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Financial Data Science Python Notebooks

As financial markets produce vast volumes of structured and unstructured data, the ability to extract insights and develop
predictive models has become increasingly important. Financial Data Science Python Notebooks provide a practical
guide for analysts, researchers, and data scientists looking to apply Python and its broad ecosystem of libraries, tools,
frameworks, and community resources to financial analysis, econometrics, and machine learning.
Designed to support financial data science workflows, the companion FinDS Python package demonstrates how to use
database engines such as SQL, Redis, and MongoDB to manage and access large datasets, including:

• Core financial databases such as CRSP, Compustat, IBES, and TAQ
• Public economic data APIs from sources like FRED and the Bureau of Economic Analysis (BEA)
• Structured and unstructured data from academic and research websites

In addition to data access, it provides practical examples and templates for applying:
• Financial econometrics and time series modeling
• Graph analytics, event studies, and backtesting strategies
• Machine learning for predictive analytics
• Natural language processing (NLP) to extract insights from financial text
• Neural networks and large language models (LLMs) for advanced decision-making

March 2025: Updated with data through early 2025 and incorporated the latest LLMs –Microsoft Phi-4-multimodal
(released Feb 2025), Google Gemma-3-12B (March 2025), DeepSeek-R1-14B (January 2025), Meta Llama-3.1-8B
(July 2024), GPT-4o-mini (July 2024).
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CHAPTER

ONE

STOCK PRICES

In physics it takes three laws to explain 99% of the data; in finance it takes more than 99 laws to explain about 3% - Andrew
Lo
Stock price data encompasses historical prices as well as corporate actions such as stock splits, dividends, and delistings.
The CRSP database is a standard resource in academic research due to its comprehensive coverage of both active and
delisted stocks, which supports unbiased and representative analysis. Efficient storage, retrieval, and processing of such
structured financial data are enabled by tools such as SQL, SQLAlchemy, Redis, and Pandas. We examine statistical mo-
ments, assume log-normal distributions, and explore alternative correlation measures for modeling stock return behavior
and dependencies.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import scipy
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import warnings
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, CRSPBuffer, Benchmarks
from finds.utils import Finder
from secret import credentials, CRSP_DATE, paths
VERBOSE = 0

# %matplotlib qt

1.1 FinDS package

Developed over a journey to support financial data science workflows, our FinDS Python package integrates:
• Use of database engines like SQL, Redis, and MongoDB to manage large structured and unstructured datasets
• Tools for accessing key financial datasets, including CRSP, Compustat, IBES, and TAQ
• Interfaces to public data sources such as FRED, SEC EDGAR, and the BEA
• Utilities for extracting data from academic and research websites
• Recipes for applying a range of statistical and machine learning methods, including network graphs, natural lan-

guage processing and large language models.
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1.1.1 SQL

Structured Query Language (SQL) is a popular tool for storing and managing relational data organized into tables with
columns (fields) and rows (records). Open-source systems likeMySQL are widely used to implement relational databases,
and Python libraries such as SQLAlchemy provide convenient interfaces for interacting with them. Additionally, the
Pandas library allows users to run SQL queries and load the results directly into DataFrames for efficient analysis.

1.1.2 Redis

Redis is an open-source, in-memory data store commonly used as a caching layer. It helps improve performance by
storing frequently accessed data in memory, thereby reducing the load on slower, primary databases.

# open database connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, endweek=3, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
bench = Benchmarks(sql, bd, verbose=VERBOSE)
find = Finder(sql)
outdir = paths['scratch']

1.2 Stock price data

Besides the historical prices of stocks, their adjustments such as identifier changes, stock splits, dividends, mergers, and
delistings must also be recorded to accurately analyze performance over time.

1.2.1 CRSP stocks

The Center for Research in Security Prices (CRSP) provides the most widely used data for academic research into US
stocks. It includes both successful and unsuccessful entities, rather than just those that have“survived”over time. This
helps avoid the pitfalls of focusing only on surviving entities which can lead to an overestimation of average performance
and underestimation of risk. It also captures corporate actions by standardizing data on events such as name changes,
distributions and delistings. This information is recorded and validated from official sources, integrated into its historical
databases along with details like announcement and effective dates, adjustment factors, and impact on stock performance
calculations.

# describe the database schema of the CRP Stocks `names` table
DataFrame(**sql.run('describe names'))

Field Type Null Key Default Extra
0 date int NO PRI None
1 comnam varchar(32) YES None
2 ncusip varchar(8) YES MUL None
3 shrcls varchar(1) YES None
4 ticker varchar(5) YES None
5 permno int NO PRI None
6 nameendt int YES None
7 shrcd smallint YES None
8 exchcd smallint YES None
9 siccd smallint YES None

(continues on next page)
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(continued from previous page)

10 tsymbol varchar(7) YES None
11 naics int YES None
12 primexch varchar(1) YES None
13 trdstat varchar(1) YES None
14 secstat varchar(4) YES None
15 permco int YES None

SQL select and join statements to retrieve Apple Computer’s identifiers and corporate actions, such as stock splits
and dividends. Commonly used SQL commands listed at the end of this notebook.

# double up the % when passing sql command stringo to pandas
names_df = pd.read_sql("select * from names where comnam like '%%APPLE COMPUTER%%'",␣

↪con=sql.engine)
names_df

date comnam ncusip shrcls ticker permno nameendt \
0 19801212 APPLE COMPUTER INC 03783310 AAPL 14593 19821031
1 19821101 APPLE COMPUTER INC 03783310 AAPL 14593 20040609
2 20040610 APPLE COMPUTER INC 03783310 AAPL 14593 20070110

shrcd exchcd siccd tsymbol naics primexch trdstat secstat permco
0 11 3 3573 0 Q A R 7
1 11 3 3573 AAPL 0 Q A R 7
2 11 3 3573 AAPL 334111 Q A R 7

# inner join of identifiers (names) and distributions (dist) tables
cmd = """
select distinct names.permno, divamt, facpr, exdt, comnam, ticker from names
inner join dist
on names.permno = dist.permno
where names.comnam like '%%APPLE COMPUTER%%'
"""
dist_df = pd.read_sql(cmd, con=sql.engine)
dist_df

permno divamt facpr exdt comnam ticker
0 14593 0.12 0.0 19870511 APPLE COMPUTER INC AAPL
1 14593 0.06 0.0 19870810 APPLE COMPUTER INC AAPL
2 14593 0.08 0.0 19871117 APPLE COMPUTER INC AAPL
3 14593 0.08 0.0 19880212 APPLE COMPUTER INC AAPL
4 14593 0.08 0.0 19880516 APPLE COMPUTER INC AAPL
.. ... ... ... ... ... ...
86 14593 0.00 1.0 19870616 APPLE COMPUTER INC AAPL
87 14593 0.00 1.0 20000621 APPLE COMPUTER INC AAPL
88 14593 0.00 1.0 20050228 APPLE COMPUTER INC AAPL
89 14593 0.00 6.0 20140609 APPLE COMPUTER INC AAPL
90 14593 0.00 3.0 20200831 APPLE COMPUTER INC AAPL

[91 rows x 6 columns]
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1.2.2 Stock splits and dividends

An investor’s total holding returns (ret in CRSP) include gains from appreciated stock prices (prc), adjusted for stock
splits (facpr), plus ordinary cash dividends (divamt). Specifically, on ex-dates 𝑡:

𝑟𝑒𝑡𝑡 = 𝑝𝑟𝑐𝑡 (1 + 𝑓𝑎𝑐𝑝𝑟𝑡) + 𝑑𝑖𝑣𝑡
𝑝𝑟𝑐𝑡−1

The Factor to Adjust Price (facpr) values over time can be used to adjust prices for distributions such as stock dividends
and splits so that stock prices before and after one or more distributions are comparable. Historical cumulative adjust
factors are computed by additing 1 to and then taking cumulative product from current to earlier time periods. This
cumulative factor between two dates is divided into the earlier raw stock price to derive comparable split-adjusted prices.
Hence to split-adjust CRSP raw prices

• apply cumulative factor to raw prices before corresponding ex-date
• back-fill to dates prior to ex-date
• default factor after latest ex-date is 1

yfinance
The yfinance Python library enables users to access current financial data from Yahoo Finance.

import yfinance as yf
ticker = yf.Ticker('AAPL')
df = ticker.history(period='max')
df[df['Dividends'].gt(0) | df['Stock Splits'].ne(0)]

Open High Low Close \
Date
1987-05-11 00:00:00-04:00 0.264817 0.273415 0.263957 0.264817
1987-06-16 00:00:00-04:00 0.285452 0.287171 0.261378 0.285452
1987-08-10 00:00:00-04:00 0.332310 0.332310 0.315091 0.332310
1987-11-17 00:00:00-05:00 0.253658 0.255384 0.241579 0.241579
1988-02-12 00:00:00-05:00 0.280957 0.287009 0.280093 0.283551
... ... ... ... ...
2024-02-09 00:00:00-05:00 187.763406 189.097120 187.116467 187.962479
2024-05-10 00:00:00-04:00 184.280653 184.470019 181.519943 182.436859
2024-08-12 00:00:00-04:00 215.595507 219.027939 215.126538 217.052292
2024-11-08 00:00:00-05:00 226.920500 228.408869 226.161340 226.710739
2025-02-10 00:00:00-05:00 229.570007 230.589996 227.199997 227.649994

Volume Dividends Stock Splits
Date
1987-05-11 00:00:00-04:00 197276800 0.000536 0.0
1987-06-16 00:00:00-04:00 342720000 0.000000 2.0
1987-08-10 00:00:00-04:00 77996800 0.000536 0.0
1987-11-17 00:00:00-05:00 268800000 0.000714 0.0
1988-02-12 00:00:00-05:00 137760000 0.000714 0.0
... ... ... ...
2024-02-09 00:00:00-05:00 45155200 0.240000 0.0
2024-05-10 00:00:00-04:00 50759500 0.250000 0.0
2024-08-12 00:00:00-04:00 38028100 0.250000 0.0
2024-11-08 00:00:00-05:00 38328800 0.250000 0.0
2025-02-10 00:00:00-05:00 33115600 0.250000 0.0

[91 rows x 7 columns]
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The daily Close prices from yFinance have been adjusted for stock splits and dividend payments. As a result, the plotted
values directly represent cumulative total holding returns.

df['Close'].div(df['Close'].iloc[0]).plot(title="APPL close prices from yfinance")

<Axes: title={'center': 'APPL close prices from yfinance'}, xlabel='Date'>

To retrieve unadjusted historical prices accounting for stock splits and dividends, first apply the split factors to determine
the original dividends per unadjusted share. The resulting values closely match the CRSP divamt figures, with minor
differences likely due to cumulative numerical precision errors.

split = df['Stock Splits'].where(df['Stock Splits'] != 0.0, 1)\
.shift(-1).fillna(1).iloc[::-1].cumprod().iloc[::-1] # cumulate the split␣

↪factors back in time
df['unadj_div'] = df['Dividends'] * split.shift(1).fillna(split.iloc[0]) # apply␣

↪the split factors to dividends
df.set_index(df.index.strftime('%Y-%m-%d'))[(df['unadj_div'] > 0).values]

Open High Low Close Volume \
Date
1987-05-11 0.264817 0.273415 0.263957 0.264817 197276800
1987-08-10 0.332310 0.332310 0.315091 0.332310 77996800
1987-11-17 0.253658 0.255384 0.241579 0.241579 268800000
1988-02-12 0.280957 0.287009 0.280093 0.283551 137760000
1988-05-16 0.280647 0.286711 0.277183 0.285845 74760000
... ... ... ... ... ...
2024-02-09 187.763406 189.097120 187.116467 187.962479 45155200

(continues on next page)
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2024-05-10 184.280653 184.470019 181.519943 182.436859 50759500
2024-08-12 215.595507 219.027939 215.126538 217.052292 38028100
2024-11-08 226.920500 228.408869 226.161340 226.710739 38328800
2025-02-10 229.570007 230.589996 227.199997 227.649994 33115600

Dividends Stock Splits unadj_div
Date
1987-05-11 0.000536 0.0 0.120064
1987-08-10 0.000536 0.0 0.060032
1987-11-17 0.000714 0.0 0.079968
1988-02-12 0.000714 0.0 0.079968
1988-05-16 0.000714 0.0 0.079968
... ... ... ...
2024-02-09 0.240000 0.0 0.240000
2024-05-10 0.250000 0.0 0.250000
2024-08-12 0.250000 0.0 0.250000
2024-11-08 0.250000 0.0 0.250000
2025-02-10 0.250000 0.0 0.250000

[86 rows x 8 columns]

Next, we work backward through time to reconstruct the original stock prices using daily holding returns and closing
prices. Stock splits and dividends are accounted for on ex-dates by applying the rearranged formula:

𝑝𝑟𝑐𝑡−1 = (1 + 𝑓𝑎𝑐𝑝𝑟𝑡)(𝑝𝑟𝑐𝑡 + 𝑑𝑖𝑣𝑡)
𝑟𝑒𝑡𝑡

rets = df['Close'] / df['Close'].shift(1)
prc = df['Close'].iloc[-1]
div = 0
fac = 0
ret = 1
for i, t in enumerate(df.index[::-1]): # iterate over days in reverse

df.loc[t, 'unadj_prc'] = (((fac if fac else 1) * prc) + div) / ret
prc = df.loc[t, 'unadj_prc']
div = df.loc[t, 'unadj_div']
fac = df.loc[t, 'Stock Splits']
ret = rets.loc[t]

df.set_index(df.index.strftime('%Y-%m-%d'))

Open High Low Close Volume \
Date
1980-12-12 0.098726 0.099155 0.098726 0.098726 469033600
1980-12-15 0.094005 0.094005 0.093575 0.093575 175884800
1980-12-16 0.087136 0.087136 0.086707 0.086707 105728000
1980-12-17 0.088853 0.089282 0.088853 0.088853 86441600
1980-12-18 0.091429 0.091858 0.091429 0.091429 73449600
... ... ... ... ... ...
2025-02-24 244.929993 248.860001 244.419998 247.100006 51326400
2025-02-25 248.000000 250.000000 244.910004 247.039993 48013300
2025-02-26 244.330002 244.979996 239.130005 240.360001 44433600
2025-02-27 239.410004 242.460007 237.059998 237.300003 41153600
2025-02-28 236.949997 242.089996 230.199997 241.839996 56796200

Dividends Stock Splits unadj_div unadj_prc

(continues on next page)
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Date
1980-12-12 0.0 0.0 0.0 28.757305
1980-12-15 0.0 0.0 0.0 27.257003
1980-12-16 0.0 0.0 0.0 25.256412
1980-12-17 0.0 0.0 0.0 25.881523
1980-12-18 0.0 0.0 0.0 26.631895
... ... ... ... ...
2025-02-24 0.0 0.0 0.0 247.100006
2025-02-25 0.0 0.0 0.0 247.039993
2025-02-26 0.0 0.0 0.0 240.360001
2025-02-27 0.0 0.0 0.0 237.300003
2025-02-28 0.0 0.0 0.0 241.839996

[11144 rows x 9 columns]

The unadjusted price computer and the original closing prices from CRSP during the early days of AAPL stock are nearly
identical, with only small differences due to cumulative numerical precision errors.

price_df = pd.read_sql(f"select permno, date, abs(prc) from daily where permno={names_
↪df['permno'][0]}", con=sql.engine)

price_df.head(10)

permno date abs(prc)
0 14593 19801212 28.8125
1 14593 19801215 27.3125
2 14593 19801216 25.3125
3 14593 19801217 25.9375
4 14593 19801218 26.6875
5 14593 19801219 28.3125
6 14593 19801222 29.6875
7 14593 19801223 30.9375
8 14593 19801224 32.5625
9 14593 19801226 35.5625

1.2.3 Market capitalization

Following Fama and French (1992), academic research typically focuses on U.S.-domiciled stocks, specifically those with
a share code (shrcd) of 10 or 11, that are listed on major exchanges (exchange code (exchcd) of 1, 2, or 3).
Stocks are often sorted into ten deciles based on market capitalization, with the smallest stocks placed in the 10th decile.
These decile breakpoints are determined using only NYSE-listed stocks. For companies with multiple classes of securities,
total market value is calculated by summing the market capitalization of all classes. Since CRSP reports shares outstanding
(shrout) in thousands, all market capitalization values must be multiplied by 1,000 to reflect their actual size.
Plot the number of stocks in and the market cap breakpoints of each size decile by year:

# retrieve universe of stocks annually from 1981
start = bd.endyr(19731231)
rebals = bd.date_range(start, CRSP_DATE, freq=12)
univs = {rebal: crsp.get_universe(date=rebal) for rebal in rebals}
num = dict()
for date, univ in univs.items():

num[str(date//10000)] = {decile: sum(univ['decile']==decile)

(continues on next page)
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for decile in range(10, 0, -1)}
num = DataFrame.from_dict(num, orient='index')

# plot number of stocks in each size decile
fig, ax = plt.subplots(figsize=(10, 6))
ax.set_title('Number of stocks in universe by size decile')
num.plot.bar(stacked=True, ax=ax, width=.8, alpha=0.4)
#set_xtickbins(ax=ax, nbins=len(cap)//10)
plt.legend(title='Size Decile', loc='upper left')
plt.tight_layout()

# If a company has multiple share classes, sum up its total market capitalization
# instead of separate capital values for each share class
names = find('ALPHABET', 'comnam').groupby('permno').tail(1).set_index('permno')
names

date comnam ncusip shrcls ticker nameendt shrcd \
permno
14542 20231013 ALPHABET INC 02079K10 C GOOG 20241231 11
90319 20231013 ALPHABET INC 02079K30 A GOOGL 20241231 11

exchcd siccd tsymbol naics primexch trdstat secstat permco
permno
14542 3 7375 GOOG 541511 Q A R 45483
90319 3 7375 GOOGL 541511 Q A R 45483

univ.loc[names.index] # market caps of share class (cap) and total company (capco)
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cap capco decile nyse siccd prc naics
permno
14542 1.053895e+09 2.159975e+09 1 False 7375 190.44 541511
90319 1.106080e+09 2.159975e+09 1 False 7375 189.30 541511

1.2.4 Stock delistings

An important feature of the CRSP database is that it is free of survivorship-bias. It includes the historical records of
stocks that have delisted from trading on the exchanges.
In CRSP Monthly, the Delisting Return is calculated from the last month ending price to the last daily trading price if
no other delisting information is available. In this case the delisting payment date is the same as the delisting date. If
the return is calculated from a daily price, it is a partial-month return. The partial-month returns are not truly Delisting
Returns since they do not represent values after delisting, but allow the researcher to make a more accurate estimate of
the Delisting Returns.
Following Bali, Engle, and Murray (2016) and Shumway (1997): we can construct returns adjusted for delistings, which
result when a company is acquired, ceases operations, or fails to meet exchange listing requirements. The adjustment
reflects the partial month of returns to investors who bought the stock in the month before the delisting. For certain
delisting codes ([500, 520, 551..574, 580, 584]) where the delisting return is missing, a delisting return of -30% is
assumed which reflects the average recovery amount after delisting.

