about measuring philanthropic value.
- A Chief Giving Officer (CGO) synthesizes responses into an evolving plan.
- An AI Assistant (nicknamed CorGi) uses RAG to answer the CEO' s questions using only retrieved text.

The agents interact with each other over several turns, collaboratively building and refining a plan grounded in the corporate philanthropy document.

38.4.1 Tool calling

Traditional LLMs are limited in that they cannot retrieve live data or execute real-world functions unless explicitly programmed. Without tools, they may also make computational errors or respond inconsistently to ambiguous prompts. Recent advances focus on enabling tool use, where LLMs can:

- Make function calls.
- Use APIs to gather real-time data.
- · Perform calculations or database lookups.

The main approaches include:

- Allow the model to generate function calls instead of plain text.
- Zero-Shot Tool Use: Models learn to use tools on-the-fly via structured prompts.
- Fine-Tuned Tool Use: Models are trained to recognize and call specific functions during generation.

AI Assistant agent:

The AI Research Assistant agent responds to queries by leveraging RAG. Its prompt instructs it to only use retrieved documents to answer and to reply "I don't know" if the information isn't found in the text. This strict constraint helps minimize hallucination and ensures that all responses are grounded in the knowledge base.

```
# AI assistant agent answers using only retrieved text chunks
def rag_agent(query, n_results=5):
    """Role of a RAG-based question-answering agent"""
    response = ollama.embeddings(prompt=query, model="mxbai-embed-large")
    results = collection.query(query_embeddings=[response["embedding"]],
                               n results=n results)
    text = "\n".join(results['documents'][0])
   rag_prompt=f"""
You are a helpful AI research assistant.
Use only the information in the text to succintly answer the question.
Reply "I don't know" if the information is not found in the text.
Text: {text}.
Question: {query}"""
    # generate a response combining the prompt and data
    output = pipe(rag_prompt, **generation_args)
    return output, results['ids'][0]
```

Reply to a query using grounded knowledge in the document

```
pprint(rag_agent("What is corporate philanthropy?"))
```

```
('Corporate philanthropy refers to the charitable giving and activities of a '
"company, often aimed at enhancing the company's reputation, addressing "
'employee concerns, and potentially contributing to business value through '
'innovation, market knowledge, and development of new technologies.',
['102', '1', '87', '140', '142'])
```

Query about a concept not present in the document

```
pprint(rag_agent("What is corporate greed?"))
```

```
('The text does not provide information about what corporate greed is.', ['137', '140', '136', '130', '117'])
```

38.4.2 Role playing

Chief Giving Officer agent:

This agent summarizes CorGi' s outputs into a coherent strategic plan that can be reviewed by leadership.

```
# CGO (Chief Giving Officer) agent summarizes answers into a growing plan
def cgo_agent(text):
    """Role of an information-summarizing Chief Giving Officer"""
    cgo_prompt = f"""
You are the chief giving officer of a company.
You want to describe an action plan for measuring the value
of your company's corporate philanthropy program.
Use bullet points to summarize the plan using only the
relevant and distinct information in the text.
Text: {text}""".strip()
    output = pipe(cgo_prompt, **generation_args)
    return output
```

Chief Executive Officer agent:

This agent reads the current version of the plan and generates new questions to improve or expand it.

```
# CEO (Chief Executive Officer) agent asks new questions to improve the corporate_
•giving plan
def ceo_agent(text, verbose=False):
    """Role as an inquisitive Chief Executive Officer"""
    ceo_prompt = f"""
You are the chief executive officer of a company.
You want to know about the plan for measuring the value
of your company's corporate philanthropy program.
Please ask a simple and general question for an idea to
improve the your company's plan that is different than the text.
Text: {text}""".strip()
    output = pipe(ceo_prompt, verbose=verbose, **generation_args)
    return output
```