# Show sample of original CRSP Monthly ret and dlret before and after adjustment ␣
↪

pd.read_sql('select * from monthly where dlstcd>100 and date=20041130', sql.engine)\
.set_index('permno')\
.rename(columns={'ret': 'original_ret'})\
.join(crsp.get_ret(beg=20041101, end=20041130), how='left')\
.round(4)

date prc original_ret retx dlstcd dlret ret
permno
10275 20041130 NaN NaN NaN 584 -0.2703 -0.2703
10418 20041130 NaN NaN NaN 520 0.0509 0.0509
11194 20041130 NaN NaN NaN 233 0.0066 0.0066
12010 20041130 NaN NaN NaN 587 0.0490 0.0490
20459 20041130 NaN NaN NaN 231 0.0724 0.0724
32897 20041130 NaN NaN NaN 584 -0.2357 -0.2357
55589 20041130 NaN NaN NaN 233 -0.0114 -0.0114
64290 20041130 13.70 0.0178 0.0178 233 0.0000 0.0178
67708 20041130 NaN NaN NaN 233 0.0164 0.0164
69593 20041130 NaN NaN NaN 331 0.0998 0.0998
69681 20041130 NaN NaN NaN 584 -0.4853 -0.4853
70447 20041130 5.80 -0.2246 -0.2246 570 NaN -0.4572
75606 20041130 NaN NaN NaN 520 -0.2466 -0.2466
75684 20041130 NaN NaN NaN 233 0.0094 0.0094
76306 20041130 NaN NaN NaN 241 -0.0329 -0.0329
76691 20041130 NaN NaN NaN 582 0.0127 0.0127
77838 20041130 NaN NaN NaN 520 -0.0041 -0.0041
79149 20041130 NaN NaN NaN 574 -0.2088 -0.2088
79523 20041130 NaN NaN NaN 233 0.0043 0.0043
80211 20041130 NaN NaN NaN 470 0.0186 0.0186
80714 20041130 NaN NaN NaN 332 0.0337 0.0337
82491 20041130 4.21 -0.0644 -0.0644 551 0.0689 0.0000

(continues on next page)
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83583 20041130 125.10 0.2810 0.2810 241 0.0624 0.3608
83702 20041130 NaN NaN NaN 587 0.2667 0.2667
83995 20041130 26.58 0.2374 0.2374 231 0.0394 0.2861
84047 20041130 16.35 0.0467 0.0467 241 -0.2661 -0.2318
86123 20041130 NaN NaN NaN 233 0.0059 0.0059
86307 20041130 NaN NaN NaN 233 0.0223 0.0223
86388 20041130 NaN NaN NaN 584 -0.0337 -0.0337
86991 20041130 NaN NaN NaN 233 0.0106 0.0106
87126 20041130 NaN NaN NaN 231 0.0784 0.0784
87158 20041130 NaN NaN NaN 233 0.0086 0.0086
87247 20041130 NaN NaN NaN 233 0.0046 0.0046
88670 20041130 NaN NaN NaN 470 0.0013 0.0013
89186 20041130 NaN NaN NaN 331 0.0696 0.0696
89385 20041130 NaN NaN NaN 231 0.2959 0.2959
89936 20041130 NaN NaN NaN 231 0.0719 0.0719
89939 20041130 NaN NaN NaN 233 0.0059 0.0059

1.3 Properties of stock returns

1.3.1 Long-run market averages

Calculate and plot the time series of annual cross-sectional averages of stock returns, where each year’s average is
cap-weighted, and the final time series is equal-weighted.
Over time, the contribution of dividend yield to total average stock returns has decreased, while share trading turnover
has increased.

# Loop over the 20-year eras, and compute means of annual cap-weighted averages
years = range(1925, 2025, 20)
results = DataFrame(columns=['divyld', 'turnover', 'means'])
for era in tqdm(years):

label = f"{era+1}-{era+20}"
divyld, means, turnover = {}, {}, {}

for year in bd.date_range(era, min(CRSP_DATE//10000 -1 , era+19), freq=12):
# universe stocks at end of year
univ = crsp.get_universe(bd.endyr(year))

# retrieve cap-weighted average of next year's returns
cmd = f"""

select permno, SUM(LOG(1+ret)) AS ret FROM daily
WHERE date > {bd.endyr(year)} AND date <= {bd.endyr(year, 1)}
GROUP BY permno
""".strip()

data = pd.read_sql(cmd, sql.engine)
df = data.set_index('permno').join(univ['cap'], how='right').dropna()
means[year] = (np.exp(df['ret'])-1).dot(df['cap']) / df['cap'].sum()

# retrieve cap-weighted average of annualized turnover
cmd = f"""

select permno, 252*AVG(vol/(shrout*1000)) AS turnover FROM daily
WHERE date > {bd.endyr(year)} AND date <= {bd.endyr(year, 1)}
GROUP BY permno

(continues on next page)
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""".strip()
data = pd.read_sql(cmd, sql.engine)
df = data.set_index('permno').join(univ['cap'], how='right').dropna()
turnover[year] = df['turnover'].dot(df['cap']) / df['cap'].sum()

# retrieve cap-weighted average of annual dividend amounts
cmd = f"""

SELECT dist.permno as permno, SUM(daily.shrout * dist.divamt) AS divamt
FROM dist INNER JOIN daily
ON daily.permno = dist.permno AND daily.date = dist.exdt
WHERE dist.divamt > 0 AND dist.exdt > {bd.endyr(year)}
AND dist.exdt <= {bd.endyr(year, 1)}

GROUP BY permno
""".strip()

data = pd.read_sql(cmd, sql.engine)
df = data.set_index('permno').join(univ['cap'], how='right').dropna()
divyld[year] = df['divamt'].sum() / df['cap'].sum()

results.loc[label, 'turnover'] = np.mean(list(turnover.values()))
results.loc[label, 'divyld'] = np.mean(list(divyld.values()))
results.loc[label, 'means'] = np.mean(list(means.values()))

100%|██████████| 5/5 [1:03:37<00:00, 763.46s/it]

# Plot mean returns, dividend yield and turnover using both y-axes
fig, ax = plt.subplots()
ax.plot(results['means'], color="blue")
ax.plot(results['divyld'], color="green")
ax.legend(['average returns', 'dividend yield'], loc="center left")
ax.set_ylabel("Annual dividend yield and total stock returns")
bx = ax.twinx()
bx.plot(results['turnover'], color="red")
bx.set_ylabel("Annual Turnover")
bx.legend(['turnover'], loc="center right")
plt.title("Long-Run Market Averages")
plt.tight_layout()
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1.3.2 Statistical moments

The volatility of an asset is usually measured using the standard deviation of the returns. The common practice is to
report the annualized volatility using the square-root rule which assumes that variance scales linearly with time: e.g. daily
by

√
252, weekly by

√
52, monthly by

√
12. Mean returns are annualized by multiplying by the respective number of

periods in a year.
A normal distribution is symmetric and thin-tailed, and so has no skewness or excess kurtosis. However, many return
series are both skewed and fat-tailed (kurtosis in excess of 3). A left-skewed distribution is longer on the left side of its
peak than on its right. In other words, a left-skewed distribution has a long tail on its left side, where the mean typically lies
to the left of its median. Left skew is also referred to as negative skew. Right or positive skew has the opposite properties.
Stock prices are often modeled with a log-normal distribution because prices cannot be negative. Large positive jumps
are possible, but extreme negative moves are bounded at zero, hence the distribution of log-normal returns is positively-
skewed with a long right tail. The skewness of a log-normal distribution is given by: (𝑒𝜎2 + 2)

√
𝑒𝜎2 − 1

By Jensen’s inequality, the arithmetic mean is greater than the geometric mean. Under the assumption of log-normality,
the amount by which the arithmetic mean exceeds the geometric means of returns is half the volatility.

• Suppose the continuously compounded (log) returns ( r_t ) are normally distributed with mean ( \mu ) and variance
( \sigma^2 ): 𝑟𝑡 = ln ( 𝑃𝑡

𝑃𝑡−1
) ∼ 𝑁(𝜇, 𝜎2)

• The geometric mean return is given by 𝜇𝐺 = 1
𝑇 ∑𝑇

𝑡=1 𝑟𝑡, with expectation 𝔼[𝑟𝑡] = 𝜇

• The arithmetic mean of the simple returns is approximately given by 𝜇𝐴 ≈ 𝑒𝜇+ 1
2 𝜎2 − 1 ≈ 𝜇𝐺 + 1

2𝜎2, using the
first-order approximation 𝑒𝑥 ≈ 1 + 𝑥 for small 𝑥.
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Jarque-Bera test
The Jarque-Bera test statistic can be used to test whether the sample skewness and kurtosis are compatible with an as-
sumption that the returns are normally distributed. When returns are normally distributed, the skewness is asymptotically
normally distributed with a variance of 6, so (skewness)2/6 has a 𝜒2

1 distribution. Meanwhile, the kurtosis is asymptot-
ically normally distributed with mean 3 and variance of 24, and so (kurtosis - 3)2/24 also has a 𝜒2

1 distribution. These
two statistics are asymptotically independent (uncorrelated), and so their sum is 𝜒2

2

# Compute the stock returns sampled at various frequencies
intervals = {'annual': (12, 1), 'monthly': ('e', 12), 'weekly': ('w', 52), 'daily': (

↪'d', 252)}
moments = []
begdate, enddate = bd.begyr(CRSP_DATE//10000 - 19), bd.endyr(CRSP_DATE//10000)

for dataset, (freq, annualize) in intervals.items():

# If annual or monthly frequency, use StocksBuffer to pre-load all monthly returns
if dataset not in ['daily', 'weekly']:

stocks = CRSPBuffer(stocks=crsp, dataset='monthly', fields=['ret'],
beg=bd.begyr(begdate), end=enddate)

if dataset in ['weekly']: # weekly returns already computed from CRSP Daily, and␣
↪cached

stocks = crsp

univ_year = bd.endyr(begdate - 1) # universe as of end of previous calendar year␣
↪

dates = bd.date_range(bd.endyr(begdate), bd.endyr(enddate), freq=freq)
allstocks = []
for beg, end in tqdm(bd.date_tuples(dates)):

# Update the investment universe every calendar year ␣
↪

if bd.endyr(beg) != univ_year:
univ = crsp.get_universe(univ_year)
univ_year = bd.endyr(beg)

# Use StocksBuffer to cache daily returns for the new calendar year ␣
↪

if dataset in ['daily']:
stocks = CRSPBuffer(stocks=crsp, dataset='daily', fields=['ret'],

beg=bd.offset(beg, -1), end=bd.endyr(end))

# retrieve returns for universe stocks ␣
↪

ret = stocks.get_ret(beg=beg, end=end).reindex(univ.index)
allstocks.append(ret.rename(end))

# combine all years' stock returns, require stock in all years ␣
↪

allstocks = pd.concat(allstocks, axis=1, join='inner')

# compute annualized moments, ignoring small sample warnings
with warnings.catch_warnings():

warnings.simplefilter("ignore")
out = {

f"MeanAnnualized": np.nanmedian(
np.nanmean(np.log(1 + allstocks), axis=1)) * annualize,

f"VolAnnualized": np.nanmedian(

(continues on next page)
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np.nanstd(allstocks, axis=1, ddof=0)) * np.sqrt(annualize),
f"Skewness": np.nanmedian(

scipy.stats.skew(allstocks, nan_policy='omit', axis=1)),
f"ExcessKurtosis": np.nanmedian(

scipy.stats.kurtosis(allstocks, nan_policy='omit', axis=1)),
f"Count": len(allstocks),

}
df = DataFrame({dataset: Series(out)}).T
moments.append(df)

moments = pd.concat(moments, axis=0) # accumulate df to results ␣
↪

moments.reset_index().to_json(outdir / 'moments.json')

100%|██████████| 19/19 [00:00<00:00, 37.61it/s]
100%|██████████| 228/228 [00:04<00:00, 53.61it/s]
100%|██████████| 991/991 [00:01<00:00, 517.26it/s]
100%|██████████| 4781/4781 [07:05<00:00, 11.23it/s]

As we move from annual to daily sampling, stock returns exhibit greater kurtosis (i.e. fat tails) and annualized standard
deviation. Skewness is positive –the right tail of the distribution is longer than the left tail –but are U-shaped with daily
and annual returns featuring more positive-skewness than weekly or monthly.

moments

MeanAnnualized VolAnnualized Skewness ExcessKurtosis Count
annual 0.063249 0.356397 0.434219 0.002332 1519.0
monthly 0.063249 0.376568 0.314758 2.242009 1519.0
weekly 0.062119 0.402871 0.293850 6.612277 1519.0
daily 0.063325 0.429472 0.404691 13.332600 1519.0

fig, axes = plt.subplots(2,2)
for ix, ax in enumerate(axes.flatten()):

moments[moments.columns[ix]].plot.bar(ax=ax, color=f"C{ix}")
ax.set_xticklabels(moments.index, rotation=0, fontsize='small')
ax.set_xlabel(moments.columns[ix])

plt.suptitle(f"Statistical Moments of Stock Returns {begdate}-{enddate}")
plt.tight_layout()
plt.show()
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1.3.3 Correlations

Pearson’s correlation, also known as the linear correlation estimator, measures the strength of a linear relationship
between two variables. However, alternative methods can better capture nonlinear dependencies:

• Spearman’s rank correlation applies Pearson’s correlation to the ranked values of observations, measuring
monotonic relationships while being less sensitive to outliers.

• Kendall’s 𝜏 quantifies the relationship between two variables by comparing the number of concordant and discor-
dant pairs –pairs that agree or disagree on ordering. It is robust to outliers and effective for skewed or non-normally
distributed data.

Monthly SP500 and 30-year Treasury total market returns show positive correlation, which is fairly robust across the three
methods.

# retrieve SP500 and 30-Year Treasury total market returns from CRSP Indexes
ret = bench.get_series(['sprtrn', 'b30ret(mo)'], field='ret').dropna()
ret

permno sprtrn b30ret(mo)
date
19620731 0.006917 -0.008187
19620831 0.007498 0.031939
19620928 0.008965 0.015465

(continues on next page)
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19621031 -0.000354 0.012171
19621130 -0.002403 0.003414
... ... ...
20240830 0.010093 0.020778
20240930 0.004237 0.015521
20241031 -0.018615 -0.053895
20241129 0.005608 0.021467
20241231 -0.004285 -0.063115

[749 rows x 2 columns]

# Compute alternative measures of correlation
DataFrame(dict(spearman=scipy.stats.spearmanr(ret['sprtrn'], ret['b30ret(mo)'])[0],

kendall=scipy.stats.kendalltau(ret['sprtrn'], ret['b30ret(mo)'])[0],
pearson=scipy.stats.pearsonr(ret['sprtrn'], ret['b30ret(mo)'])[0]),
index=['Correlation of SP500 vs 30-Year Treasury Total Returns']).

↪round(4)

spearman kendall pearson
Correlation of SP500 vs 30-Year Treasury Total ... 0.1348 0.0933 0.1275

# Scatter plot of SP500 and and 30-year Treasury total market returns
fig, ax = plt.subplots()
ax.scatter(ret['sprtrn'], ret['b30ret(mo)'], alpha=0.5)
ax.set_xlabel('SP500')
ax.set_ylabel('30-year Treasury')
plt.title('SP500 vs 30-Year Treasury Monthly Total Returns')
plt.tight_layout()
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APPENDIX
SQL commands

• Manage tables
– CREATE DATABASE –Creates a new database.
– CREATE TABLE –Creates a new table.
– DELETE –Delete data from a table.
– DROP COLUMN –Deletes a column from a table.
– DROP DATABASE –Deletes the entire database.
– DROP TABLE –Deletes a table from a database.
– TRUNCATE TABLE –Deletes the data but does not delete the table.

• Querying a table
– SELECT –Used to select data from a database, which is then returned in a results set.
– SELECT DISTINCT –Sames as SELECT, except duplicate values are excluded.
– SELECT INTO –Copies data from one table and inserts it into another.
– UNIQUE –This constraint ensures all values in a column are unique.
– FROM –Specifies which table to select or delete data from.
– AS –Renames a table or column with an alias value which only exists for the duration of the query.
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• Query conditions
– WHERE –Filters results to only include data which meets the given condition.
– AND –Used to join separate conditions within a WHERE clause.
– BETWEEN –Selects values within the given range.
– IS NULL –Tests for empty (NULL) values.
– IS NOT NULL –The reverse of NULL. Tests for values that aren’t empty / NULL.
– LIKE –Returns true if the operand value matches a pattern.
– NOT –Returns true if a record DOESN’T meet the condition.
– OR –Used alongside WHERE to include data when either condition is true.

• Organize results
– ORDER BY –Used to sort the result data in ascending (default) or descending order through the use of ASC

or DESC keywords.
– GROUP BY –Used alongside aggregate functions (COUNT, MAX, MIN, SUM, AVG) to group the results.

• Join tables
– INNER JOIN returns rows that have matching values in both tables.
– LEFT JOIN returns all rows from the left table, and the matching rows from the right table.-
– RIGHT JOIN returns all rows from the right table, and the matching records from the left table
– FULL OUTER JOIN returns all rows when there is a match in either left table or right table.

References:
Fama, Eugene F., and Kenneth R. French. 1992.“The cross-section of expected stock returns.”The Journal of Finance
47 (2): 427–65.
Shumway, Tyler. 1997. The Delisting Bias in CRSP Data. The Journal of Finance, 52, 327-340.
Bali, Turan G, Robert F Engle, and Scott Murray. 2016. Empirical asset pricing: The cross section of stock returns.
John Wiley & Sons.
Stulz, René M., 2018,“The Shrinking Universe of Public Firms: Facts, Causes, and Consequences”, National Bureau
of Economics, 2 (June 2018)
FRM Exam Book Part I Quantative Analysis Chapter 12
Wharton Research Data Services.
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CHAPTER

TWO

JEGADEESH-TITMAN ROLLING PORTFOLIOS

The future is just more of the past waiting to happen - Fred D’Aguiar.
The Jegadeesh-Titman rolling portfolios approach explores the phenomenon of price momentum in financial markets,
focusing on strategies that involve buying stocks with recent strong performance and selling stocks with weak performance.
Univariate spread portfolios are constructed, which help isolate the return differences between high- and low-ranked
stocks. The following analysis covers key aspects such as overlapping and non-overlapping portfolio returns, the impact
of autocorrelation on variance estimation, and statistical hypothesis testing. Additionally, it discusses the Newey-West
correction for standard errors and evaluates the power of hypothesis tests.

import math
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import scipy
from scipy.stats import kurtosis, skew, norm
import statsmodels.formula.api as smf
import statsmodels.api as sm
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, CRSPBuffer
from finds.recipes import fractile_split
from finds.utils import plot_date
from secret import credentials, CRSP_DATE

VERBOSE = 0
#%matplotlib qt

# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)

# date range and parameters to construct momentum portfolios
begrebal = 19260630 # first price date is 19251231
endrebal = bd.endmo(CRSP_DATE, -1) # last rebal is one month before last CRSP
rebaldates = bd.date_range(begrebal, endrebal, 'endmo')
percentiles = [20, 80] # quintile spread percentile breakpoints
maxhold = 6 # hold each monthly-rebalanced portfolio for 6 months
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# preload monthly dataset into memory
monthly = CRSPBuffer(stocks=crsp, dataset='monthly',

fields=['ret', 'retx', 'prc'],
beg=bd.begmo(rebaldates[0], -6),
end=bd.endmo(rebaldates[-1], 1))

2.1 Price momentum

2.1.1 Overlapping portfolio returns

First, we estimate the six-month returns of a momentum strategy by averaging monthly observations.
At the end of each month 𝑡, we calculate the sorting variable as the past six-month return of all stocks in the investment
universe. The 20th and 80th percentiles of NYSE-listed stocks serve as thresholds: we go long on stocks in the top fractile
and short those in the bottom fractile. Each fractile is weighted by market capitalization, while the spread portfolio return
is the equal-weighted difference between the two sub-portfolios. The spread portfolio’s returns over the next six months
are recorded on a monthly basis by dividing by six.
A stock is eligible for inclusion if it meets the usual investment universe criteria at the end of the rebalance month and
has a non-missing month-end price from six months prior.

stocks = monthly
mom = []
for rebaldate in tqdm(rebaldates):

# determine pricing dates relative to rebaldate
beg = bd.endmo(rebaldate, -6) # require price at beg date
end = bd.endmo(rebaldate, 0) # require price at end date
start = bd.offset(beg, 1) # starting day of momemtum signal

# retrieve universe, prices, and momentum signal
p = [crsp.get_universe(rebaldate),

stocks.get_ret(beg=start, end=end).rename('mom'),
stocks.get_section(fields=['prc'], date=beg)['prc'].rename('beg')]

df = pd.concat(p, axis=1, join='inner').dropna()

# quintile breakpoints are determined from NYSE subset
tritile = fractile_split(values=df['mom'],

pct=percentiles,
keys=df.loc[df['nyse'], 'mom'])

# construct cap-wtd tritile spread portfolios
porthi, portlo = [df.loc[tritile==t, 'cap'] for t in [1, 3]]
port = pd.concat((porthi/porthi.sum(), -portlo/portlo.sum()))

# compute and store cap-weighted average returns over (up to) maxhold periods
begret = bd.offset(rebaldate, 1)
nhold = min(maxhold, len(rebaldates) - rebaldates.index(rebaldate))
endret = bd.endmo(begret, nhold - 1) # if maxhold is beyond end date
rets = monthly.get_ret(begret, endret)
ret = rets.reindex(port.index).fillna(0.).mul(port, axis=0).sum()
mom.append(float(ret) / nhold)

0%| | 0/1182 [00:00<?, ?it/s]

24 Chapter 2. Jegadeesh-Titman Rolling Portfolios



Financial Data Science Python Notebooks

100%|██████████| 1182/1182 [11:41:22<00:00, 35.60s/it]

DataFrame({'mean': np.mean(mom), 'std': np.std(mom)}, index=['Overlapping Returns'])

mean std
Overlapping Returns 0.004526 0.024599

2.1.2 Non-overlapping portfolio returns

A spread portfolio is constructed at the end of each month in the same manner. However, instead of overlapping returns,
the return recorded is the equal-weighted average of the following month’s returns from six distinct portfolios formed
between 𝑡 and 𝑡 − 5. Each month, the weights of stocks in the spread portfolios adjust according to their price changes,
following a“buy-and-hold”approach over six months.

ports = [] # to roll 6 past portfolios
jt = []
stocks = monthly
for rebaldate in tqdm(rebaldates):

# determine returns dates relative to rebaldate
beg = bd.endmo(rebaldate, -6) # require price at beg date
end = bd.endmo(rebaldate, 0) # require price at end date
start = bd.offset(beg, 1) # starting day of momemtum signal

# retrieve universe, prices, and momentum signal
p = [crsp.get_universe(rebaldate),

stocks.get_ret(beg=start, end=end).rename('mom'),
stocks.get_section(fields=['prc'], date=beg)['prc'].rename('beg')]

df = pd.concat(p, axis=1, join='inner').dropna()

# quintile breakpoints determined from NYSE subset
tritile = fractile_split(values=df['mom'],

pct=percentiles,
keys=df.loc[df['nyse'], 'mom'])

# construct cap-wtd tritile spread portfolios
porthi, portlo = [df.loc[tritile==t, 'cap'] for t in [1, 3]]
port = pd.concat((porthi/porthi.sum(), -portlo/portlo.sum()))

# retain up to 6 prior months of monthly-rebalanced portfolios
ports.insert(0, port)
if len(ports) > maxhold:

ports.pop(-1)

# compute all 6 portfolios' monthly capwtd returns, and store eqlwtd average
begret = bd.offset(rebaldate, 1)
endret = bd.endmo(begret)
rets = stocks.get_ret(begret, endret)
ret = np.mean([rets.reindex(p.index).fillna(0.).mul(p, axis=0).sum()

for p in ports])
jt.append(ret)

# adjust stock weights by monthly capital appreciation

(continues on next page)

2.1. Price momentum 25



Financial Data Science Python Notebooks

(continued from previous page)

retx = stocks.get_ret(begret, endret, field='retx')
ports = [(1 + retx.reindex(p.index).fillna(0.)).mul(p, axis=0)

for p in ports]

DataFrame({'mean': np.mean(jt), 'std': np.std(jt)}, index=['Non-overlapping Returns'])

0%| | 0/1182 [00:00<?, ?it/s]

100%|██████████| 1182/1182 [03:30<00:00, 5.62it/s]

mean std
Non-overlapping Returns 0.004502 0.051419

Correlation with lagged returns
For the overlapping portfolios, each month’s recorded return is (one-sixth of) a six-month return. Let 𝑟𝑡 be the return
at time 𝑡. The 6-month return at time 𝑡, denoted as 𝑅𝑡 , is the sum of the past 6 monthly returns: $𝑅𝑡 = 𝑟𝑡 + 𝑟𝑡−1 +
𝑟𝑡−2 + 𝑟𝑡−3 + 𝑟𝑡−4 + 𝑟𝑡−5$
Since we sample monthly, consecutive returns 𝑅𝑡 and 𝑅𝑡+1 overlap significantly. Up to 5/6 of adjacent months’returns
actually reflect the same month’s stock returns. Even returns recorded five months apart share one month of stock returns
in common. Ignoring this overlap when estimating variance leads to underestimation of the true variance.
The Jegadeesh-Titman non-overlapping portfolio approach eliminates this issue.

fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(10, 9))
for lag, ax in zip(range(1, axes.shape[0]+1, 1), axes):

pd.plotting.lag_plot(Series(mom), lag=lag, ax=ax[0], s=3, c="C1")
ax[0].set_title(f"Overlapping portfolio returns at lag={lag}")
r = scipy.stats.linregress(mom[lag:], mom[:-lag])
ax[0].axline((0, r.intercept), slope=r.slope, ls=':', color="C2")

pd.plotting.lag_plot(Series(jt), lag=lag, ax=ax[1], s=3, c="C0")
ax[1].set_title(f"Non-overlapping portfolio returns at lag={lag}")
r = scipy.stats.linregress(jt[lag:], jt[:-lag])
ax[1].axline((0, r.intercept), slope=r.slope, ls=':', color="C2")

plt.tight_layout()
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Plot cumulative monthly average returns
Jegadeesh-Titman non-overlapping 6-month momentum portfolio cumulative returns

fig, ax = plt.subplots(figsize=(10, 5), clear=True)
plot_date(DataFrame(index=rebaldates, data=np.cumsum(jt), columns=['momentum']),

ax=ax, fontsize=10, rotation=0,
ylabel1='Cumulative Returns', xlabel='Rebalance Date',
title=f'Jegadeesh-Titman 6-month momentum portfolios ({rebaldates[0]}-

↪{rebaldates[-1]})')
plt.show()
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Plot histogram of monthly returns
Distribution of Jegadeesh-Titman non-overlapping 6-month momentum portfolio returns

fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 5))
ax.hist(jt, bins=30)
ax.set_title(f"Histogram of monthly returns")
ax.legend(['6-month momentum'])
kurt = kurtosis(jt, bias=True, fisher=True) # excess kurtosis
skewness = skew(jt, bias=True)
ax.set_xlabel(f"skewness={skewness:.4f}, excess kurtosis={kurt:.4f}")
plt.tight_layout()
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2.2 Hypothesis testing

A hypothesis test makes a precise statement about population parameters and evaluates the likelihood of observing the
data under a given assumption.

• The null hypothesis specifies the true value of a parameter to be tested, often 𝐻0 ∶ ̂𝜇 = 𝜇0

• The test statistic is a summary of the observed data that has a known distribution when the null hypothesis is true,
e.g. 𝑇 − ̂𝜇 − 𝜇0

√𝜎2/𝑛
∼ 𝑁(0, 1)

• The alternative hypothesis defines the range of values of the parameter where the null should be rejected, e.g.
𝐻𝑎 ∶ ̂𝜇 ≠ 𝜇0

– In some testing problems, the alternative hypothesis is not the full complement of the null, for example, a
one-sided alternative 𝐻𝑎 ∶ ̂𝜇 > 𝜇0, which is used whtn the outcome of interest is only above or below the
value assumed by the null.

• The critical value 𝐶𝛼 marks the start of a range of values where the test statistic is unlikely to fall in, if the null
hypthesis were true, e.g. 𝐶𝛼 = Φ−1(1 − 𝛼/2) = 1.96 when 𝛼 = 5% for a two-sided test. This range is known as
the rejection region.

• The size of the test is the probability of making a Type I error of rejecting null hypothesis that is actually true. A
test is said to have significance level 𝛼 if its size is less than or equal to 𝛼. This reflects the aversion to rejecting a
null hypothesis that is, in fact, true.

• The p-value is the probability of obtaining a test statistic at least as extreme as the one we observed from the sample,
if the null hypothesis were true, e.g. 𝑝 = 2(1 − Φ(|𝑇 |)) for a two-sided test.

2.2.1 Confidence Interval

A 1−𝛼 confidence interval contains the values surrounding the test statistic that cannot be rejected when using a test size
of 𝛼, e.g. [ ̂𝜇 − 𝐶𝛼

𝜎2
√𝑛, ̂𝜇 + 𝐶𝛼

𝜎2
√𝑛] for a two-sided interval

2.2.2 Newey-West corrected t-stats

Standard errors are underestimated when assuming independent observations, as this assumption does not hold for over-
lapping returns. The Newey-West (1987) estimator corrects for heteroskedasticity and autocorrelation by specifying a
“maximum lag”for autocorrelation control. A common choice is 𝐿 = the fourth root of the number of observations

(e.g., Greene, Econometric Analysis, 7th ed., p. 960).
Applying the Newey-West correction nearly doubles the estimated standard error for overlapping portfolios, but it has a
minimal effect on non-overlapping returns.

print('n =', len(mom), ' L =', math.ceil(len(mom)**(1/4)))
results = []
for rets, label in zip([mom, jt], ['Overlapping', 'Non-overlapping']):

data = DataFrame(rets, columns=['ret'])

# raw t-stats
reg = smf.ols('ret ~ 1', data=data).fit()
uncorrected = Series({stat: round(float(getattr(reg, stat).iloc[0]), 6)

for stat in ['params','bse','tvalues','pvalues']},
name='uncorrected') # coef, stderr, t-value, P>|z|

(continues on next page)
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# Newey-West correct t-stats
reg = smf.ols('ret ~ 1', data=data)\

.fit(cov_type='HAC', cov_kwds={'maxlags': 6})
corrected = Series({stat: round(float(getattr(reg, stat).iloc[0]), 6)

for stat in ['params','bse','tvalues','pvalues']},
name='NeweyWest') # coef, stderr, t-value, P>|z|

# merge into intermediate dataframe with multicolumn index
df = pd.concat([uncorrected, corrected], axis=1)
df.columns = pd.MultiIndex.from_product([[label], df.columns])
results.append(df)

pd.concat(results, axis=1).rename_axis('Standard Errors')

n = 1182 L = 6

Overlapping Non-overlapping
uncorrected NeweyWest uncorrected NeweyWest

Standard Errors
params 0.004526 0.004526 0.004502 0.004502
bse 0.000716 0.001285 0.001496 0.001463
tvalues 6.322644 3.522659 3.009069 3.078432
pvalues 0.000000 0.000427 0.002676 0.002081

2.2.3 Power of Test

A Type II error occurs when the alternative hypothesis is true but the null is not rejected. The probability of a Type II
error is denoted by 𝛽, while power (1 − 𝛽) represents the probability of correctly rejecting a false null hypothesis.
Unlike test size, the power of a test depends on:

1. Sample size
2. Test size (𝛼)
3. The distance between the true parameter value and the null hypothesis value

For a one-sided test 𝐻𝑎 ∶ ̂𝜇 > 𝜇0, power is given by:

1 − 𝛽(𝛼) = Φ(𝐶𝛼
𝜎2
√𝑛∣𝜇𝑎, 𝜎2

√𝑛)

DataFrame(data={"True Null": ['correct', '(1 - alpha)', 'Type I Error', 'Size: (alpha)
↪'],

"False Null": ['Type II Error', '(beta)', 'correct', 'Power: (1-beta)
↪']},

index=['Accept Null', '', 'Reject Null', ''])\
.rename_axis(index='Decision')

True Null False Null
Decision
Accept Null correct Type II Error

(continues on next page)
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(continued from previous page)

(1 - alpha) (beta)
Reject Null Type I Error correct

Size: (alpha) Power: (1-beta)

Effect of Test Size (alpha) and True Alternative (mu) on Power

# Assumtions
alternative = 0.06 # alternative hypothesis that annualized mean is as large as 6%
scale = np.std(jt) / np.sqrt(len(jt)) # assumed scale (std dev or volatility)

# Vary test size (alpha) and true mean (mu)
mu = np.linspace(0, alternative/12, 100) # vary true mean
plt.figure(figsize=(10, 5))
for alpha in [0.1, 0.05, 0.01]: # vary test size

power = 1 - norm.cdf(norm.ppf(1 - alpha) * scale, loc=mu, scale=scale)
plt.plot(mu, 100*power, label=f"$\\alpha=${alpha}")

plt.title("Effect of Test Size ($\\alpha$) and True Alternative $\\mu$ on Power")
plt.ylabel('Power (%) = 1 - Prob[Type II Error]')
plt.xlabel('True average monthly return $\\mu$')
plt.legend()

<matplotlib.legend.Legend at 0x7f12c13d0950>

Effect of Sample Size on Power

# Assumptions
volatility = np.std(jt)
alternative = 0.06/12 # mean of the alternate hypotehsis
alpha = 0.05 # desired size of the test
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# Compare large and small sample sizes
for N in [len(jt) // 20, len(jt)]:

# define null and alternate distributions given sample size
scale = volatility/np.sqrt(N) # scaled by square root of sample size
null_dist = norm(0, scale)
alt_dist = norm(alternative, scale)
critical_val = null_dist.ppf(1-alpha) # critical value to reject null

fig, ax = plt.subplots(figsize=(10, 6))
x = np.linspace(-7 * scale, 7 * scale, 1000)
ax.plot(x, null_dist.pdf(x), color='blue') # plot null distribution
ax.plot(x, alt_dist.pdf(x), color='green') # plot alt distribution
ylim = plt.ylim()[0]
ax.axvline(x=critical_val, ymax=ylim, ls=':', color='r') # critical value
px = x[x > critical_val]
ax.fill_between(px, alt_dist.pdf(px), color='darkgrey') # rejection region
px = x[x < critical_val]
ax.fill_between(px, alt_dist.pdf(px), color='lightgrey') # acceptance region
ax.set_title(f"Power varies with sample size (N={N})")
ax.set_xlabel("$\mu$")
plt.legend(['Null', 'True (Population)', 'Critical Value',

'Prob Reject Null', 'Prob Type II Error'])
plt.tight_layout()
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CHAPTER

THREE

FAMA-FRENCH PORTFOLIO SORTS

The way to become rich is to put all your eggs in one basket and then watch that basket - Andrew Carnegie
The Fama-French portfolio sorting methodology is widely used in empirical asset pricing research, particularly in un-
derstanding the cross-section of stock returns. By classifying stocks based on fundamental characteristics such as book-
to-market ratio and firm size, this approach provides insights into the risk and return dynamics of different investment
strategies. This notebook also includes linear regression analysis to assess factor exposures, tests for the value and small-
firm effects, and a structural break analysis using the Chow test.

import numpy as np
import scipy
from scipy.stats import skew, kurtosis
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, CRSPBuffer, Signals, Benchmarks, PSTAT
from finds.utils import plot_date
from finds.backtesting import bivariate_sorts, BackTest
from finds.utils import plot_date, plot_scatter, plot_hist
from tqdm import tqdm
from secret import credentials, CRSP_DATE

VERBOSE = 0
# %matplotlib qt

sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
signals = Signals(user, verbose=VERBOSE)
bench = Benchmarks(sql, bd, verbose=VERBOSE)
backtest = BackTest(user, bench, rf='RF', max_date=CRSP_DATE, verbose=VERBOSE)
LAST_DATE = bd.endmo(CRSP_DATE, -1) # last monthly rebalance date
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3.1 Stock fundementals data

3.1.1 Compustat

Compustat is a database containing financial statements and market data for both active and inactive U.S. and international
companies. It is commonly used in academic and industry research.
To compute book-to-price ratios from financial statements, we:

• Extract balance sheet items from the Compustat Annual dataset.
• Construct the High Minus Low (HML) factor by calculating book equity as shareholders’equity plus investment

tax credits, minus preferred stock, divided by the market capitalization at the end of December.
• Apply a six-month reporting lag and require at least two years of history in Compustat.
• Exclude deferred taxes and investment tax credits from book equity for fiscal years ending in 1993 or later, following

FASB 109, which improved the accounting treatment for deferred income taxes.

label = 'hml'
lag = 6 # number of months to lag fundamental data
# retrieve data fields from compustat, linked by permno
df = pstat.get_linked(dataset = 'annual',

date_field = 'datadate',
fields = ['seq', 'pstk', 'pstkrv', 'pstkl', 'txditc'],
where = ("indfmt = 'INDL'"

" AND datafmt = 'STD'"
" AND curcd = 'USD' "
" AND popsrc = 'D'"
" AND consol = 'C'"
" AND seq > 0 "))

# subtract preferred stock
df[label] = np.where(df['pstkrv'].isna(), df['pstkl'], df['pstkrv'])
df[label] = np.where(df[label].isna(), df['pstk'], df[label])
df[label] = np.where(df[label].isna(), 0, df[label])

# do not add back deferred investment tax credit for fiscal years in 1993 or later
df[label] = (df['seq'] - df[label]

+ df['txditc'].fillna(0).where(df['datadate'] // 10000 <= 1993, 0))
df.dropna(subset = [label], inplace=True)
df = df[df[label] > 0][['permno', 'gvkey', 'datadate', label]]

# count years in Compustat
df = df.sort_values(by=['gvkey','datadate'])
df['count'] = df.groupby(['gvkey']).cumcount()

# construct b/m ratio
df['rebaldate'] = 0
for datadate in tqdm(sorted(df['datadate'].unique())):

f = df['datadate'].eq(datadate)
rebaldate = bd.endmo(datadate, abs(lag)) # 6 month lag
capdate = bd.endyr(datadate) # Dec mktcap
if rebaldate >= CRSP_DATE or capdate >= CRSP_DATE:

continue

(continues on next page)
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(continued from previous page)

df.loc[f, 'rebaldate'] = rebaldate
df.loc[f, 'cap'] = crsp.get_cap(capdate, use_permco=True)\

.reindex(df.loc[f, 'permno'])\

.values
df[label] /= df['cap']
df = df[df[label].gt(0) & df['count'].gt(1)] # 2+ years in Compustat
signals.write(df, label)

100%|██████████| 758/758 [00:02<00:00, 317.69it/s]

227642

3.2 Bivariate sorts

Independent bivariate sorts categorize stocks based on two characteristics: book-to-market ratio and market capitalization.
Portfolios are formed at the end of each June and represent the intersections of:

• Two groups sorted by size (market equity, ME).
• Three groups sorted by book-to-market ratio (BE/ME).

The size breakpoint for year t is the median NYSE market equity at the end of June in that year. Stocks within each of
the six resulting portfolios are weighted by market capitalization.
The two key factors derived from these sorts are:

• HML (HighMinus Low): The equal-weighted average return of the two value portfolios minus the average return
of the two growth portfolios.