Over multiple turns, this role-playing setup allows the system to iteratively build a more comprehensive and data-backed plan.

```
# iterate over 10 turns to co-develop a full plan
memory = '* Measure the amount of monetary donations.'
docs = []
for turn in range(10):
   print(f"Turn {turn+1}...")
    question = ceo_agent(memory)
    print('CEO >>>', wrap(question))
    print ( ' \n------
                    _____
                                     ----\n')
    answer, doc = rag_agent(question)
    docs.extend(doc) # for diagnostics: track the RAG chunks retrieved
    print('Corgi-AI >>>', wrap(answer))
   print('\n-----
                                      ----\n')
   memory = cgo_agent("\n".join([memory, answer]))
   print('CGO >>>', wrap(memory))
   print ( ' \n-----
                                   ----')
```

```
Turn 1...
CEO >>> How might we also consider non-monetary contributions, such as volunteer_
 ⇔hours
or in-kind donations, in evaluating the overall impact of our corporate
philanthropy program?
 _____
Corgi-AI >>> I don't know
_____
CGO >>> - Measure the amount of monetary donations.
- Track the number of volunteer hours contributed.
- Assess the impact of the donations through beneficiary feedback.
- Evaluate the visibility and reach of the philanthropy program through media
coverage and social media engagement.
- Analyze the correlation between philanthropic activities and company
reputation.
- Compare the company's philanthropic efforts with industry standards.
- Review the alignment of the philanthropy program with the company's mission
and values.
- Monitor the long-term outcomes of the philanthropic initiatives.
- Collect data on the satisfaction levels of the stakeholders involved in the
program.
- Assess the effectiveness of the philanthropic program in achieving the
company's social responsibility goals.
- Evaluate the cost-effectiveness of the philanthropy program in relation to the
benefits received.
_____
Turn 2...
CEO >>> How can we incorporate community engagement and local stakeholder input.
⇔into the
evaluation of our company's philanthropy program?
_____
```

Corgi-AI >>> I don't know _____ CGO >>> - Measure the amount of monetary donations. - Track the number of volunteer hours contributed. - Assess the impact of the donations through beneficiary feedback. - Evaluate the visibility and reach of the philanthropy program through media coverage and social media engagement. - Analyze the correlation between philanthropic activities and company reputation. - Compare the company's philanthropic efforts with industry standards. - Review the alignment of the philanthropy program with the company's mission and values. - Monitor the long-term outcomes of the philanthropic initiatives. - Collect data on the satisfaction levels of the stakeholders involved in the program. - Assess the effectiveness of the philanthropy program in achieving the company's social responsibility goals. - Evaluate the cost-effectiveness of the philanthropy program in relation to the benefits received. _____ Turn 3... CEO >>> Considering the diverse facets of our corporate philanthropy program, what innovative metrics could we implement to better understand its cultural and employee engagement impact within our organization? _____ Corgi-AI >>> To better understand the cultural and employee engagement impact. ⇔within the organization, the company could implement metrics such as internal surveys to assess employee needs and identity, measure the extent to which philanthropic programs are meeting these needs, and evaluate the relative importance different employee segments attach to intrinsic needs. Additionally, the company could analyze the benefits of philanthropy in terms of employee engagement, customer loyalty, reputation capital, and market opportunities, and identify key intermediate outcomes that could yield desired business behaviors and benefits. These metrics could be developed by leveraging models and evidence from related business disciplines. _____ CGO >>> - Measure the amount of monetary donations. - Track the number of volunteer hours contributed. - Assess the impact of the donations through beneficiary feedback. - Evaluate the visibility and reach of the philanthropy program through media coverage and social media engagement. - Analyze the correlation between philanthropic activities and company reputation. - Review the alignment of the philanthropy program with the company's mission and values. - Monitor the long-term outcomes of the philanthropic initiatives. - Collect data on the satisfaction levels of the stakeholders involved in the program.