• SMB (Small Minus Big): The equal-weighted average return of the three small-size portfolios minus the average
return of the three large-size portfolios.

Causal Analysis
This sorting approach has conceptual parallels with causal analysis techniques. Specifically, propensity score matching
is often used in statistical research to mitigate confounding effects when estimating treatment effects. Propensity scores,
estimated via logistic regression, allow researchers to:

• Stratify subjects into groups based on similar propensity scores.
• Match treated and control subjects with comparable propensity scores.
• Adjust for imbalances using regression models.

Since firm size directly influences the book-to-market ratio (as its denominator), applying bivariate sorting ensures that
value returns are estimated while controlling for the small-firm effect—similar to how propensity score matching controls
for confounding variables in observational studies.
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3.2.1 HML

Compute High Minus Low book-to-price monthly returns and compare to Fama-French research factor

label, benchname = 'hml', 'HML(mo)'
rebalend = LAST_DATE
rebalbeg = 19700101

# preload monthly dataset into memory
monthly = CRSPBuffer(stocks=crsp, dataset='monthly',

fields=['ret', 'retx', 'prc'],
beg=19251201, end=CRSP_DATE)

hml, smb = bivariate_sorts(stocks=monthly,
label=label,
signals=signals,
rebalbeg=rebalbeg,
rebalend=rebalend,
window=12,
months=[6])

Helpers to show histograms and comparisons of portfolio returns

def plot_ff(y, label):
"""helper to scatter plot and compare portfolio returns"""
y = y.rename(columns={'excess': label})
corr = np.corrcoef(y, rowvar=False)[0,1]
fig, (ax1, ax2) = plt.subplots(2, 1, clear=True, figsize=(10, 10))
plot_date(y, ax=ax1, title=" vs ".join(y.columns), fontsize=7)
plot_scatter(y.iloc[:,0], y.iloc[:,1], ax=ax2, abline=False, fontsize=7)
plt.legend([f"corr={corr:.4f}"], fontsize=8)
plt.tight_layout(pad=0.5)
print(f"<R-squared of {label} vs {benchname}"

f" ({y.index[0]} - {y.index[-1]}): {corr*corr:.4f}")

def plot_summary(y, label):
"""helper to plot histogram and statistics of portfolio returns"""
y = y[label]
kurt = kurtosis(y, bias=True, fisher=True) # excess kurtosis
skewness = skew(y, bias=True)
fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 5))
ax.hist(y, bins=30)
ax.set_title(f"Monthly rebalances ({y.index[0]}-{y.index[-1]})")
ax.set_xlabel(f"skewness={skewness:.4f}, excess kurtosis={kurt:.4f}",

fontsize=8)
plt.legend([label])
plt.tight_layout()

# Plot histogram and comparison of HML returns
holdings = hml
result = backtest(monthly, holdings, label)
y = backtest.fit([benchname], rebalbeg, LAST_DATE)
plot_ff(y, label)
plot_summary(y, benchname)
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<R-squared of hml vs HML(mo) (19700227 - 20241129): 0.9784
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3.2.2 SMB

Compare Small-Minus-Big monthly returns and compare to Fama-French research factor

# Plot histogram and comparison of SMB returns
label, benchname = 'smb', 'SMB(mo)'
holdings = smb
result = backtest(monthly, holdings, label)
y = backtest.fit([benchname], rebalbeg, LAST_DATE)
plot_ff(y, label)
plot_summary(y, benchname)

<R-squared of smb vs SMB(mo) (19700227 - 20241129): 0.9636

40 Chapter 3. Fama-French Portfolio Sorts



Financial Data Science Python Notebooks

3.2. Bivariate sorts 41



Financial Data Science Python Notebooks

3.3 Linear regression

Simple Linear Regression
The simple linear regression (SLR) model relates a continuous response (or dependent) variable 𝑦𝑖 with one predictor (or
explanatory or independent) variable 𝑥𝑖 and an error term 𝜖𝑖:

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝜖𝑖

Coefficent estimates of the slope 𝑏 and intercept 𝑎 are chosen to minimize the residual sum of squares:

̂𝑏 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̂𝑦)
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2

̂𝑎 = ̄𝑦 − ̂𝑏 ̄𝑥
Key concepts:

• Residuals are the difference between the observed response values and the response values predicted by the model,
𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖.

• Residual sum of squares (RSS) over all observations is 𝑅𝑆𝑆 = 𝑒2
1 + 𝑒2

2 + ... + 𝑒2
𝑛 or equivalently 𝑅𝑆𝑆 =

∑𝑛
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2.

• Mean square error (MSE) is an estimate of the variance of the residuals 𝑠2 = �̂�2 = 1
𝑛−2 ∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2.
• Residual standard error (RSE) or residual standard deviation is the estimate of the (square root of the) variance of

the residuals. Standard error tells us the average amount that the estimate differs from the actual value. The residual
standard error is the estimate of the (square root of the) variance of the residuals ̂𝑠 ≡ 𝑅𝑆𝐸 = √𝑅𝑆𝑆/(𝑛 − 2).

Hypothesis testing and confidence intervals
The estimators of the coefficients follow a normal distribution in large samples. Therefore, tests of a hypothesis about a
regression parameter are implemented using a t-test. The standard errors associated with linear regression coefficient and
mean response estimates are:
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• Slope: 𝑠𝑒( ̂𝑏) = √ 𝑠2

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

• Intercept: 𝑠𝑒( ̂𝑎) = √𝑠2[ 1𝑛 + 𝑥2

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2 ]

• Mean response: 𝑠𝑒( ̂𝑦) = √𝑠2[ 1𝑛 + (𝑥 − ̄𝑥)2

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2 ]

• Confidence intervals can be computed from standard errors. A 95% confidence interval is defined as a range
of values such that with 95% probability, the range will contain the true unknown value of the parameter. The
confidence interval for coefficient estimates is:\ 𝑏𝑗 ± 𝑡𝑛−(𝑘+1),1− 𝛼

2
𝑠𝑒(𝑏𝑗), where 𝑘, the number of regressors,

equals 1 for SLR.

• Prediction interval for a new response is 𝑠𝑒( ̂𝑦𝑛+1) = √𝑠2(1 + 1
𝑛 + (𝑥 − ̄𝑥)2

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2 )

Multiple Linear Regression
With multiple regressors, the linear model 𝑦 = 𝑏0+𝑏1𝑥1+...+𝑏𝑘𝑥𝑘+𝜖 has coefficient estimates: $ ̂𝑏 = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑦$
The coefficient 𝑏𝑗 quantifies the association between the 𝑗‘th predictor and the response. It is the average effect on Y
of a one unit increase in 𝑋𝑗, holding all other predictors fixed.
Additional concepts:

• Sum of squares total (SST) measures the total variance in the response Y, and can be thought of as the amount of
variability inherent in the response before the regression is performed. SST = ∑𝑛

𝑖=1(𝑦𝑖 − 𝑦)2 measures the total
variance in the response Y.

• Sum of squares regression (SSR) measures the total amount variance captured by the regression model: SSR =
∑𝑖 = 1𝑛( ̂𝑦𝑖 − 𝑦)2

• Sum of squares error (SSE) measures the total variance of the response not explained by the regression model. In
the linear regression context, we may intepret total deviation to equal the deviation not explained by the explanatory
variables plus deviation explained by the explanatory variables: (𝑦𝑖 − 𝑦) = (𝑦𝑖 − ̂𝑦𝑖) + ( ̂𝑦𝑖 − 𝑦𝑖).
Squaring each side and summing over all observations yields for the total sum of squared deviations 𝑆𝑆𝑇 =
∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2 + ∑𝑛
𝑖=1( ̂𝑦𝑖 − 𝑦𝑖)2 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅, where the sum of the cross-product terms turns out to be

zero.
• 𝑅2 statistic or coefficient of determination measures the proportion of variability in Y that can be explained using

X. It is also identical to the squared correlation between X and Y. An 𝑅2 statistic that is close to 1 indicates that a
large proportion of the variability in the response has been explained by the regression. A number near 0 indicates
that the regression did not explain much of the variability in the response. The 𝑅2 statistic provides a relative
measure of the quality of a linear regression fit 𝑅2 = 1 − RSS

SST , and always takes on a value between 0 and 1, and
is independent of the scale. 𝑅2 is identical to the squared correlation between 𝑋 and 𝑌 .

• Adjusted 𝑅2: The usual 𝑅2 always increases (since residual sum of squares RSS always decreases) as more variables
are added. The intuition behind the adjusted 𝑅2 is that once all of the correct variables have been included in the
model, adding noise variables will lead to a decrease in the statistic. In theory, the model with the largest adjusted
𝑅2 will have only correct variables and no noise variables.

• Partial correlation coefficients, which measure the correlation between 𝑦 and the 𝑗 ‘th explana-
tory variable 𝑥𝑗 controlling for other explanatory variables, can also be obtained by running only
one regression: $𝑟(𝑦, 𝑥𝑗|𝑥1, 𝑥2, ..., 𝑥𝑗−1, 𝑥𝑗+1, ..., 𝑥𝑘) = 𝑡(𝑏𝑗)

√𝑡(𝑏𝑗)2+𝑛−(𝑘+1)
𝑤ℎ𝑒𝑟𝑒t(b_j)𝑖𝑠𝑡ℎ𝑒𝑡 −

𝑟𝑎𝑡𝑖𝑜𝑓𝑜𝑟b_j𝑓𝑟𝑜𝑚𝑎𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑜𝑓y𝑜𝑛x_1,⋯,x_k(𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔𝑡ℎ𝑒𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒x_j$).
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• t-statistic or t-ratio: 𝑡(𝑏𝑗) = 𝑏𝑗
𝑠𝑒(𝑏𝑗)

can be interpreted to be the number of standard errors that 𝑏𝑗 is away from

zero. In a t-test, the null hypothesis (𝐻0 ∶ 𝛽𝑗 = 0) is rejected in favor of the alternative if the absolute value of the
t-ratio |𝑡(𝑏𝑗)| exceeds a t-value, denoted 𝑡𝑛−(𝑘+1),1− 𝛼

2
, equal to the (1 − 𝛼

2 )‘th percentile from the t-distribution
using 𝑑𝑓 = 𝑛 − (𝑘 + 1) degrees of freedom.

*Hypothesis tests
The t-test is not directly applicable when testing hypotheses that involve more than one parameter, because the parameter
estimators can be correlated. Instead, a common alternative called the F-test compares the fit of the model (measured
using the RSS) when the null hypothesis is true relative to the fit of the model without the restriction on the parameters
assumed by the null. To test whether all regression slope coefficients are zero 𝐻0 ∶ 𝑏1 = ... = 𝑏𝑝 = 0, versus the
alternative 𝐻𝑎 ∶ at least one 𝑏𝑗 is non-zero, compute the statistic. which has a 𝐹(𝑝, 𝑛 − 𝑝 − 1) distribution:

𝐹 = (𝑇𝑆𝑆 − 𝑅𝑆𝑆)/𝑝
𝑅𝑆𝑆/(𝑛 − 𝑝 − 1)

Partial F-test: Sometimes, we want to test that a particular subset of 𝑞 of the coefficients are zero. In this case we fit a
second model that uses all the variables except those last 𝑞, then compute residual sum of squares for that model and the
appropriate F-statistic, which has a 𝐹(𝑝 − 𝑞, 𝑛 − 𝑝 − 1) distribution:

𝐹 = (𝑅𝑆𝑆𝑞 − 𝑅𝑆𝑆)/(𝑝 − 𝑞)
𝑅𝑆𝑆/(𝑛 − 𝑝 − 1)

3.3.1 Value effect

The value effect refers to the observed tendency of value stocks (low price-to-book ratios) to outperform growth stocks
(high price-to-book ratios) over time. This phenomenon supports value investing, a strategy linked to Benjamin Graham
and David Dodd, which focuses on identifying undervalued stocks based on fundamental analysis.

# Linear regression on Mkt-Rf and intercept
x = ["HML(mo)", "Mkt-RF(mo)"]
formula = f'Q("{x[0]}") ~ ' + " + ".join(f'Q("{v}")' for v in x[1:])
data = bench.get_series(x, field='ret', beg=19620701, end=20991231)
lm = smf.ols(formula, data=data).fit(cov_type='HAC', cov_kwds={'maxlags': 6})
print(f"Period: {data.index[0]}-{data.index[-1]}")
print(lm.summary())

Period: 19620731-20241231
OLS Regression Results

==============================================================================
Dep. Variable: Q("HML(mo)") R-squared: 0.041
Model: OLS Adj. R-squared: 0.040
Method: Least Squares F-statistic: 8.701
Date: Sun, 02 Mar 2025 Prob (F-statistic): 0.00328
Time: 14:45:35 Log-Likelihood: 1587.2
No. Observations: 750 AIC: -3170.
Df Residuals: 748 BIC: -3161.
Df Model: 1
Covariance Type: HAC
===================================================================================

coef std err z P>|z| [0.025 0.975]
-----------------------------------------------------------------------------------
Intercept 0.0037 0.001 2.615 0.009 0.001 0.006
Q("Mkt-RF(mo)") -0.1344 0.046 -2.950 0.003 -0.224 -0.045

(continues on next page)
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(continued from previous page)

==============================================================================
Omnibus: 54.218 Durbin-Watson: 1.670
Prob(Omnibus): 0.000 Jarque-Bera (JB): 243.740
Skew: -0.030 Prob(JB): 1.18e-53
Kurtosis: 5.792 Cond. No. 22.3
==============================================================================

Notes:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using␣

↪6 lags and without small sample correction

3.3.2 Small firm effect

The small firm effect, identified by Rolf Banz in 1981, describes the tendency of small-cap stocks to generate higher
risk-adjusted returns than large-cap stocks. This suggests that smaller companies may offer higher expected returns as
compensation for their increased risk and lower liquidity.

# Linear regression on Mkt-Rf, HML and intercept
x = ["SMB(mo)", "HML(mo)", "Mkt-RF(mo)"]
formula = f'Q("{x[0]}") ~ ' + " + ".join(f'Q("{v}")' for v in x[1:])
data = bench.get_series(x, field='ret', beg=19620701, end=20991231)
lm = smf.ols(formula, data=data).fit(cov_type='HAC', cov_kwds={'maxlags': 6})
print(f"Period: {data.index[0]}-{data.index[-1]}")
print(lm.summary())

Period: 19620731-20241231
OLS Regression Results

==============================================================================
Dep. Variable: Q("SMB(mo)") R-squared: 0.097
Model: OLS Adj. R-squared: 0.095
Method: Least Squares F-statistic: 28.64
Date: Sun, 02 Mar 2025 Prob (F-statistic): 1.03e-12
Time: 14:45:35 Log-Likelihood: 1593.2
No. Observations: 750 AIC: -3180.
Df Residuals: 747 BIC: -3167.
Df Model: 2
Covariance Type: HAC
===================================================================================

coef std err z P>|z| [0.025 0.975]
-----------------------------------------------------------------------------------
Intercept 0.0007 0.001 0.592 0.554 -0.002 0.003
Q("HML(mo)") -0.0937 0.088 -1.066 0.286 -0.266 0.079
Q("Mkt-RF(mo)") 0.1901 0.028 6.672 0.000 0.134 0.246
==============================================================================
Omnibus: 105.898 Durbin-Watson: 2.056
Prob(Omnibus): 0.000 Jarque-Bera (JB): 722.449
Skew: 0.406 Prob(JB): 1.33e-157
Kurtosis: 7.739 Cond. No. 34.8
==============================================================================

Notes:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using␣

↪6 lags and without small sample correction
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3.4 Structural break test

The Chow test is used to detect structural breaks in time-series data. This involves estimating separate regression models
before and after a specified breakpoint (e.g., the publication of the HML factor in 1993). The test statistic is:

Chow = (𝑅𝑆𝑆 − (𝑅𝑆𝑆1 + 𝑅𝑆𝑆2))/𝐾
(𝑅𝑆𝑆1 + 𝑅𝑆𝑆2)/(𝑁 − 2𝐾)

where the test follows an 𝐹(𝐾,𝑁 − 2𝐾) distribution. If the test statistic exceeds a critical value, we reject the null
hypothesis that the regression coefficients remain constant across both time periods.

# Run restricted and unregression models
x = ["HML(mo)", "Mkt-RF(mo)"]
formula = f'Q("{x[0]}") ~ ' + " + ".join(f'Q("{v}")' for v in x[1:])
#formula = f'Q("HML(mo)")~ .'
bp = 19931231 # breakpoint date
lm1 = smf.ols(formula, data=data[data.index<=bp]).fit()
print(f'\nSub Model 1 ({data.index[0]}-{bp}):')
print(lm1.summary())
lm2 = smf.ols(formula, data=data[data.index>bp]).fit()
print(f'\nSub Model 2 ({bp}-{data.index[-1]}):')
print(lm2.summary())
lm0 = smf.ols(formula, data=data).fit()
print('\nRestricted Model (coefficient is equal):')
print(lm0.summary())

Sub Model 1 (19620731-19931231):
OLS Regression Results

==============================================================================
Dep. Variable: Q("HML(mo)") R-squared: 0.125
Model: OLS Adj. R-squared: 0.122
Method: Least Squares F-statistic: 53.47
Date: Sun, 02 Mar 2025 Prob (F-statistic): 1.59e-12
Time: 16:34:00 Log-Likelihood: 874.79
No. Observations: 378 AIC: -1746.
Df Residuals: 376 BIC: -1738.
Df Model: 1
Covariance Type: nonrobust
===================================================================================

coef std err t P>|t| [0.025 0.975]
-----------------------------------------------------------------------------------
Intercept 0.0056 0.001 4.524 0.000 0.003 0.008
Q("Mkt-RF(mo)") -0.2021 0.028 -7.312 0.000 -0.256 -0.148
==============================================================================
Omnibus: 29.355 Durbin-Watson: 1.600
Prob(Omnibus): 0.000 Jarque-Bera (JB): 55.192
Skew: 0.462 Prob(JB): 1.04e-12
Kurtosis: 4.628 Cond. No. 22.4
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣

↪specified.

Sub Model 2 (19931231-20241231):
OLS Regression Results

(continues on next page)
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(continued from previous page)

==============================================================================
Dep. Variable: Q("HML(mo)") R-squared: 0.007
Model: OLS Adj. R-squared: 0.005
Method: Least Squares F-statistic: 2.752
Date: Sun, 02 Mar 2025 Prob (F-statistic): 0.0980
Time: 16:34:00 Log-Likelihood: 738.00
No. Observations: 372 AIC: -1472.
Df Residuals: 370 BIC: -1464.
Df Model: 1
Covariance Type: nonrobust
===================================================================================

coef std err t P>|t| [0.025 0.975]
-----------------------------------------------------------------------------------
Intercept 0.0015 0.002 0.866 0.387 -0.002 0.005
Q("Mkt-RF(mo)") -0.0640 0.039 -1.659 0.098 -0.140 0.012
==============================================================================
Omnibus: 25.036 Durbin-Watson: 1.720
Prob(Omnibus): 0.000 Jarque-Bera (JB): 87.339
Skew: 0.058 Prob(JB): 1.08e-19
Kurtosis: 5.371 Cond. No. 22.3
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣

↪specified.

Restricted Model (coefficient is equal):
OLS Regression Results

==============================================================================
Dep. Variable: Q("HML(mo)") R-squared: 0.041
Model: OLS Adj. R-squared: 0.040
Method: Least Squares F-statistic: 31.83
Date: Sun, 02 Mar 2025 Prob (F-statistic): 2.39e-08
Time: 16:34:00 Log-Likelihood: 1587.2
No. Observations: 750 AIC: -3170.
Df Residuals: 748 BIC: -3161.
Df Model: 1
Covariance Type: nonrobust
===================================================================================

coef std err t P>|t| [0.025 0.975]
-----------------------------------------------------------------------------------
Intercept 0.0037 0.001 3.421 0.001 0.002 0.006
Q("Mkt-RF(mo)") -0.1344 0.024 -5.642 0.000 -0.181 -0.088
==============================================================================
Omnibus: 54.218 Durbin-Watson: 1.670
Prob(Omnibus): 0.000 Jarque-Bera (JB): 243.740
Skew: -0.030 Prob(JB): 1.18e-53
Kurtosis: 5.792 Cond. No. 22.3
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣

↪specified.

Test statistic with K parameters and N observations follows a 𝐹(𝐾, 𝑁 − 2𝐾)-distribution
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# Compute test statistic
K = len(lm0.params)
N = len(data)
RSS = lm0.resid.dot(lm0.resid)
RSS1 = lm1.resid.dot(lm1.resid)
RSS2 = lm2.resid.dot(lm2.resid)
chow = ((RSS - (RSS1 + RSS2)) / K) / ((RSS1 + RSS2) / (N - 2*K))
chow, N, K

(5.425564122014983, 750, 2)

p-value of Chow test statitic

1 - scipy.stats.f.cdf(chow, dfn=K, dfd=N - 2*K)

0.0045780451491863605

5% critical value to reject null

scipy.stats.f.ppf(q=1 - 0.05, dfn=K, dfd=N - 2*K)

3.0077945872688696

References:
Eugene F. Fama and Kenneth R. French (1992),“The Cross-Section of Expected Stock Returns”, Journal of Finance,
Volume 47, Issue 2, June 1992, pages 427-465
Eugene Fama and Kenneth French (2023), “Production of U.S. Rm-Rf, SMB, and HML in the Fama-French Data
Library”, Chicago Booth Paper No. 23-22
FRM Exam I Book Quantative Analysis Chapter 7-8
Wharton Research Data Services.
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CHAPTER

FOUR

FAMA-MACBETH CROSS-SECTIONAL REGRESSIONS

If you don’t risk anything, you risk even more –Erica Jong
The Fama-MacBeth (1973) cross-sectional regression methodology is a fundamental tool in empirical asset pricing, used
to estimate risk factor loadings and associated risk premia while accounting for cross-sectional correlation in errors. By
performing two-stage regressions, the method first estimates factor loadings for individual assets and then determines
the associated risk premia over time. This approach has broad applications in testing asset pricing models, including
the Capital Asset Pricing Model (CAPM) and multi-factor models. The following sections also analyze efficient frontier
construction, Black-Litterman implied alphas and portfolio optimization, risk factor modeling, and non-linear regressions.

import numpy as np
from numpy import linalg as la
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
from sklearn.kernel_ridge import KernelRidge
import random
from tqdm import tqdm
import cvxpy as cp
from finds.database import SQL, RedisDB
from finds.structured import (BusDay, Signals, Benchmarks, CRSP,

CRSPBuffer, SignalsFrame)
from finds.backtesting import RiskPremium
from finds.recipes import winsorize, least_squares
from finds.readers import FFReader
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
#%matplotlib qt

# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
signals = Signals(user, verbose=VERBOSE)
bench = Benchmarks(sql, bd, verbose=VERBOSE)
imgdir = paths['images']
LAST_DATE = bd.endmo(CRSP_DATE, -1)

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
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4.1 Mean variance optimization

Markowitz demonstrated that, given two investments with the same expected return (measured as the mean of returns), a
risk-averse investor will prefer the one with lower risk (measured by variance). His theory relies on several assumptions,
including the absence of market frictions (such as taxes or transaction costs) and normally distributed returns.
The assumption of normally distributed returns implies that rational investors should evaluate potential portfolio alloca-
tions based solely on the means and variances of their return distributions. Investors generally seek higher mean returns
while minimizing variance. Diversification plays a crucial role in reducing portfolio risk by incorporating assets whose
price movements are not perfectly correlated.
A key challenge in implementing this framework is estimating the necessary parameters—mean returns, variances, and
asset correlations—using historical data. The choice of historical period or forecast assumptions can significantly impact
the resulting allocation. To address this uncertainty, techniques such as robust portfolio optimization and the Black-
Litterman model have been developed.

# Retrieve test asset returns and risk-free rate
symbol = '6_Portfolios_2x3'
ff = FFReader(symbol)
rf = FFReader('F-F_Research_Data_Factors')[0]['RF'] / 100 # risk-free rates
mktcaps = ff[4] * ff[5] # number of firms x average market cap
labels = [s.replace('ME1', 'BIG').replace('ME2', 'SMALL') for s in mktcaps.columns]
n = len(labels)

r = (ff[0]/100).sub(rf.fillna(0), axis=0) # excess, of the risk-free, returns
sigma = np.cov(r, rowvar=False)
mu = np.mean(r, axis=0).values
assets = DataFrame(data={'mean': mu, 'volatility': np.sqrt(np.diag(sigma))},␣

↪index=labels)

mkt = {'weights': (mktcaps.iloc[-1]/mktcaps.iloc[-1].sum()).values} # latest caps
mkt['mean'] = mkt['weights'].dot(mu)
mkt['variance'] = mkt['weights'].dot(sigma).dot(mkt['weights'])
pd.concat([assets.T, Series({'mean': mkt['mean'], 'volatility': np.sqrt(mkt['variance

↪'])},
name='Mkt')], axis=1)

SMALL LoBM BIG BM2 SMALL HiBM BIG LoBM SMALL BM2 BIG HiBM \
mean 0.007149 0.009629 0.011528 0.006860 0.006886 0.009252
volatility 0.074748 0.069687 0.081045 0.052923 0.056215 0.071231

Mkt
mean 0.007152
volatility 0.053822
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4.1.1 Global minimum variance portfolio

The Global Minimum Variance (GMV) portfolio is the allocation that achieves the lowest possible risk based on estimated
asset variances and correlations while disregarding expected returns. This optimization problem is convex (quadratic) and
subject to the constraint that portfolio weights sum to one.
Mathematically, the GMV portfolio is obtained by solving:
$min𝑤 𝑤𝑇 Σ𝑤, subject to 𝑤𝑇 1 = 1𝑤ℎ𝑒𝑟𝑒\Sigma$ represents the covariance matrix of asset returns. This can be solved
numerically with the cvxpy Python package for convext optimization.

W = cp.Variable(n) # variable to optimize over - portfolio weights
Var = cp.quad_form(W, sigma) # objective to minimize portfolio volatility
Ret = mu.T @ W # objective to maximize portfolio return

obj = cp.Problem(cp.Minimize(Var), [cp.sum(W) == 1])
obj.solve()
gmv = dict(weights=W.value, variance=Var.value, mean=Ret.value,

coords=(np.sqrt(Var.value), Ret.value))

The GMV portfolio weights can also be derived using a closed form solution by differentiating the (convex) objective
function and setting the first-order conditions to zero: GMV = Σ−11

1𝑇 Σ−11
def gmv_portfolio(sigma, mu=None):

"""Returns position weights of global minimum variance portfolio"""
ones = np.ones((sigma.shape[0], 1))
w = la.inv(sigma).dot(ones) / ones.T.dot(la.inv(sigma)).dot(ones)
return {'weights': w, 'volatility': np.sqrt(w.T.dot(sigma).dot(w)),

'mean': None if mu is None else w.T.dot(mu)}

w = gmv_portfolio(mu=mu, sigma=sigma)['weights']
pd.concat([Series(gmv['weights']).rename('numerical'),

Series(w.flatten()).rename('formula')], axis=1)\
.set_index(assets.index).T

SMALL LoBM BIG BM2 SMALL HiBM BIG LoBM SMALL BM2 BIG HiBM
numerical -0.485571 0.668181 -0.330072 0.789931 0.83042 -0.47289
formula -0.485571 0.668181 -0.330072 0.789931 0.83042 -0.47289

4.1.2 Efficient frontier

Each point on the efficient frontier represents a portfolio that offers the highest expected return for a given level of risk,
measured by the standard deviation of returns. A line drawn from the risk-free rate becomes tangent to the efficient
frontier at the tangency portfolio, defining the Capital Market Line (CML):

𝐸(𝑅𝑝) = 𝑟𝑓 + 𝐸[𝑅𝑀 ] − 𝑟𝑓
𝜎𝑀

𝜎𝑝

Portfolios along this line dominate all other portfolios on the efficient frontier. This leads to the Two-Fund Separation
Theorem, which states that all investors should allocate capital between the risk-free asset and the tangency portfolio.
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var_ticks = np.linspace(gmv['variance'], 3*np.max(np.diag(sigma)), 200)
best_slope, tangency = 0, tuple() # to find the tangency portfolio
efficient = []
for var in var_ticks:

obj = cp.Problem(cp.Maximize(Ret), [cp.sum(W) == 1, Var <= var])
obj.solve(verbose=False)

# tangency portfolio has best slope
risk = np.sqrt(var)
slope = Ret.value / risk
if slope > best_slope:

best_slope = slope
tangency = {'coords': (risk, Ret.value), 'weights': W.value}

efficient.append(dict(mean=Ret.value, volatility=risk))

frontier = [] # inefficient frontier
for var in var_ticks:

obj = cp.Problem(cp.Minimize(Ret), [cp.sum(W) == 1, Var <= var])
obj.solve(verbose=False)
frontier.append(dict(mean=Ret.value, volatility=np.sqrt(var)))

The efficient and tangency portfolios can be derived as:
• Efficient portfolio (target return 𝜇0) = Σ−1𝑀(𝑀𝑇 Σ−1𝑀)−1[𝜇0 1]𝑇 , where 𝑀 = [𝜇 1]

• Tangency portfolio = Σ−1𝜇
1𝑇 Σ−1𝜇

Any portfolio on the efficient frontier can be expressed as a linear combination of two other efficient portfolios.

def efficient_portfolio(mu, sigma, target):
"""Returns weights of minimum variance portfolio that exceeds target return"""
mu = mu.flatten()
n = len(mu)
ones = np.ones((n, 1))
M = np.hstack([mu.reshape(-1, 1), ones])
B = M.T.dot(la.inv(sigma)).dot(M)
w = la.inv(sigma).dot(M).dot(la.inv(B)).dot(np.array([[target], [1]]))
return {'weights': w, 'volatility': np.sqrt(float(w.T.dot(sigma).dot(w))),

'mean': float(w.T.dot(mu))}

p = random.choice(efficient)
e = efficient_portfolio(mu,sigma, p['mean'])
df = DataFrame({'random efficient portfolio': p,

'by formula': dict(mean=e['mean'], volatility=e['volatility'])})

/tmp/ipykernel_1785309/3388186085.py:9: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
return {'weights': w, 'volatility': np.sqrt(float(w.T.dot(sigma).dot(w))),

/tmp/ipykernel_1785309/3388186085.py:10: DeprecationWarning: Conversion of an␣
↪array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure␣
↪you extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
'mean': float(w.T.dot(mu))}
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def tangency_portfolio(mu, sigma):
"""Returns weights of tangency portfolio with largest slope (sharpe ratio)"""
mu = mu.flatten()
n = len(mu)
ones = np.ones((n, 1))
w = la.inv(sigma).dot(mu)/ones.T.dot(la.inv(sigma).dot(mu))
return {'weights': w, 'mean': float(w.T.dot(mu)),

'volatility': np.sqrt(float(w.T.dot(sigma).dot(w)))}

s = tangency_portfolio(mu, sigma)

# show numerical and formulas are same solution
DataFrame({'tangency portfolio': list(tangency['coords']),

'tangency formula': [s['volatility'], s['mean']]},
index=['volatility', 'mean']).join(df)

tangency portfolio tangency formula random efficient portfolio \
volatility 0.080541 0.080748 0.08782
mean 0.016848 0.016891 0.01834

by formula
volatility 0.08782
mean 0.01834

Plot efficient frontier and portfolios

fig, ax = plt.subplots(figsize=(10, 9))
DataFrame(efficient).set_index('volatility').plot(ax=ax, color='darkblue')
DataFrame(frontier).set_index('volatility').plot(ax=ax, color='lightgrey')
ax.plot([0, np.sqrt(max(var_ticks))], [0, np.sqrt(max(var_ticks))*best_slope],

color='cyan') # capital market line
ax.plot(*tangency['coords'], "r*", ms=10) # tangency portfolio
ax.plot(np.sqrt(gmv['variance']), gmv['mean'], "ms", ms=8) # GMV portfolio
ax.plot(np.sqrt(mkt['variance']), mkt['mean'], "yd", ms=10) # market portfolio
plt.legend(['Efficient Frontier', 'Inefficient Frontier', 'Capital Market Line',

'Tangency Portfolio', 'Global Minimum Variance Portfolio', 'Market'])
for c, r in enumerate(assets.itertuples()): # risky assets

ax.plot(r.volatility, r.mean, marker='o', color=f"C{c}")
ax.annotate(text=r.Index, xy=(r.volatility, r.mean),

xytext=(0.5, 0), textcoords="offset fontsize", color=f"C{c}")
ax.set_xlabel('Standard Deviation (risk)')
ax.set_ylabel('Average Monthly Excess Returns')
ax.set_title('Efficient Frontier with FF 3x2 BM-Size Risky Assets')
plt.tight_layout()
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4.1.3 CAPM

Sharpe, Lintner, and Mossin developed the CAPM, an equilibrium model that describes the relationship between risk
and expected return for risky assets. The model assumes market efficiency and that investors optimize portfolios based
on mean-variance principles.
The CAPM posits that market equilibrium is reached when all investors hold combinations of the risk-free asset and the
market portfolio. An asset’s expected return is determined by its contribution to the market portfolio’s total risk,
specifically its systematic risk, which cannot be diversified away. This risk is measured by beta:

𝛽𝑖 = cov(𝑅𝑖, 𝑅𝑀)
var(𝑅𝑀)

The Security Market Line (SML) represents the relationship between expected returns and beta:

𝐸(𝑅𝑖) = 𝑟𝑓 + 𝛽𝑖(𝐸[𝑅𝑀 ] − 𝑟𝑓)
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4.2 Implied alphas

If a known portfolio allocation 𝑊 is an optimal solution to a mean-variance objective, the implied mean return inputs can
be inferred given the covariance matrix. These implied alphas, proportional to 𝑤𝑇 Σ, when used as expected returns in
the optimization process, yield the same portfolio 𝑊 .

# market cap-weighted portfolio implied expected returns
capm = mkt['weights'].dot(sigma) * 2

# HML implied alphas
hml = Series(0.0, index=assets.index)
hml['BIG HiBM'] = 0.5
hml['SMALL HiBM'] = 0.5
hml['BIG LoBM'] = -0.5
hml['SMALL LoBM'] = -0.5
#hml = {'weights': hml.values}
#hml['variance'] = hml['weights'].dot(sigma).dot(hml['weights'])
#hml['coords'] = (np.sqrt(hml['variance']), hml['weights'].dot(mu))
alphas = hml.dot(sigma) * 2

pd.concat([Series(hml.values).rename('HML weights'),
Series(alphas).rename('HML implied-alpha'),
Series(mkt['weights']).rename('Market weights'),
Series(capm).rename('CAPM equilibrium returns'),
Series(mu).rename('historical mu'),
Series(Series(alphas)/Series(capm)).rename('implied/capm')],
axis=1, ignore_index=False)\

.set_index(assets.index).T

SMALL LoBM BIG BM2 SMALL HiBM BIG LoBM \
HML weights -0.500000 0.000000 0.500000 -0.500000
HML implied-alpha 0.000742 0.001827 0.003132 0.000277
Market weights 0.010631 0.017235 0.011753 0.693932
CAPM equilibrium returns 0.007044 0.006705 0.007413 0.005624
historical mu 0.007149 0.009629 0.011528 0.006860
implied/capm 0.105320 0.272514 0.422451 0.049240

SMALL BM2 BIG HiBM
HML weights 0.000000 0.500000
HML implied-alpha 0.001634 0.002967
Market weights 0.190550 0.075900
CAPM equilibrium returns 0.005733 0.006865
historical mu 0.006886 0.009252
implied/capm 0.285082 0.432198

# Correlations of alphas
DataFrame({'historical mu': np.corrcoef(alphas, mu)[0][-1],

'capm equilbrium': np.corrcoef(alphas, capm)[0][-1]},
index=['Correlation with implied alphas'])

historical mu capm equilbrium
Correlation with implied alphas 0.836893 0.610935
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# Mean-variance optimization with HML-implied alphas
MeanVariance = alphas @ W - Var
obj = cp.Problem(cp.Maximize(MeanVariance))
obj.solve(verbose=False)
DataFrame.from_records([hml.values, W.value], columns=labels,

index=['HML weights', 'mean-variance weights']).round(6)

SMALL LoBM BIG BM2 SMALL HiBM BIG LoBM SMALL BM2 \
HML weights -0.5 0.0 0.5 -0.5 0.0
mean-variance weights -0.5 0.0 0.5 -0.5 0.0

BIG HiBM
HML weights 0.5
mean-variance weights 0.5

# Mean-variance optimization with CAPM-implied expected returns
MeanVariance = capm @ W - Var
obj = cp.Problem(cp.Maximize(MeanVariance))
obj.solve(verbose=False)
p = tangency_portfolio(mu=capm, sigma=sigma)
DataFrame.from_records([W.value, mkt['weights'], p['weights']], columns=labels,

index=['Market weights', 'mean-variance weights', 'formula'])

SMALL LoBM BIG BM2 SMALL HiBM BIG LoBM SMALL BM2 \
Market weights 0.010631 0.017235 0.011753 0.693932 0.19055
mean-variance weights 0.010631 0.017235 0.011753 0.693932 0.19055
formula 0.010631 0.017235 0.011753 0.693932 0.19055

BIG HiBM
Market weights 0.0759
mean-variance weights 0.0759
formula 0.0759

4.2.1 Black-Litterman Model

Mean-variance portfolios are highly sensitive to input estimates, particularly expected returns. Errors in estimating ex-
pected returns have a far greater impact than errors in estimating variances and covariances. Black and Litterman (1992)
proposed shrinking investor expectations toward equilibrium market returns to reduce sensitivity to estimation errors.

active = tangency['weights'] - mkt['weights']
DataFrame.from_records([tangency['weights'], mkt['weights'], active], columns=labels,

index=['Tangency Portfolio Weights', 'Market Weights',
'Active Weights']).round(6)

SMALL LoBM BIG BM2 SMALL HiBM BIG LoBM \
Tangency Portfolio Weights -2.807841 2.631802 1.023199 2.132014
Market Weights 0.010631 0.017235 0.011753 0.693932
Active Weights -2.818472 2.614567 1.011446 1.438083

SMALL BM2 BIG HiBM
Tangency Portfolio Weights -1.466995 -0.51218

(continues on next page)
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(continued from previous page)

Market Weights 0.190550 0.07590
Active Weights -1.657544 -0.58808

The Black-Litterman expected return estimates are computed as:

𝐸[𝑅] = [(𝜏Σ)−1 + 𝑃𝑇 Ω−1𝑃 ]−1[(𝜏Σ)−1Π + 𝑃𝑇 Ω−1𝑄]

where:
• 𝜏 is a confidence scalar for investor views versus equilibrium returns.
• In Bayesian terms, 𝜏 represents uncertainty in equilibrium return estimation.

tau = 0.05 # He and Litterman (1992) for a moderate amount of active risk
k = 1
Pi = capm.reshape((n, 1)) # equilbrium views: CAPM implied excess returns
P = (tangency['weights']).reshape((k, n)) # view portfolio weights
Q = (tangency['weights'].dot(mu)).reshape((k, k)) # portfolio view
Omega = np.diag(np.array(P.dot(sigma).dot(P.T)).reshape((k,k))) # uncertainty

def black_litterman(tau, Pi, Sigma, P, Q):
"""Returns black-litterman alphas"""
def inv(x):

"""helper wraps over la.inv to handle scalar/1d inputs"""
try:

return la.inv(x)
except:

return np.array(1/x).reshape((1,1))
return inv(inv(tau*Sigma)+P.T.dot(inv(Omega)).dot(P))\

.dot(inv(tau*Sigma).dot(Pi) + P.T.dot(inv(Omega)).dot(Q))

bl = {'alphas': black_litterman(tau=tau, Pi=Pi, Sigma=sigma, P=P, Q=Q)}
bl |= tangency_portfolio(mu=bl['alphas'], sigma=sigma)
bl['mean'] = bl['weights'].dot(mu) # express mean based on original mu
bl['tilt'] = bl['weights'] - mkt['weights']
print('Active Risk:', np.sqrt(bl['tilt'].T.dot(sigma).dot(bl['tilt'])))
DataFrame.from_dict({'Black-Litterman weights': bl['weights'],

'Market weights': mkt['weights'], 'Active weights': bl['tilt']},
columns=labels, orient='index').round(6)

Active Risk: 0.0024824588797282025

SMALL LoBM BIG BM2 SMALL HiBM BIG LoBM \
Black-Litterman weights -0.101900 0.121624 0.052136 0.751349
Market weights 0.010631 0.017235 0.011753 0.693932
Active weights -0.112531 0.104390 0.040383 0.057417

SMALL BM2 BIG HiBM
Black-Litterman weights 0.124370 0.05242
Market weights 0.190550 0.07590
Active weights -0.066179 -0.02348
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# BL tilts the optimal weights towards the active positions in the view portfolio
bl['tilt'] / active

array([0.03992611, 0.03992611, 0.03992611, 0.03992611, 0.03992611,
0.03992611])

With numerical solvers, constraints like no short-selling can be incorporated, and additional constraints can be iteratively
added to achieve more reasonable portfolio allocations.