- Assess the effectiveness of the philanthropy program in achieving the company's social responsibility goals. - Evaluate the cost-effectiveness of the philanthropy program in relation to the benefits received. - Implement internal surveys to assess employee needs and identity. - Measure the extent to which philanthropic programs are meeting these needs. - Evaluate the relative importance different employee segments attach to intrinsic needs. - Analyze the benefits of philanthropy in terms of employee engagement, customer loyalty, reputation capital, and market opportunities. - Identify key intermediate outcomes that could yield desired business behaviors and benefits. _____ Turn 4... CEO >>> How can we integrate community engagement and environmental sustainability_ ⇔into our corporate philanthropy program to further align with our company's values and enhance our overall impact? _____ Corgi-AI >>> I don't know. CGO >>> - Measure the amount of monetary donations. - Track the number of volunteer hours contributed. - Assess the impact of the donations through beneficiary feedback. - Evaluate the visibility and reach of the philanthropy program through media coverage and social media engagement. - Analyze the correlation between philanthropic activities and company reputation. - Review the alignment of the philanthropy program with the company's mission and values. - Monitor the long-term outcomes of the philanthropic initiatives. - Collect data on the satisfaction levels of the stakeholders involved in the program. - Assess the effectiveness of the philanthropy program in achieving the company's social responsibility goals. - Evaluate the cost-effectiveness of the philanthropy program in relation to the benefits received. - Measure the extent to which philanthropic programs are meeting employee needs. - Evaluate the relative importance different employee segments attach to intrinsic needs. - Analyze the benefits of philanthropy in terms of employee engagement, customer loyalty, reputation capital, and market opportunities. - Identify key intermediate outcomes that could yield desired business behaviors and benefits. _____ Turn 5... CEO >>> How can we integrate employee feedback and participation to further_ ⊖enhance the effectiveness of our corporate philanthropy program?

(continued from previous page)

integrating employee feedback and participation can be achieved by using internal surveys to assess the extent to which the philanthropic program meets employee needs and creates a greater sense of identity between employee and employer. This assessment should consider the relative importance that different employee segments attach to different intrinsic needs. Additionally, improving employees' sense of status, prestige, belonging within the work group and organization, and emotional rewards inherent in their work can be achieved through corporate philanthropic initiatives. These initiatives can also help employee recruitment, as evidenced by the 2004 corporate community involvement survey by Deloitte LLP, which found that 72% of employed Americans trying to decide between two jobs offering the same location job description pay and benefits would choose to work for the company that also supports charitable causes. By systematically measuring the impact of corporate philanthropy, companies can provide data-based evidence of its positive effects and make a more persuasive case for why companies should engage in philanthropic causes.

CGO >>> - Measure the amount of monetary donations - Track the number of volunteer hours contributed - Assess the impact of the donations through beneficiary feedback - Evaluate the visibility and reach of the philanthropy program through media coverage and social media engagement - Analyze the correlation between philanthropic activities and company reputation - Review the alignment of the philanthropy program with the company's mission and values - Monitor the long-term outcomes of the philanthropic initiatives - Collect data on the satisfaction levels of the stakeholders involved in the program - Assess the effectiveness of the philanthropy program in achieving the company's social responsibility goals - Evaluate the cost-effectiveness of the philanthropy program in relation to the benefits received - Measure the extent to which philanthropic programs are meeting employee needs - Evaluate the relative importance different employee segments attach to intrinsic needs - Analyze the benefits of philanthropy in terms of employee engagement, customer loyalty, reputation capital, and market opportunities - Identify key intermediate outcomes that could yield desired business behaviors and benefits - Use internal surveys to assess the extent to which the philanthropic program meets employee needs and creates a greater sense of identity between employee and employer - Consider the relative importance that different employee segments attach to different intrinsic needs - Improve employees' sense of status, prestige, belonging within the work group and organization, and emotional rewards inherent in their work through corporate philanthropic initiatives - Leverage the positive impact of corporate philanthropy on employee recruitment - Systematically measure the impact of corporate philanthropy to provide databased evidence of its positive effects and make a more persuasive case for why

(continued from previous page) companies should engage in philanthropic causes. _____ Turn 6... CEO >>> How can we incorporate the perspectives of the communities we aim to serve_ ⇔into the evaluation of our corporate philanthropy program's effectiveness? Corgi-AI >>> The text does not provide specific information on how to incorporate_ _the perspectives of the communities served into the evaluation of a corporate philanthropy program's effectiveness. -----CGO >>> - Measure the amount of monetary donations - Track the number of volunteer hours contributed - Assess the impact of donations through beneficiary feedback - Evaluate the visibility and reach of the philanthropy program through media coverage and social media engagement - Analyze the correlation between philanthropic activities and company reputation - Review the alignment of the philanthropy program with the company's mission and values - Monitor the long-term outcomes of the philanthropic initiatives - Collect data on the satisfaction levels of the stakeholders involved in the program - Assess the effectiveness of the philanthropy program in achieving the company's social responsibility goals - Evaluate the cost-effectiveness of the philanthropy program in relation to the benefits received - Measure the extent to which philanthropic programs are meeting employee needs - Evaluate the relative importance different employee segments attach to intrinsic needs - Analyze the benefits of philanthropy in terms of employee engagement, customer loyalty, reputation capital, and market opportunities - Identify key intermediate outcomes that could yield desired business behaviors and benefits - Use internal surveys to assess the extent to which the philanthropic program meets employee needs and creates a greater sense of identity between employee and employer - Leverage the positive impact of corporate philanthropy on employee recruitment - Systematically measure the impact of corporate philanthropy to provide databased evidence of its positive effects and make a more persuasive case for why companies should engage in philanthropic causes. _____ Turn 7... CEO >>> How can we integrate the evaluation of employee well-being and_ ⇔satisfaction as a key performance indicator in our corporate philanthropy program's success measurement? _____

Corgi-AI >>> To integrate the evaluation of employee well-being and satisfaction_ ⇔as a key performance indicator in the corporate philanthropy program's success measurement, we can use internal surveys to assess the extent to which the philanthropic program is meeting employee needs and creating a greater sense of identity between employee and employer. This assessment should take into account the relative importance that different employee segments attach to different intrinsic needs. _____ CGO >>> - Measure the amount of monetary donations - Track the number of volunteer hours contributed - Assess the impact of donations through beneficiary feedback - Evaluate the visibility and reach of the philanthropy program through media coverage and social media engagement - Analyze the correlation between philanthropic activities and company reputation - Review the alignment of the philanthropy program with the company's mission and values - Monitor the long-term outcomes of the philanthropic initiatives - Collect data on the satisfaction levels of the stakeholders involved in the program - Assess the effectiveness of the philanthropy program in achieving the company's social responsibility goals - Evaluate the cost-effectiveness of the philanthropy program in relation to the benefits received - Measure the extent to which philanthropic programs are meeting employee needs - Evaluate the relative importance different employee segments attach to intrinsic needs - Analyze the benefits of philanthropy in terms of employee engagement, customer loyalty, reputation capital, and market opportunities - Identify key intermediate outcomes that could yield desired business behaviors and benefits - Use internal surveys to assess the extent to which the philanthropic program meets employee needs and creating a greater sense of identity between employee and employer - Leverage the positive impact of corporate philanthropy on employee recruitment - Integrate the evaluation of employee well-being and satisfaction as a key performance indicator in the corporate philanthropy program's success measurement. Turn 8... CEO >>> How can we incorporate a system to measure the long-term social and environmental impact of our corporate philanthropy initiatives on the communities and ecosystems we support? _____ Corgi-AI >>> To incorporate a system to measure the long-term social and_ ⊖environmental impact of corporate philanthropy initiatives, we can review recent measurement studies, models, and evidence from complementary business disciplines and the social sector. We can generalize the most valuable concepts and recognize the strengths