Alpha = W @ mu

# Minimize variance to same expected return
obj = cp.Problem(cp.Minimize(Var), [cp.sum(W) == 1, W >= 0, Alpha >= bl['mean']])
obj.solve()
tilt = W.value - mkt['weights']
print('Minimize variance to achieve target return, with no short sales:')
print('Active Risk:', np.sqrt(tilt.T.dot(sigma).dot(tilt)))
DataFrame.from_dict({'Constrained weights': W.value,

'Market weights': mkt['weights'], 'Active weights': tilt},
columns=labels, orient='index').round(6)

Minimize variance to achieve target return, with no short sales:
Active Risk: 0.004263652598782702

SMALL LoBM BIG BM2 SMALL HiBM BIG LoBM SMALL BM2 \
Constrained weights -0.000000 -0.000000 0.145177 0.790527 0.064296
Market weights 0.010631 0.017235 0.011753 0.693932 0.190550
Active weights -0.010631 -0.017235 0.133425 0.096595 -0.126254

BIG HiBM
Constrained weights 0.0000
Market weights 0.0759
Active weights -0.0759

obj = cp.Problem(cp.Maximize(Alpha),
[cp.sum(W) == 1, W >= 0, Var <= bl['volatility']**2])

obj.solve()
tilt = W.value - mkt['weights']
print('Maximize return within target variance, with no short sales:')
print('Active Risk (annualized):', np.sqrt(tilt.T.dot(sigma).dot(tilt) * 12))
DataFrame.from_dict({'Constrained weights': W.value,

'Market weights': mkt['weights'], 'Active weights': tilt},
columns=labels, orient='index').round(6)

Maximize return within target variance, with no short sales:
Active Risk (annualized): 0.009003930083077559

SMALL LoBM BIG BM2 SMALL HiBM BIG LoBM SMALL BM2 \
Constrained weights 0.000000 0.000001 0.079741 0.778467 0.141791
Market weights 0.010631 0.017235 0.011753 0.693932 0.190550
Active weights -0.010631 -0.017234 0.067988 0.084535 -0.048759
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BIG HiBM
Constrained weights 0.0000
Market weights 0.0759
Active weights -0.0759

4.3 Cross-sectional regressions

The Fama-MacBeth (1973) methodology estimates factor betas and risk premia in two steps:
1. Time-Series Regressions: Estimate each asset’s beta by regressing its returns against proposed factor returns.
2. Cross-Sectional Regressions: Estimate factor risk premia by regressing all asset returns against their betas across

multiple time periods.
This approach provides standard errors adjusted for cross-sectional correlation.

4.3.1 Testing the CAPM

We retrieve test asset returns and the risk-free rate. To test whether beta is priced, we examine whether higher-beta assets
earn proportionally higher risk premia. We also test for non-linearity (beta-squared) and for the pricing of residual risk.

factors = FFReader('F-F_Research_Data_Factors')[0] / 100 # risk-free rates
test_assets = FFReader('25_Portfolios_ME_BETA_5x5')
df = test_assets[1] / 100
df = df.sub(factors['RF'], axis=0).dropna().copy()

# unpivot the wide table to a long one
rets = df.stack()\

.reset_index(name='ret')\

.rename(columns={'level_1':'port', 'level_0':'Date'})

# estimate test assets' market betas from their time-series of returns
data = df.join(factors[['Mkt-RF']], how='left')
betas = least_squares(data, y=df.columns, x=['Mkt-RF'], stdres=True)
betas = betas.rename(columns={'Mkt-RF': 'BETA'})[['BETA', '_stdres']]

# collect test asset mean returns and betas
assets_df = betas[['BETA']].join(df.mean().rename('premiums')).sort_values('BETA')

# Orthogonalize polynomial (quadratic) beta^2 and residual-volatility features
betas['BETA2'] = smf.ols("I(BETA**2) ~ BETA", data=betas).fit().resid
betas['RES'] = smf.ols("_stdres ~ BETA + BETA2", data=betas).fit().resid
r = rets.join(betas, on='port').sort_values(['port', 'Date'], ignore_index=True)

# run monthly Fama-MacBeth cross-sectional regressions
fm = r.groupby(by='Date')\

.apply(least_squares, y=['ret'], x=['BETA', 'BETA2', 'RES'])
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/tmp/ipykernel_1785309/3663017786.py:3: DeprecationWarning: DataFrameGroupBy.apply␣
↪operated on the grouping columns. This behavior is deprecated, and in a future␣
↪version of pandas the grouping columns will be excluded from the operation.␣
↪Either pass `include_groups=False` to exclude the groupings or explicitly select␣
↪the grouping columns after groupby to silence this warning.
.apply(least_squares, y=['ret'], x=['BETA', 'BETA2', 'RES'])

# compute time-series means and standard errors of the Fama-MacBeth coefficients
out = DataFrame(dict(mean=fm.mean(), stderr=fm.sem(), tstat=fm.mean()/fm.sem())).T

print("Monthly Cross-sectional Regressions" +
f" {min(rets['Date'])} to {max(rets['Date'])}")

out

Monthly Cross-sectional Regressions 1963-07 to 2024-12

_intercept BETA BETA2 RES
mean 0.007817 0.000124 -0.008395 0.121528
stderr 0.001535 0.002255 0.002544 0.060507
tstat 5.091416 0.054945 -3.299643 2.008509

Clustered standard errors
Alternative corrections for standard errors account for both time-series and cross-sectional correlation, such as double
clustering by firm and year.

### Compare uncorrected to robust cov
ls = smf.ols("ret ~ BETA + BETA2 + RES", data=r).fit()
print(ls.summary())
# print(ls.get_robustcov_results('HC0').summary())
# print(ls.get_robustcov_results('HAC', maxlags=6).summary())

OLS Regression Results
==============================================================================
Dep. Variable: ret R-squared: 0.000
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: 2.554
Date: Mon, 03 Mar 2025 Prob (F-statistic): 0.0535
Time: 07:02:21 Log-Likelihood: 25722.
No. Observations: 18450 AIC: -5.144e+04
Df Residuals: 18446 BIC: -5.141e+04
Df Model: 3
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.0078 0.002 4.174 0.000 0.004 0.011
BETA 0.0001 0.002 0.076 0.940 -0.003 0.003
BETA2 -0.0084 0.006 -1.390 0.165 -0.020 0.003
RES 0.1215 0.051 2.393 0.017 0.022 0.221
==============================================================================
Omnibus: 1547.660 Durbin-Watson: 1.778
Prob(Omnibus): 0.000 Jarque-Bera (JB): 9926.401

(continues on next page)
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Skew: -0.051 Prob(JB): 0.00
Kurtosis: 6.592 Cond. No. 174.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣

↪specified.

print(ls.get_robustcov_results('hac-panel',
groups=r['port'],
maxlags=6).summary())

# print(ls.get_robustcov_results('cluster', groups=r['port']).summary())

OLS Regression Results
==============================================================================
Dep. Variable: ret R-squared: 0.000
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: 1.636
Date: Mon, 03 Mar 2025 Prob (F-statistic): 0.207
Time: 07:02:21 Log-Likelihood: 25722.
No. Observations: 18450 AIC: -5.144e+04
Df Residuals: 18446 BIC: -5.141e+04
Df Model: 3
Covariance Type: hac-panel
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.0078 0.002 4.003 0.001 0.004 0.012
BETA 0.0001 0.002 0.066 0.948 -0.004 0.004
BETA2 -0.0084 0.006 -1.330 0.196 -0.021 0.005
RES 0.1215 0.066 1.847 0.077 -0.014 0.257
==============================================================================
Omnibus: 1547.660 Durbin-Watson: 1.778
Prob(Omnibus): 0.000 Jarque-Bera (JB): 9926.401
Skew: -0.051 Prob(JB): 0.00
Kurtosis: 6.592 Cond. No. 174.
==============================================================================

Notes:
[1] Standard Errors are robust to cluster correlation (HAC-Panel)

4.3.2 Factor risk models

Beginning with Barra in the mid-1970’s, industry practitioners have employed cross-sectional models to forecast risk pre-
mia and measure risk factors. Monthly cross-sectional regressions are run on standardized individual stock characteristics
such as:

• Size: Market capitalization rank
• Value: Book-to-market ratio
• Momentum: 12-month return (excluding past month)
• Reversal: 1-month return reversal
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The stock characteristic values are winsored at their 5% tails to reduce the influence of outliers. These risk premia
are interpreted as returns on dollar-neutral portfolios with unit exposure to a characteristic and zero exposure to other
characteristics.
Their estimated risk premiums are compared to Fama-French research factor returns (which are constructed as returns
from long-short spread portfolios).

# Construct momentum and reversal signals

rebalbeg = 19640601
rebalend = LAST_DATE
# preload CRSP monthly into memory
monthly = CRSPBuffer(stocks=crsp, dataset='monthly',

fields=['ret', 'retx', 'prc'],
beg=bd.begmo(rebalbeg, -13),
end=bd.endmo(rebalend, 1)) # load with extra months around␣

↪rebaldates

intervals = {'mom': (2, 12, 1), 'strev': (1, 1, -1)} # signal: (start, end, sign)
for label, past in intervals.items():

out = []
rebaldates = bd.date_range(bd.endmo(rebalbeg), rebalend, 'endmo')
for rebaldate in tqdm(rebaldates, total=len(rebaldates)):

start = bd.endmo(rebaldate, -past[1])
beg1 = bd.offset(start, 1)
end1 = bd.endmo(rebaldate, 1-past[0])
df = monthly.get_universe(end1)
# require data available at start month and at last month (universe)
df['start'] = monthly.get_section(dataset='monthly',

fields=['ret'],
date_field='date',
date=start).reindex(df.index)

df[label] = past[2] * monthly.get_ret(beg1, end1).reindex(df.index)
df['permno'] = df.index
df['rebaldate'] = rebaldate
df = df.dropna(subset=['start'])
out.append(df[['rebaldate', 'permno', label]]) # append rows

out = pd.concat(out, axis=0, ignore_index=True)
n = signals.write(out, label, overwrite=True)

100%|██████████| 726/726 [00:43<00:00, 16.53it/s]
100%|██████████| 726/726 [00:41<00:00, 17.50it/s]

rebalbeg = 19640601
rebalend = LAST_DATE
rebaldates = crsp.bd.date_range(rebalbeg, rebalend, 'endmo')
loadings = dict()

# preload signal values
sf = {key: SignalsFrame(signals.read(key)) for key in ['hml', 'mom', 'strev']}

for pordate in tqdm(rebaldates): # retrieve signal values every month
date = bd.june_universe(pordate)
univ = crsp.get_universe(date)
smb = univ['capco'].rank(ascending=False).div(len(univ)).rename('smallsize')
hml = sf['hml']('hml', date, bd.endmo(date, -12))['hml'].rename('value')

(continues on next page)
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#beta = signals('beta', pordate, bd.begmo(pordate))['beta']*2/3 + 1/3 #shrink
mom = sf['mom']('mom', pordate)['mom'].rename('momentum')
strev = sf['strev']('strev', pordate)['strev'].rename('reversal')
df = pd.concat((strev, hml, smb, mom), join='inner', axis=1)\

.reindex(univ.index).dropna()
loadings[pordate] = winsorize(df, quantiles=[0.05, 0.95])

# Compute coefficients from FM cross-sectional regressions
monthly = CRSPBuffer(stocks=crsp, dataset='monthly', fields=['ret'],

beg=bd.begmo(rebalbeg, -13), end=bd.endmo(rebalend, 1))

riskpremium = RiskPremium(sql=user, bench=bench, rf='RF', end=LAST_DATE)
out = riskpremium(stocks=monthly, loadings=loadings,

standardize=['value' ,'smallsize', 'momentum', 'reversal'])

# Compare time series of risk premiums to portfolio-sort benchmark eturns
benchnames = {'momentum': 'Mom(mo)',

'reversal': 'ST_Rev(mo)',
'smallsize':'SMB(mo)',
'value': 'HML(mo)'}

out = riskpremium.fit(benchnames.values()) # to compare portfolio-sorts
riskpremium.plot(benchnames)

100%|██████████| 726/726 [00:31<00:00, 22.93it/s]

# Summarize time-series means of Fama-Macbeth risk premiums
df = out[0]
df['tvalue'] = df['mean']/df['stderr']
df['sharpe'] = np.sqrt(12) * df['mean']/df['std']
print("Fama-MacBeth Cross-sectional Regression Risk Premiums")
df.round(4)

Fama-MacBeth Cross-sectional Regression Risk Premiums
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Factor Returns mean stderr std count tvalue sharpe
reversal 0.0059 0.0005 0.0143 725 11.1314 1.4321
value 0.0020 0.0004 0.0112 725 4.7378 0.6095
smallsize 0.0011 0.0007 0.0178 725 1.6812 0.2163
momentum 0.0023 0.0007 0.0175 725 3.5671 0.4589

# Summarize time-series means of Fama-French portfolio-sort returns
df = out[2]
df['tvalue'] = df['mean']/df['stderr']
df['sharpe'] = np.sqrt(12) * df['mean']/df['std']
print("Fama-French Portfolio-Sorts")
df.round(4)

Fama-French Portfolio-Sorts

Benchmarks mean stderr std count tvalue sharpe
Mom(mo) 0.0061 0.0016 0.0423 725 3.8647 0.4972
ST_Rev(mo) 0.0044 0.0012 0.0315 725 3.7562 0.4833
SMB(mo) 0.0018 0.0011 0.0308 725 1.5941 0.2051
HML(mo) 0.0027 0.0011 0.0301 725 2.4116 0.3103

# Show correlation of returns
print('Correlation of FM-Crossectional Risk Premiums and FF-Sorted Portfolio Returns')
pd.concat([out[1].join(out[4]), out[4].T.join(out[3])], axis=0).round(3)

Correlation of FM-Crossectional Risk Premiums and FF-Sorted Portfolio Returns

reversal value smallsize momentum Mom(mo) ST_Rev(mo) \
reversal 1.000 0.016 0.077 -0.444 -0.388 0.793
value 0.016 1.000 -0.227 -0.194 -0.169 -0.019
smallsize 0.077 -0.227 1.000 -0.003 0.133 0.008
momentum -0.444 -0.194 -0.003 1.000 0.884 -0.279
Mom(mo) -0.388 -0.169 0.133 0.884 1.000 -0.307
ST_Rev(mo) 0.793 -0.019 0.008 -0.279 -0.307 1.000
SMB(mo) 0.145 -0.203 0.517 -0.066 -0.047 0.178
HML(mo) 0.051 0.810 -0.151 -0.207 -0.195 0.013

SMB(mo) HML(mo)
reversal 0.145 0.051
value -0.203 0.810
smallsize 0.517 -0.151
momentum -0.066 -0.207
Mom(mo) -0.047 -0.195
ST_Rev(mo) 0.178 0.013
SMB(mo) 1.000 -0.150
HML(mo) -0.150 1.000
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4.4 Nonlinear regression

4.4.1 Feature transformations

A simple way to directly extend the linear model to accommodate non-linear relationships, using polynomial regression, is
to include transformed versions of the predictors in the model, such as a quadratic term or several polynomial functions of
the predictors, and use standard linear regression to estimate coefficients in order to produce a non-linear fit. The CAPM
predicts that these coefficients on non-linear transformations of beta should be zero.
Raw polynomial terms may be highly correlated with each other: Orthogonal polynomials transform the raw data matrix
of polynomial terms to another whose columns are a basis of orthogonal terms which span the same column space. For
example, regress the second predictor on the first and replace its column with the residuals, then regress the third predictor
on the first two and replace its column with the residuals, and so on.
Other feature transformation approaches include:

• dummy or binary indicator variable
• categorical variables with two or more levels
• binarization or turning a categorical variable into several binary variables (4)
• Legendre polynomals which are defined as a system of orthogonal polynomials over the interval [−1, 1]
• interaction term constructed by computing the product of the values of the two variables to capture the effect that

response of one predictor is dependent on the value of another predictor.