and limitations of various measurement approaches. We can also consult resources like the TRASI database, which identifies 150 different approaches currently used to measure the social impact of programs. Additionally, we can use social performance and financial performance literature to understand the link between corporate social performance and financial performance. Finally, we can adapt current methodologies in the field to our own corporate giving programs. _____ CGO >>> - Measure the amount of monetary donations - Track the number of volunteer hours contributed - Assess the impact of donations through beneficiary feedback - Evaluate the visibility and reach of the philanthropy program through media coverage and social media engagement - Analyze the correlation between philanthropic activities and company reputation - Review the alignment of the philanthropy program with the company's mission and values - Monitor the long-term outcomes of the philanthropic initiatives - Collect data on the satisfaction levels of the stakeholders involved in the program - Assess the effectiveness of the philanthropy program in achieving the company's social responsibility goals - Evaluate the cost-effectiveness of the philanthropy program in relation to the benefits received - Measure the extent to which philanthropic programs are meeting employee needs - Evaluate the relative importance different employee segments attach to intrinsic needs - Analyze the benefits of philanthropy in terms of employee engagement, customer loyalty, reputation capital, and market opportunities - Identify key intermediate outcomes that could yield desired business behaviors and benefits - Use internal surveys to assess the extent to which the philanthropic program meets employee needs and creating a greater sense of identity between employee and employer - Leverage the positive impact of corporate philanthropy on employee recruitment - Integrate the evaluation of employee well-being and satisfaction as a key performance indicator in the corporate philanthropy program's success measurement. - Incorporate a system to measure the long-term social and environmental impact of corporate philanthropy initiatives - Review recent measurement studies, models, and evidence from complementary business disciplines and the social sector - Generalize the most valuable concepts and recognize the strengths and limitations of various measurement approaches - Consult resources like the TRASI database, which identifies 150 different approaches currently used to measure the social impact of programs - Use social performance and financial performance literature to understand the link between corporate social performance and financial performance - Adapt current methodologies in the field to our own corporate giving programs. _____ Turn 9... CEO >>> How can we integrate employee perspectives more deeply into our corporate philanthropy program's success measurement to ensure alignment with our

company's culture and values while also fostering employee engagement and

satisfaction?

Corgi-AI >>> To integrate employee perspectives more deeply into our corporate_ ⇔philanthropy program's success measurement, we should consider the following steps: 1. Conduct internal surveys to assess the extent to which the philanthropic program is meeting employee needs and creating a greater sense of identity between employee and employer. 2. Take into account the relative importance that different employee segments attach to different intrinsic needs. 3. Analyze the conversations and analyses summarized above to identify potential areas for improvement and alignment with our company's culture and values. 4. Consider complementary disciplines such as human resources, marketing, risk management, and capital budgeting to improve measurement methods and identify long-term financial benefits. 5. Document success in attracting top candidates based on their exposure to the company's corporate philanthropy program. By following these steps, we can better understand and measure the impact of our corporate philanthropy program on employee engagement, satisfaction, and alignment with our company's culture and values. _____ CGO >>> - Measure the monetary donations and volunteer hours. - Assess the impact through beneficiary feedback, media coverage, social media engagement, and company reputation. - Review the alignment with the company's mission and values, long-term outcomes, and stakeholder satisfaction. - Analyze the philanthropy program's effectiveness in achieving social responsibility goals, cost-effectiveness, and meeting employee needs. - Evaluate the importance of philanthropy for different employee segments, benefits in terms of engagement, loyalty, reputation, and market opportunities. - Identify key intermediate outcomes for business behaviors and benefits. - Use internal surveys to assess meeting employee needs and creating a sense of identity. - Leverage philanthropy's impact on employee recruitment. - Integrate employee well-being and satisfaction as KPIs. - Measure the long-term social and environmental impact. - Review measurement studies, models, and evidence from complementary disciplines. - Consult resources like the TRASI database for social impact measurement approaches. - Understand the link between corporate social and financial performance. - Adapt current methodologies to our corporate giving programs. - Conduct internal surveys for employee needs and identity. - Consider intrinsic needs of different employee segments. - Analyze conversations and analyses for improvement and alignment. - Include complementary disciplines for measurement and long-term benefits. - Document success in attracting top candidates through the program. _____ Turn 10...

CEO >>> How can we incorporate a more holistic approach to measure the intangible benefits, such as employee morale and community relations, in addition to the tangible outcomes of our corporate philanthropy program?

1. Develop clear strategies by which philanthropic initiatives contribute towards strategic business needs, such as improved employee engagement, customer loyalty, reputational risk, and growth opportunities. This involves understanding the mechanisms by which these business benefits are expected to be achieved.