4.4.2 Kernel regression

If there are already a large number of 𝑘 features, then polynomial transformations, say up to degree 𝑑, may be compu-
tational expensive since we could be working in 𝑂(𝑘𝑑) dimensional space. Fortunately, many high-dimensional feature
mappings, denoted 𝜙(𝑥), correspond to kernel functions 𝐾, where model fitting and prediction calculations only require
inner products of these kernel matrices and we never need to explicitly represent vectors in the very high-dimensional
feature space. For example, the kernel 𝐾(𝑥, 𝑦) = (𝑥𝑇 𝑦 + 𝑐)𝑑, which requires only 𝑂(𝑘) to compute, expands to the
feature space corresponding with all polynomial terms up to degree 𝑑 of the features in 𝑥 and 𝑦.
Kernels can be viewed as similarity metrics, that measure how close together the feature maps 𝜙(𝑥) and 𝜙(𝑦) are. The ra-
dial basis function (RBF), or Gaussian, kernel uses distance in Euclidean space which corresponds to an infinite-dimension
feature mapping.
This application of Kernel functions that can be efficiently computed, where only their inner products are needed without
ever explicitly computing their corresponding feature vectors in very high-dimensional space, has come to be known as
the kernel trick.

factors

Mkt-RF SMB HML RF
Date
1926-07 0.0296 -0.0256 -0.0243 0.0022
1926-08 0.0264 -0.0117 0.0382 0.0025
1926-09 0.0036 -0.0140 0.0013 0.0023
1926-10 -0.0324 -0.0009 0.0070 0.0032
1926-11 0.0253 -0.0010 -0.0051 0.0031
... ... ... ... ...
2024-08 0.0161 -0.0355 -0.0113 0.0048
2024-09 0.0174 -0.0017 -0.0259 0.0040

(continues on next page)
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2024-10 -0.0097 -0.0101 0.0089 0.0039
2024-11 0.0651 0.0463 -0.0005 0.0040
2024-12 -0.0317 -0.0273 -0.0295 0.0037

[1182 rows x 4 columns]

The concave shape of the fitted kernel regression curve is consistent with the negative average premiums observed for the
squared-beta factor in earlier Fama-MacBeth tests.

y_train = assets_df[['premiums']].values
X_train = assets_df[['BETA']].values
X_test = np.linspace(0.5, 1.75, 100).reshape(-1, 1)
bandwidth = float((max(X_train) - min(X_train)) * 4 / len(X_train))

fig, ax = plt.subplots(figsize=(10,6))
legend = []
color = 1
for h in [0.25, 0.5, 1, 2]:

for alpha in [0.01]:
model = KernelRidge(alpha=alpha, kernel='rbf', gamma=1/(h*bandwidth)**2)
model.fit(X=X_train, y=y_train)
y_pred = model.predict(X_test)
ax.plot(X_test, y_pred, ls='-', color=f"C{color}")
legend.append(f"h={h*bandwidth:.2f}")
color += 1

# scatter plot actual ␣
↪

assets_df.plot(x='BETA', y='premiums', kind='scatter', ax=ax, marker="*", color="C0")
ax.set_ylim(bottom=0)
plt.legend(legend, loc='best', title='bandwidth')
plt.title('Kernel Regression of Risk Premiums on Beta Exposure' +

f" ({factors.index[0]} to {factors.index[-1]})")
plt.tight_layout()

/tmp/ipykernel_1785309/182542393.py:4: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
bandwidth = float((max(X_train) - min(X_train)) * 4 / len(X_train))
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CHAPTER

FIVE

CONTRARIAN TRADING

Fortune befriends the bold - Emily Dickinson
Contrarian trading strategies are based on the premise of mean reversion, which posits that asset prices tend to revert
to their long-term average over time. This idea is integral to various investment strategies, as it suggests that prices that
have deviated significantly from historical norms will eventually return to their equilibrium levels. In these strategies,
mispricing can occur due to investor overreaction, leading to temporary opportunities for profitable trades. Common
approaches, such as pairs trading and statistical arbitrage, capitalize on these price deviations by simultaneously taking
opposing positions in correlated assets. This analysis examines the construction of a contrarian trading strategy, evaluates
its performance using key risk-adjusted metrics like the Sharpe ratio, and assesses the effects of implementation shortfall
and structural breaks in the strategy’s effectiveness over time.

import numpy as np
import pandas as pd
from pandas import DataFrame, Series
from tqdm import tqdm
import matplotlib.pyplot as plt
import rpy2.robjects as ro
from rpy2.robjects.packages import importr
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, Benchmarks
from finds.recipes import fractile_split, least_squares
from finds.utils import PyR, row_formatted
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
#%matplotlib qt

importr('strucchange') # R package to use

rpy2.robjects.packages.Package as a <module 'strucchange'>

# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
bench = Benchmarks(sql, bd)
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5.1 Mean reversion

The concept of mean reversion forms the foundation of many trading strategies. According to the law of one price,
similar assets should be priced similarly. When this does not hold, traders can exploit the mispricing through arbitrage
by buying undervalued assets and short-selling overvalued ones, causing the prices to converge. Deviations from expected
long-term values, such as yield spreads in fixed income assets, are typically not persistent. Pairs trading involves se-
lecting two related securities and trading them to profit from their temporary price divergences. Meanwhile, statistical
arbitrage (or stat arb) relies on complex algorithms to identify and exploit statistical relationships between securities.
Although these relationships are not risk-free, stat arb strategies diversify across numerous positions to reduce exposure
to risk. However, correlations between asset classes often increase during financial crises due to liquidity constraints and
deleveraging, complicating risk management.
We evaluate a contrarian strategy based on weekly returns of US stocks, driven by the idea that stock mispricing arises
from investor overreaction, as discussed by Lo and Mackinlay (1990). The alpha of this strategy can be measured
by its information coefficient and volatility components, as outlined by Grinold (1994). To examine the strategy’s
effectiveness over time, we apply tests for structural breaks with unknown change points. A key consideration in this
analysis is the discrepancy between theoretical portfolio returns, based on assumed execution at decision prices, and actual
returns, influenced by factors such as trading costs. The concept of implementation shortfall (introduced by Perold in
1988) captures the total cost of executing an investment decision, accounting for both explicit and implicit costs like
market impact and opportunity costs.
Weekly returns reversals
Daily returns from CRSP are compounded in to weekly stock returns assuming Wednesday-close to Wednesday-close.
This skips over weekend and holiday (which often occur over a long weekend) effects. The backtest starts in January
1974, after an expansion of the stocks universe the previous year, and excludes the smallest market cap quintile (based
on NYSE breakpoints) comprising microcap stocks.
Let 𝑟𝑡 and 𝜎𝑡 be the cross-sectional mean and standard deviation of stock returns in week 𝑡. Define ̃𝑟𝑡 = 𝑟𝑡 − 𝑟𝑡 as the
vector of demeaned stock returns, and 𝑋𝑡 = − ̃𝑟𝑡/𝜎𝑡 as the vector of normalized scores. In other words, stocks’“expo-
sures”to (minus) their respective prior week’s returns are standardized to have cross-sectional variance and standard
deviation equal to 1.0.
Each week, a portfolio is rebalanced to hold an amount in each stock equal to their respective exposure values divided by
the number of holdings 𝑤𝑡 = 𝑋𝑡/𝑛. hence the portfolio overall has unit exposure to prior week’s returns 𝑤𝑇

𝑡 𝑋𝑡 = 1
and is dollar-neutral ∑𝑤𝑡 = ∑ 𝑋𝑡/𝑛 = 0.
This portfolio construction approach can more generally incorporate additional signals where 𝑋 may be a matrix with
ones in the first column and standardized signal exposures in other columns. Then each row, except the first, of 𝑊 =
(𝑋′𝑋)−1𝑋′ contains stock weights of a long-short characteristic porfolio: a dollar-neutral, minimum-norm (in terms of
squared weights) portfolio with unit exposure through long positions in stocks with positive exposure and short positions
in stocks with negative exposure to the signal, and zero exposure to the other characteristics.
The portfolio’s realized return in the following week 𝑡 + 1 is

𝑊 ′
𝑡 𝑟𝑡+1 = 𝑋′

𝑡 ̃𝑟𝑡
𝑛 + 𝑋′

𝑡 ̂𝑟𝑡
𝑛 = − ̃𝑟′

𝑡 ̃𝑟𝑡+1 𝜎𝑡+1
𝑛 𝜎𝑡 𝜎𝑡+1

= −𝜌𝑡,𝑡+1 𝜎𝑡+1

that is the product of the (negative) cross-sectional correlation of stock returns times the amount of cross-sectional stock
volatility at week 𝑡 + 1.

weekday = 3 # wednesday close-to-close
bd = BusDay(sql, endweek=weekday) # Generate weekly cal
begweek = 19740102 # increased stocks coverage in CRSP in Jan 1973
endweek = bd.endwk(CRSP_DATE, -1)
rebaldates = bd.date_range(begweek, endweek, freq='weekly')
retdates = bd.date_tuples(rebaldates)

(continues on next page)

70 Chapter 5. Contrarian Trading



Financial Data Science Python Notebooks

(continued from previous page)

june_universe = 0 # to track date when reached a June end to update universe
year = 0 # to track new year to pre-load stocks datas in batch by year
results = []
lagged_weights = Series(dtype=float) # to track "turnover" of stock weights
for rebaldate, pastdates, nextdates in tqdm(zip(

rebaldates[1:-1], retdates[:-1], retdates[1:]), total=len(rebaldates)-1):

# screen universe each June: largest 5 size deciles
d = bd.june_universe(rebaldate)
if d != june_universe: # need next June's universe

june_universe = d # update universe every June
univ = crsp.get_universe(june_universe) # usual CRSP universe screen
univ = univ[univ['decile'] <= 8] # drop smallest quintile stocks

# retrieve new annual batch of daily prices and returns when start new year
if bd.begyr(rebaldate) != year:

year = bd.begyr(rebaldate)
prc = crsp.get_range(dataset='daily',

fields=['bidlo', 'askhi', 'prc', 'retx', 'ret'],
date_field='date',
beg=year,
end=bd.offset(bd.endyr(year), 10),
cache_mode="rw")

# get past week's returns, require price at rebalance (decision) date
past_week = prc[prc.index.get_level_values('date') == rebaldate]['prc']\

.reset_index()\

.set_index('permno')\

.join(crsp.get_ret(*pastdates).reindex(univ.index))\

.dropna()

# convert past week's returns to desired standardized portfolio weights
weights = ((past_week['ret'].mean() - past_week['ret']) /

(past_week['ret'].std(ddof=0) * len(past_week)))

# adjust past week's holdings by change stock price
lagged_weights = lagged_weights.mul(crsp.get_ret(*pastdates, field='retx')\

.reindex(lagged_weights.index)\

.fillna(0) + 1)

# compute how much to buy (or sell) to achieve desired new portfolio weights
chg_weights = pd.concat([weights, -lagged_weights], axis=1)\

.fillna(0)\

.sum(axis=1)

# calculate total abs weight as denominator for scaling turnover
total_weight = weights.abs().sum() + lagged_weights.abs().sum()

# get next week's gross returns
next_week = crsp.get_ret(*nextdates).reindex(weights.index).fillna(0)

# get next day's prices to compute one-day slippage cost
next_day = prc[prc.index.get_level_values('date') ==

bd.offset(rebaldate, 1)]\
.reset_index()\

(continues on next page)
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.set_index('permno')\

.drop(columns='date')\

.reindex(chg_weights.index)

# if no trade next day, then enter position at askhi (buy) or bidlo (sell)
bidask = next_day['askhi'].where(chg_weights > 0, next_day['bidlo']).abs()

# spread is relevant askhi or bidlo divided by recorded close, minus 1
spread = next_day['prc'].where(next_day['prc'] > 0, bidask)\

.div(next_day['prc'].abs())\

.sub(1)\

.fillna(0)

# finally, trade_prc is the next day's close, or the relevent askhi or bidlo
trade_prc = next_day['prc'].where(next_day['prc'] > 0, bidask).fillna(0)

# drift is next day's trade price with dividends over today's decision price
# delay (positive is cost) will be chg_weights * drift
drift = trade_prc.div(next_day['prc'].abs())\

.mul(1 + next_day['ret'])\

.sub(1)\

.fillna(0)

# exit and enter delay should sum to chg_weights.dot(next_day['ret'])
exit1 = -lagged_weights.dot(next_day['ret'].reindex(lagged_weights.index).

↪fillna(0))
enter1 = weights.dot(next_day['ret'].reindex(weights.index).fillna(0))

# accumulate weekly calculations
results.append(DataFrame(

{'ret': weights.dot(next_week),
'exit1': exit1,
'enter1': enter1,
'delay': chg_weights.dot(next_day['ret'].fillna(0)), # delay=enter+exit
'spread': chg_weights.dot(spread),
'slippage': chg_weights.dot(drift), # total slippage
'ic': weights.corr(next_week),
'n': len(next_week),
'beg': nextdates[0],
'end': nextdates[1],
'absweight': np.sum(weights.abs()),
'turnover': chg_weights.abs().sum()/total_weight,
'vol': next_week.std(ddof=0)},

index=[rebaldate]))

# carry forward to next week as lagged portfolio weights
lagged_weights = weights

100%|█████████▉| 2659/2660 [01:29<00:00, 29.74it/s]

# Combine accumulated computations and report
df = pd.concat(results, axis=0)
dates = df.index
df.index = pd.DatetimeIndex(df.index.astype(str))

(continues on next page)
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df['net'] = df['ret'].sub(df['slippage'])
# Show summary
cols = ['ic' ,'vol', 'ret', 'slippage', 'net', 'exit1', 'enter1', 'delay',

'spread', 'turnover']
indexes = ['Information coefficient', 'Cross-sectional Volatility',

'Gross return (alpha)', 'Slippage cost', 'Net (of slippage) return',
' Exit one day delay ', ' Enter one day delay ', 'Delay cost',
'Spread cost', 'Portfolio turnover']

print(f'Summary of Weekly Mean Reversion Strategy {dates[0]}-{dates[-1]}')
pd.concat([df[cols].mean(axis=0).rename('mean'),

df[cols].std(axis=0).rename('std')], axis=1)\
.set_index(pd.Index(indexes)).round(4)

Summary of Weekly Mean Reversion Strategy 19740109-20241218

mean std
Information coefficient 0.0376 0.1022
Cross-sectional Volatility 0.0536 0.0191
Gross return (alpha) 0.0021 0.0080
Slippage cost 0.0017 0.0047
Net (of slippage) return 0.0005 0.0078

Exit one day delay -0.0003 0.0029
Enter one day delay 0.0006 0.0036

Delay cost 0.0004 0.0041
Spread cost 0.0013 0.0023
Portfolio turnover 0.7363 0.0407

5.2 Implementation shortfall

Perold (1988) observed that the a paper portfolio based upon a well-known stock rankings system significantly outper-
formed the actual track record of funds that make use of the system. He defined implementation shortfall as the difference
in return between a theoretical portfolio and the implemented portfolio, which captures explicit fees and commissions as
well as market impact, delay and opportunity costs.

• Decision price is the price at the time the investment decision was made
• Arrival price is the midquote (mid-point of bid-ask prices) at the time the trader, broker or trading system received

the order, or the trade decision is made.
• Market drift is the amount of buys (sells) multiplied by the increase (decrease) in execution price relative to the

arrival price, due to execution delay.
• Delay is the adverse change in execution price relative to the decision price
• Opportunity costs are the profits lost due to trades that are cancelled or not executed.
• Market impact costs are bid-ask spreads as well as the amount that buying or selling moves the price against the

buyer or seller
The trader’s dilemma refers to the trade-off between market drift and impact: one can trade faster with more impact
to minimize market drift, or trade slower to minimize market impact but at the risk of the market drifting away.
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In practice, stocks in the CRSP database are not available at finer than daily frequency, so we assume that trades are
executed at the next day’s closing prices.
If stocks do not trade, we estimate execution prices based on bid-ask spreads. This approach helps address slippage and
delays in execution, although transaction costs cannot be directly observed in historical backtests.
Unfortunately, stock prices in CRSP are not available at a finer than daily frequency. We adjust estimated profits for
slippage by waiting a full day after the decision price then setting the execution price at the next day’s closing price,
when stock market exchanges typically experience the most liquidity at the close of a trading dollar. For stocks that did
not trade during that day, we assumed the desired buys are executed at the (higher) ask price and sells are executed at
the (lower) bid price (in CRSP for such cases, closing bid and ask quotes are recorded and the closing price is set to the
negative of the bid-ask average). This approach helps address slippage and delays in execution, although transaction costs
cannot be directly observed in historical backtests.
Over the full period, much of the profitability of this version of the strategy appears to be dissipated after considering a
one-day execution delay and bid-ask spreads.

5.3 Structural break with unknown changepoint

In a linear regression, the Chow test is commonly used to test for the presence of a structural break in the model at a
period known a priori; it essentially constructs a test of whether the true coefficients on the independent variable split into
two subsets are equal. Welch’s test that two populations have equal means is a special case with no independent variables
and only an intercept whose true values are tested in the two time periods. However, when the breakpoints are unknown,
these standard tests are not applicable. Andrews (1993) and others have developed alternative tests, based on supremum
statistics, for identifying changes in mean that occur at unknown points in the time series.
The R library strucchange provides tools for detecting structural breaks, and the rpy2 Python package facilitates
integration with R. The PyR wrapper class in the FinDS package facilitates converting Pandas DataFrames to and from
R objects and function calls.

# Structural Break Test with Unknown Changepoint

# Set up data and formulas for R
Y = df['ret']
formula = ro.Formula('y ~ 1')
formula.environment['y'] = PyR(Y.values).ro

# Call R strucchange routines to compute breakpoint statistics
fstats_r = ro.r['Fstats'](formula, **{'from': 1}) # Fstats at every break
breakpoints_r = ro.r['breakpoints'](formula) # candidate breakpoints
confint_r = ro.r['confint'](breakpoints_r, breaks=1) # conf interval for 1 break
sctest_r = ro.r['sctest'](fstats_r, **{'type': 'aveF'})

# Extract output from R results
confint = PyR(confint_r[0]).frame.iloc[0].astype(int) - 1 # R index starts at 1

output = dict(zip(confint.index, df.index[confint])) # confidence interval

for k,v in zip(sctest_r.slots['names'][:3], sctest_r[:3]): # significance values
output[k] = PyR(v).values[0]

output['mean(pre)'] = Y[df.index <= output['breakpoints']].mean()
output['mean(post)'] = Y[df.index > output['breakpoints']].mean()

fstat = [0] + list(PyR(fstats_r[0]).values) + [0, 0] # pad before and after

(continues on next page)
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print("Structural break test with unknown changepoint")
DataFrame(output, index=['sctest'])

Structural break test with unknown changepoint

2.5 % breakpoints 97.5 % statistic p.value method \
sctest 1996-12-04 2001-05-30 2002-11-20 17.588886 0.0 aveF test

mean(pre) mean(post)
sctest 0.003112 0.000969

Plot breakpoint F-stats

fig, ax = plt.subplots(num=2, clear=True, figsize=(10, 6))
ax.plot(df.index, fstat, color='C0')
argmax = np.nanargmax(fstat) # where maximum fstat
ax.axvline(df.index[argmax], color='C1')
ax.axvspan(df.index[confint[0]], df.index[confint[2]], alpha=0.3, color='grey')
ax.legend(['F-stat', 'Max-F', 'C.I. of Break Date'])
ax.annotate(

df.index[argmax].strftime('%Y-%m-%d'), xy=(df.index[argmax], fstat[argmax]))
ax.set_ylabel('F-statistic at Breakpoints')
ax.set_xlabel('Date of Breakpoints')
ax.set_title('Weekly Mean Reversion Structural Break F-stats')
plt.tight_layout()

/tmp/ipykernel_1657351/3930510136.py:5: FutureWarning: Series.__getitem__ treating␣
↪keys as positions is deprecated. In a future version, integer keys will always␣
↪be treated as labels (consistent with DataFrame behavior). To access a value by␣
↪position, use `ser.iloc[pos]`
ax.axvspan(df.index[confint[0]], df.index[confint[2]], alpha=0.3, color='grey')
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5.4 Performance evaluation

5.4.1 Information coefficient

Grinold (1994) linked the expected alpha of a signal to its information coefficient and an asset’s signal score and id-
iosyncratic volatility: 𝛼 = 𝐼𝐶 × 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 × 𝑠𝑐𝑜𝑟𝑒.

• IC: The information coefficient can be understood as the correlation between a signal and residual returns. It tells
how well forecasts align wih actual returns and is a measure of manager forecasting skill.

• Volatility: The volatility can be understood as an asset’s residual risk. This component allows for forecast alpha
to be expressed in units of returns.

• Score: The score is a standardized measure of an asset’s raw signal exposure, and reflects relative expectations
about an asset. Standardization, by subtracing the cross-sectional mean and dividing by the cross-sectional standard
deviation, allows assets to be compared to one another and over time.