2. Utilize complementary disciplines such as human resources, marketing, risk management, and capital budgeting to improve measurement methods. This includes applying modeling approaches for valuing future cash flows, analyzing scenarios, and calibrating expected monetary profits linked to the behaviors of loyal customers and engaged employees.

3. Conduct measurement studies, models, and gather evidence from complementary business disciplines and the social sector. This can provide a starting point for adapting current methodologies in the field to corporate giving programs.

4. Recognize the strengths and limitations of various measurement approaches and generalize the most valuable concepts from recent measurement studies and evidence.

5. Treat philanthropy as a professional, proactive, and strategic activity, not just another "check in the box." This involves executing corporate philanthropy with the same level of professionalism and strategic planning as other core business activities.

By implementing these strategies, companies can better articulate and quantify the long-term financial benefits and intangible assets created by philanthropic initiatives, thereby making a more persuasive business case for their investment in corporate philanthropy.

```
- Leverage internal surveys to assess employee needs, identity, and benefits (engagement, loyalty, reputation, market opportunities).
```

- Evaluate philanthropy's impact on employee recruitment and well-being.

- Measure long-term social and environmental impact.
- Integrate employee well-being and satisfaction as KPIs.
- Document success in attracting top candidates through the program.
- Consult resources like the TRASI database for social impact measurement approaches.
- Understand the link between corporate social and financial performance.
- Adapt current methodologies to corporate giving programs.
- Analyze conversations and analyses for improvement and alignment.

Display the final turn
print("FINAL ANSWER")
print(wrap(memory))

FINAL ANSWER - Develop strategies linking philanthropic initiatives to strategic business needs (employee engagement, customer loyalty, reputational risk, growth opportunities). - Utilize complementary disciplines (human resources, marketing, risk management, capital budgeting) for improved measurement methods. - Conduct measurement studies, models, and gather evidence from complementary business disciplines and the social sector. - Recognize strengths and limitations of measurement approaches, applying valuable concepts from recent studies. - Treat philanthropy as a professional, strategic activity. - Articulate and quantify long-term financial benefits and intangible assets created by philanthropy. - Leverage internal surveys to assess employee needs, identity, and benefits (engagement, loyalty, reputation, market opportunities). - Evaluate philanthropy's impact on employee recruitment and well-being. - Measure long-term social and environmental impact. - Integrate employee well-being and satisfaction as KPIs. - Document success in attracting top candidates through the program. - Consult resources like the TRASI database for social impact measurement approaches. - Understand the link between corporate social and financial performance.

- Adapt current methodologies to corporate giving programs.
- Analyze conversations and analyses for improvement and alignment.

For attribution, show the source reference documents which supported the responses.

```
# source document IDs of text chunks retrieved are tracked for attribution
print("Source documents reference id's:")
print(set(docs))
```

```
Source documents reference id's:
{'87', '190', '95', '84', '5', '12', '195', '86', '97', '0', '8', '102', '103', '4
$\, '88', '151', '152', '1', '9'}
```

38.5 Multimodal

38.5.1 Multi-lingual

LLM agents built on the Phi-4-multimodal model can take advantage of its multilingual capabilities, supporting over 20 languages including English, French, German, Hindi, Italian, Portuguese, Spanish, and Thai. To evaluate language-specific performance, benchmarks and leaderboards based on MMLU and other open datasets are available. For example:

https://huggingface.co/spaces/uonlp/open_multilingual_llm_leaderboard

```
# Translate english to french
french = pipe(f"Please translate to French: {memory}", max_new_tokens=512)
print(wrap(french))
```

```
- Développer des stratégies reliant les initiatives philanthropiques aux besoins
  stratégiques des affaires (engagement des employés, fidélité des clients, risque
  de réputation, opportunités de croissance).
  - Utiliser des disciplines complémentaires (ressources humaines, marketing,
  gestion des risques, budgétisation des capitaux) pour des méthodes de mesure
  améliorées.
  - Conduire des études de mesure, des modèles et rassembler des preuves des
  disciplines commerciales complémentaires et du secteur social.
  - Reconnaître les forces et les limites des approches de mesure, en appliquant
  des concepts précieux des études récentes.
  - Traiter la philanthropie comme une activité professionnelle et stratégique.
  - Articuler et quantifier les avantages financiers à long terme et les actifs
  intangibles créés par la philanthropie.
  - Utiliser des enquêtes internes pour évaluer les besoins, l'identité et les
  avantages des employés (engagement, fidélité, réputation, opportunités de
  marché).
  - Évaluer l'impact de la philanthropie sur la recrutement des employés et leur
  bien-être.
  - Mesurer l'impact à long terme social et environnemental.
  - Intégrer le bien-être et la satisfaction des employés comme indicateurs de
  performance (KPIs).
   - Documenter le succès dans l'attraction de candidats exceptionnels grâce au
  programme.
  - Consulter des ressources comme la base de données TRASI pour les approches de
  mesure de l'impact social.
  - Comprendre la relation entre la performance sociale et financière de
  l'entreprise.
  - Adapter les méthodologies actuelles aux programmes de dons d'entreprise.
  - Analyser les conversations et les analyses pour l'amélioration et
  l'alignement.
# Translate back to english
print(wrap(pipe(f"Please translate to English: {french}", max_new_tokens=512)))
```

Develop strategies that link philanthropic initiatives to the strategic business needs (employee engagement, customer loyalty, reputation risk, growth opportunities).
Use complementary disciplines (human resources, marketing, risk management,

capital budgeting) for improved measurement methods.

- Conduct measurement studies, models, and gather evidence of the complementary

```
commercial disciplines and the social sector.
- Recognize the strengths and limitations of measurement approaches, applying
valuable concepts from recent studies.
- Treat philanthropy as a professional and strategic activity.
- Articulate and quantify the long-term financial benefits and intangible assets
created by philanthropy.
- Use internal surveys to evaluate the needs, identity, and benefits of
employees (engagement, loyalty, reputation, market opportunities).
- Evaluate the impact of philanthropy on employee recruitment and well-being.
- Measure the long-term social and environmental impact.
- Integrate employee well-being and satisfaction as performance indicators
(KPIs).
- Document the success in attracting exceptional candidates through the program.
- Consult resources like the TRASI database for social impact measurement
approaches.
- Understand the relationship between the social performance and financial
performance of the company.
- Adapt current methodologies to corporate donation programs.
- Analyze conversations and analyses for improvement and alignment.
```

38.5.2 Vision language

Perform optical character recognition (OCR) and chart and table interpretation of figure 6 from the MVCP document.

Multimodal evaluation of agents for image and video analysis can be performed with more comprehensive benchmarks and datasets, such as:

https://github.com/bradyfu/awesome-multimodal-large-language-models

```
# Load and display a test image
image = Image.open("assets/lim-fig6.png")
plt.imshow(image)
plt.axis('off')
```

(np.float64(-0.5), np.float64(953.5), np.float64(785.5), np.float64(-0.5))

Figure 6: A Framework for Measuring Employee Engagement and Corporate Philanthropy

Source: Adapted from Bhattacharya, C. B., Sen, S., & Korschun, D. (2008) and Bartel, C. (2001).

The image is a diagram titled "Figure 6: A Framework for Measuring Employee Engagement and Corporate Philanthropy." It is divided into several sections, each with a specific focus. The top left section is labeled "CORPORATE PHILANTHROPY ACTIVITIES" and includes examples such as grants and employee volunteer programs. The top right section is labeled "BUSINESS IMPACT" and lists outcomes like increased output, sales, and profitability. Below these sections, there are three main columns. The first column on the left is labeled "EMPLOYEE NEEDS FULFILLED" and includes points such as self-enhancement, work-life integration, reputational shield, bridge to company, and collective self-esteem. The middle column is labeled "INTERMEDIATE OUTCOME TO BE TARGETED AND MEASURED" and includes "EMPLOYEE ATTITUDES" and "Sense of organizational identification." The third column on the right is labeled "JOB-RELATED BEHAVIORS" and lists outcomes like reduced absenteeism, retention, efficiency, co-operative behaviors, work effort, and advocacy. At the bottom, there is a section labeled "OTHER MODERATING FACTORS" which includes extrinsic incentives, employee characteristics, and employee perception of HR practices, work environment, management, and company capabilities. The source of the diagram is cited as adapted from Bhattacharya, C. B., Sen, S., & Korschun, D. (2008) and Bartel, C. (2001).

Probing the model's image reasoning capabilities:

```
# Load and display a test image
image = Image.open("assets/MSDTRPL_EC013-H-2020-1602198302.webp")
plt.imshow(image)
plt.axis('off')
```

(np.float64(-0.5), np.float64(999.5), np.float64(562.5), np.float64(-0.5))

print(wrap(pipe("What is shown in this image?", image=image, max_new_tokens=512)))

The image depicts a large crowd of people, many of whom are holding up their hands. The crowd appears to be in a state of excitement or celebration, with some individuals raising their hands in the air. The people are dressed in a variety of clothing, including suits and casual attire. The background is filled with more people, suggesting that this is a public event or gathering.

image=image, max_new_tokens=128)))

This scene is from the movie 'Forrest Gump.' The reasoning behind this identification includes the distinctive style of the crowd, the casual yet significant attire of the individuals, and the overall chaotic yet focused atmosphere typical of a pivotal moment in the film. The scene captures a moment of intense public reaction, which is a recurring theme in the movie.

print(wrap(pipe("Please give your best estimate of the number of people in this image ${}_{\ominus}$ ",

```
image=image, max_new_tokens=32)))
```

There are approximately 30 people visible in the image.

In the movie "Trading Places," a notable instance of corporate philanthropy occurs when Louis Winthorpe III, played by Eddie Murphy, and Billy Ray Valentine, played by Dan Akroyd, are swapped due to a bet. Louis, who is a successful commodities trader, is given a chance to live a life of luxury and privilege, while Billy, a struggling street trader, is given Louis' life.

During this period, Louis, who is now living a life of luxury, decides to use his newfound wealth to help those in need. He donates a significant amount of money to a local homeless shelter, which is a clear act of corporate philanthropy. This act not only helps the shelter but also serves as a turning point in Louis' character development, as he begins to understand the value of giving back to the community.

This instance of corporate philanthropy in the movie highlights the importance of using wealth and resources to help those in need, and it also serves as a reminder that even those who are successful can make a positive impact on society.

38.5.3 Audio

Finally, perform automatic speech recognition (ASR) and speech translation on an audio input.

Rigorous open benchmark datasets for evaluation are also available, e.g.

https://github.com/huggingface/open_asr_leaderboard

Pork bellies! I have a hunch something very exciting is going to happen in the pork belly market this morning.

from playsound import playsound
playsound(url) # play the original sound file

References:

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal[†], Heinrich Küttler, Mike Lewis[†], Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2021, Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Danqi Chen, Adam Fisch, Jason Weston, Antoine Bordes. (2017), "Reading Wikipedia to Answer Open-Domain Questions."

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, Yoav Shoham (2023), "In-Context Retrieval-Augmented Language Models."

Kyle Mahowald and Anna A. Ivanova and Idan A. Blank and Nancy Kanwisher and Joshua B. Tenenbaum and Evelina Fedorenko, 2024, Dissociating language and thought in large language models, https://arxiv.org/abs/2301.06627

Hicks, Michael Townsen, Humphries, James and Slater, Joe, 2024, "ChatGPT is bullshit", Ethics and Information Technology Volume 26, Issue 2, https://doi.org/10.1007/s10676-024-09775-5

Parth Sarthi and Salman Abdullah and Aditi Tuli and Shubh Khanna and Anna Goldie and Christopher D. Manning, 2024, RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval, https://arxiv.org/abs/2401.18059

https://github.com/NirDiamant/RAG_Techniques

Lim, Terence, 2010, Measuring the value of corporate philanthropy: Social impact, business benefits, and investor returns. published by CECP.