Recall that the weekly reversal portfolio 𝑊𝑡 was constructed to be dollar-neutral with exposure equal to 1.0, with weekly
profitability 𝑊 ′

𝑡 𝑟𝑡+1 = −𝜌𝑡,𝑡+1 𝜎𝑡+1. Hence the IC of this strategy can be computed using the negative cross-sectional
correlation of stock returns over time. The rolling average of alpha and its components—information coefficient and
volatility—reveal trends over the strategy’s life. The data show that while volatility fluctuated over time, the IC sharply
declined after reaching a peak in the mid-1990s, continuing its downward trajectory through 2010.

## Plot returns, and rolling avg information coefficient and cross-sectional vol
fig, ax = plt.subplots(num=1, clear=True, figsize=(10, 6))
df['ret'].cumsum().plot(ax=ax, ls='-', color='r', rot=0)
ax.legend(['cumulative returns'], loc='center left')
ax.set_ylabel('cumulative returns')
bx = ax.twinx()
roll = 250 # 250 week rolling average ~ 5 years

(continues on next page)
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df['ic'].rolling(roll).mean().plot(ax=bx, ls=':', lw=1, rot=0, color='b')
df['vol'].rolling(roll).mean().plot(ax=bx, ls=':', lw=1, rot=0, color='g')
#bx.axhline(df['ic'].mean(), linestyle='-', color='C0', lw=2)
bx.axhline(0, linestyle='-', color='black', lw=1)
bx.legend([f"information coefficient ({roll}-week average)",

f"cross-sectional volatility ({roll}-week average)"],
loc='center right')

ax.set_title(f'Profitability of Weekly Mean Reversion {dates[0]}-{dates[-1]}')
plt.tight_layout()

5.4.2 Risk-adjusted performance measures

In a CAPM equilibrium, no investor can achieve an abnormal return, and each investment yields an identical risk-adjusted
return. In the real world, assets may yield a return in excess of, or below, that which fairly compensates for their risk
exposure. To assess the strategy’s risk-adjusted performance, we employ several key metrics:

• Sharpe ratio - slope of the capital market line is the fair equilibrium compensation:
𝑅𝑃 − 𝑟𝑓

𝜎𝑃

• Treynor ratio - uses beta which is an approriate measure of risk for a well-diversified portfolio:
𝑅𝑃 − 𝑟𝑓

𝛽𝑃

• Jensen’s alpha - the intercept of a CAPM regression should be zero in equilibrium: 𝑅𝑃 − 𝑟𝑓 − 𝛽𝑃 (𝑅𝑀 − 𝑟𝑓)

• Appraisal ratio - Jensen’s alpha scaled by the volatility of residual returns 𝛼
𝜎𝑃−𝑀

• Sortino ratio - focuses on downside risk relative a target required rate of return T: 𝑅𝑃 − 𝑇
√∑𝑡 min(0, 𝑟𝑡 − 𝑇)2/𝑁
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• Information ratio - adjusts performance relative to a benchmark, called the acive return, scaled by the volatility of

active returns, called tracking error:
̂𝑅𝑃 − ̂𝑅𝐵

𝜎𝑅𝑃 −𝑅𝐵

• 𝑀2 (Modigliani-squared) - imagines that the given portfolio, P, is mixed with a position in T-bills so that the
resulting portfolio P* matches the volatility of the market portfolio. Because the market index and portfolio 𝑃 ∗

have the same standard deviation, their performance may be compared by simply subtracting returns: 𝑅𝑃 ∗ − 𝑅𝑀

market = bench.get_series(permnos=['Mkt-RF'], field='ret').reset_index()
breakpoint = BusDay.to_date(output['breakpoints'])
out = dict()
for select, period in zip([dates > 0, dates <= breakpoint, dates > breakpoint],

['Full', 'Pre-break', 'Post-break']):
res = df[select].copy()
res.index = dates[select]

# align market returns and compute market regression beta
#res['date'] = res.index
res['mkt'] = [(1 + market[market['date'].between(*dt)]['Mkt-RF']).prod() - 1

for dt in res[['beg','end']].itertuples(index=False)]
# model = lm(res['mkt'], res['ret'], flatten=True)
model = least_squares(data=res, y=['ret'], x=['mkt'], stdres=True)

# save df summary
out[f"{period} Period"] = {

'start date': min(res.index),
'end date': max(res.index),
'Sharpe Ratio': np.sqrt(52)*res['ret'].mean()/res['ret'].std(),
'Average Gross Return': res['ret'].mean(),
'Std Dev Returns': res['ret'].std(),
'Market Beta': model.iloc[1],
'Jensen Alpha (annualized)': model.iloc[0] * 52,
'Appraisal Ratio': np.sqrt(52) * model.iloc[0] / model.iloc[2],
'Information Coefficient': res['ic'].mean(),
'Cross-sectional Vol': res['vol'].mean(),
'Total Slippage Cost': res['slippage'].mean(),
'Spread Cost': res['spread'].mean(),
'Delay Cost': res['delay'].mean(),
' Exit Delay Cost': res['exit1'].mean(),
' Enter Delay Cost': res['enter1'].mean(),
'Average Net Return': res['net'].mean(),
'Portfolio Turnover': res['turnover'].mean(),
#'Abs Weight': res['absweight'].mean(),
'Average Num Stocks': int(res['n'].mean()),

}

# Display as formatted DataFrame
fmts = dict.fromkeys(['start date', 'end date', 'Average Num Stocks'], '{:.0f}')
print("Subperiod Performance of Weekly Reversals")
row_formatted(DataFrame(out), formats=fmts, default='{:.4f}')

Subperiod Performance of Weekly Reversals

Full Period Pre-break Period Post-break Period
start date 19740109 19740109 20010606

(continues on next page)
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end date 20241218 20010530 20241218
Sharpe Ratio 1.9185 3.6668 0.7300
Average Gross Return 0.0021 0.0031 0.0010
Std Dev Returns 0.0080 0.0061 0.0096
Market Beta 0.0898 0.0686 0.1109
Jensen Alpha (annualized) 0.1030 0.1566 0.0407
Appraisal Ratio 1.8537 3.6607 0.6140
Information Coefficient 0.0376 0.0578 0.0140
Cross-sectional Vol 0.0536 0.0542 0.0529
Total Slippage Cost 0.0017 0.0028 0.0003
Spread Cost 0.0013 0.0023 0.0002
Delay Cost 0.0004 0.0005 0.0002

Exit Delay Cost -0.0003 -0.0004 -0.0001
Enter Delay Cost 0.0006 0.0010 0.0002

Average Net Return 0.0005 0.0003 0.0006
Portfolio Turnover 0.7363 0.7393 0.7328
Average Num Stocks 1936 1981 1884

The structural break test identified a statistically significant change in the strategy’s weekly returns around mid-2001.
Comparing performance before and after this point reveals a clear decline in the annualized Sharpe ratio and average
weekly returns, along with an increase in risk. This shift roughly coincides with the adoption of decimalization by the
New York and American Stock Exchanges on January 29, 2001, which resulted in tighter bid-ask spreads. Prior to this
change, U.S. markets quoted prices in fractions, with one-sixteenth (1/16) of a dollar being the smallest allowable price
increment.
R usage notes:

/usr/bin/ld: cannot find -lgfortran
collect2: error: ld returned 1 exit status

• check versions are the same: gfortran --version and gcc --version

• select versions to be the same: sudo update-alternatives --config gcc

References:
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CHAPTER

SIX

QUANT FACTORS

Quants do it with models - Anonymous
Factor investing is a systematic approach to asset pricing and portfolio management based on the premise that various risk
factors drive asset returns. Factor-based investing recognizes that besides broad market exposure, additional systematic
risks—such as value, momentum, and volatility—play a crucial role in determining returns. This framework has evolved
over time, beginning with early models like the Capital Asset Pricing Model (CAPM) and expanding to multifactor models,
behavioral theories, and adaptive market perspectives. This analysis explores the empirical performance of different factor
strategies, and the methodologies used to evaluate them. We also examine historical backtests and employ clustering
techniques to group similar investment strategies, seeking to identify style factors and construct effective benchmarks.

from pandas import DataFrame, Series
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn.cluster import AgglomerativeClustering, KMeans
from scipy.cluster.hierarchy import dendrogram
from sklearn.metrics import silhouette_samples, silhouette_score
from tqdm import tqdm
import warnings
from datetime import datetime
from typing import List, Tuple
from finds.database import SQL, RedisDB
from finds.structured import (BusDay, Stocks, Benchmarks, Signals, SignalsFrame,

CRSP, PSTAT, IBES, CRSPBuffer)
from finds.backtesting import BackTest, univariate_sorts
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
if not VERBOSE:

warnings.simplefilter(action='ignore', category=FutureWarning)

#%matplotlib qt

LAST_DATE = CRSP_DATE
# open connections
imgdir = paths['images']
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)

(continues on next page)
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bench = Benchmarks(sql, bd, verbose=VERBOSE)
signals = Signals(user, verbose=VERBOSE)
ibes = IBES(sql, bd, verbose=VERBOSE)
backtest = BackTest(user, bench, 'RF', LAST_DATE, verbose=VERBOSE)
outdir = paths['scratch'] / 'output'

6.1 Factor investing

Factor investing posits that asset returns are driven by exposure to specific risk factors, which determine their risk premi-
ums. The market itself is an investable factor, as described by the Capital Asset Pricing Model (CAPM), which asserts
that market exposure is the sole driver of asset returns. However, additional factors such as interest rates, value-growth
investing, low volatility strategies, and momentum portfolios have been widely recognized. Macroeconomic factors, in-
cluding inflation and economic growth, also influence asset returns. Assets exhibit varying degrees of exposure to these
risk factors, with greater exposure leading to higher risk premiums. Essentially, assets can be viewed as bundles of
different factor exposures.
Early multifactor models include Stephen Ross’s (1976) Arbitrage Pricing Theory (APT), which argues that risk factors
cannot be arbitraged or diversified away, and Robert Merton’s Intertemporal Capital Asset Pricing Model (ICAPM),
which accounts for investors hedging risky positions over multiple time periods. Additionally, behavioral finance theories
suggest that factor premiums arise due to investor biases, such as overreaction, underreaction, and bounded rationality.

6.1.1 Adaptive Markets Hypothesis

Andrew Lo’s (2004)AdaptiveMarkets Hypothesis proposes that financial markets are shaped by principles of evolutionary
biology rather than fixed physical laws. This perspective suggests that investment performance fluctuates as the financial
ecosystem and market conditions evolve. Lo advocates studying financial markets by analyzing different“species”of
investors—individuals and institutions that share common traits—and tracking their size, growth, interactions, and be-
havioral tendencies.

6.1.2 Factor Zoo

John Cochrane (2011) coined the term Factor Zoo to highlight the rapid proliferation of newly identified factors in aca-
demic research. In response, Green, Hand, and Zhang (2017) systematically examined nearly 100 firm characteristic
factors, addressing issues such as microcap stock overweighting and data snooping biases. Their study assessed the pre-
dictive power of these factors across different time periods.

# preload monthly stocks data
monthly = CRSPBuffer(stocks=crsp, dataset='monthly', fields=['ret', 'retx', 'prc'],

beg=19251201, end=CRSP_DATE)

# signals to flip signs when forming spread portfolios
leverage = {'mom1m':-1, 'mom36m':-1, 'pricedelay':-1, 'absacc':-1, 'acc':-1,

'agr':-1, 'chcsho':-1, 'egr':-1, 'mve_ia':-1, 'pctacc':-1,
'aeavol':-1, 'disp':-1, 'stdacc':-1, 'stdcf':-1, 'secured':-1,
'maxret':-1, 'ill':-1, 'zerotrade':-1, 'cashpr':-1, 'chinv':-1,
'invest':-1, 'cinvest':-1, 'idiovol':-1, 'retvol':-1}

Helper functions
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# to lag yearly characteristics
def as_lags(df, var, key, nlags):

"""Return dataframe with {nlags} of column {var}, same {key} value in row"""
out = df[[var]].rename(columns={var: 0}) # first col: not shifted
for i in range(1, nlags):

prev = df[[key, var]].shift(i, fill_value=0) # next col: shifted i+1
prev.loc[prev[key] != df[key], :] = np.nan # require same {key} value
out.insert(i, i, prev[var])

return out

# rolling window of returns
def as_rolling(df, other, width=0, dropna=True):

"""join next dataframe to a sliding window with fixed number of columns"""
df = df.join(other, how='outer', sort=True, rsuffix='r')
if width and len(df.columns) > width: # if wider than width

df = df.iloc[:, (len(df.columns)-width):] # then drop first cols
if dropna: # drop empty rows

df = df[df.count(axis=1) > 0]
df.columns = list(range(len(df.columns)))
return df

# pipeline to run backtest
def backtest_pipeline(backtest: BackTest,

stocks: Stocks,
holdings: DataFrame,
label: str,
benchnames: List[str],
suffix: str = '',
overlap: int = 0,
outdir: str ='',
num: int = None) -> DataFrame:

"""wrapper to run a backtest pipeline

Args:
backtest: To compute backtest results
stocks: Where securities returns can be retrieved from (e.g. CRSP)
holdings: dict (key int date) of Series holdings (key permno)
label: Label of signal to backtest
benchnames: Names of benchmarks to attribute portfolio performance
overlap: Number of overlapping holdings to smooth
num: Figure num to plot to

Returns:
DataFrame of performance returns in rows

Notes:
graph and summary statistics are output to jpg and (appended) html
backtest object updated with performance and attribution data

"""
summary = backtest(stocks, holdings, label, overlap=overlap)
excess = backtest.fit(benchnames)
backtest.write(label)
backtest.plot(num=num, label=label + suffix)
if VERBOSE:

print(pd.Series(backtest.annualized, name=label + suffix)\
.to_frame().T.round(3).to_string())

(continues on next page)
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if outdir:
# performance metrics from backtest to output
sub = ['alpha', 'excess', 'appraisal', 'sharpe', 'welch-t', 'welch-p']
with open(outdir / 'index.html', 'at') as f:

f.write(f"<p><hr><h2>{label + suffix}</h2>\n<pre>\n")
f.write("{}-{} {}\n".format(min(backtest.excess.index),

max(backtest.excess.index),
benchnames))

f.write("{:12s} ".format("Annualized"))
f.write("".join(f"{k:>10s}" for k in sub) + "\n")
f.write("{:12s} ".format(label + ":"))
f.write("".join(f"{backtest.annualized[k]:10.4f}" for k in sub))
f.write(f"\n</pre><p>{datetime.now()}\n")

return summary

6.1.3 Past prices

Momentum and dividend yield data are sourced from CRSP monthly records

beg, end = 19251231, LAST_DATE
intervals = {'mom12m': (2,12),

'mom36m': (13,36),
'mom6m': (2,6),
'mom1m': (1,1)}

for label, past in tqdm(intervals.items(), total=len(intervals)):
out = []
rebaldates = bd.date_range(bd.endmo(beg, past[1]), end, 'endmo')
for rebaldate in rebaldates:

start = bd.endmo(rebaldate, -past[1])
beg1 = bd.offset(start, 1)
end1 = bd.endmo(rebaldate, 1-past[0])
df = crsp.get_universe(end1)
# require data available as of start month and end month (universe)
df['start'] = monthly.get_section(dataset='monthly',

fields=['ret'],
date_field='date',
date=start).reindex(df.index)

df[label] = monthly.get_ret(beg1, end1).reindex(df.index)
df['permno'] = df.index
df['rebaldate'] = rebaldate
df = df.dropna(subset=['start'])
out.append(df[['rebaldate', 'permno', label]]) # append rows

out = pd.concat(out, axis=0, ignore_index=True)
n = signals.write(out, label, overwrite=True)

beg, end = 19270101, LAST_DATE
columns = ['chmom', 'divyld', 'indmom']
out = []
for rebaldate in bd.date_range(beg, end, 'endmo'):

start = bd.endmo(rebaldate, -12)
beg1 = bd.offset(start, 1)
end1 = bd.endmo(rebaldate, -6)
beg2 = bd.offset(end1, 1)
end2 = bd.endmo(rebaldate)

(continues on next page)
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df = crsp.get_universe(end1)
df['start'] = monthly.get_section(dataset='monthly',

fields=['ret'],
date_field='date',
date=start).reindex(df.index)

df['end2'] = monthly.get_section(dataset='monthly',
fields=['ret'],
date_field='date',
date=end2).reindex(df.index)

df['mom2'] = monthly.get_ret(beg2, end2).reindex(df.index)
df['mom1'] = monthly.get_ret(beg1, end1).reindex(df.index)
df['divyld'] = crsp.get_divamt(beg1, end2)\

.reindex(df.index)['divamt']\

.div(df['cap'])\

.fillna(0)
df['chmom'] = df['mom1'] - df['mom2']

# 6-month two-digit sic industry momentum (group means of 'mom1')
df['sic2'] = df['siccd'] // 100
df = df.join(DataFrame(df.groupby(['sic2'])['mom1'].mean())\

.rename(columns={'mom1': 'indmom'}),
on='sic2', how='left')

df['permno'] = df.index
df['rebaldate'] = rebaldate
out.append(df.dropna(subset=['start','end2'])\

[['rebaldate', 'permno'] + columns])
out = pd.concat(out, axis=0, ignore_index=True)
for label in columns: # save signal values to sql

n = signals.write(out, label, overwrite=True)

100%|██████████| 4/4 [47:03<00:00, 705.93s/it]

benchnames = ['Mkt-RF(mo)']
rebalbeg, rebalend = 19260101, LAST_DATE
columns = ['mom12m', 'mom6m', 'chmom', 'indmom', 'divyld', 'mom1m', 'mom36m']
for label in tqdm(columns):

holdings = univariate_sorts(monthly,
label,
SignalsFrame(signals.read(label)),
rebalbeg,
rebalend,
window=1,
months=[],
maxdecile=8,
minprc=1.0,
pct=(10.0, 90.0),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,
outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')
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100%|██████████| 7/7 [22:01<00:00, 188.74s/it]
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# helper to calculate beta, idiovol and price delay from weekly returns
def regress(x: np.array, y: np.array) -> Tuple[float, float, float]:

"""helper method to calculate beta, idiovol and price delay

Args:
x: equal-weighted market returns (in ascending time order)
y: stock returns (in ascending time order). NaN's will be discarded.

Returns:
beta: slope from regression on market returns and intercept
idiovol: mean squared error of residuals
pricedelay: increase of adjusted Rsq with four market lags over without

"""
v = np.logical_not(np.isnan(y))
y = y[v]
x = x[v]
n0 = len(y)
A0 = np.vstack([x, np.ones(len(y))]).T

(continues on next page)
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b0 = np.linalg.inv(A0.T.dot(A0)).dot(A0.T.dot(y)) # univariate coeffs
sse0 = np.mean((y - A0.dot(b0))**2)
sst0 = np.mean((y - np.mean(y))**2)
if (sst0>0 and sse0>0):

R0 = (1 - ((sse0 / (n0 - 2)) / (sst0 / (n0 - 1))))
else:

R0 = 0
y4 = y[4:]
n4 = len(y4)
A4 = np.vstack([x[0:-4], x[1:-3], x[2:-2], x[3:-1], x[4:],

np.ones(n4)]).T
b4 = np.linalg.inv(A4.T.dot(A4)).dot(A4.T.dot(y4)) # four lagged coeffs
sse4 = np.mean((y4 - A4.dot(b4))**2)
sst4 = np.mean((y4 - np.mean(y4))**2)
if sst4 > 0 and sse4 > 0:

R4 = (1 - ((sse4 / (n4 - 6)) / (sst4 / (n4 - 1))))
else:

R4 = 0
return [b0[0],

sse0 or np.nan,
(1 -(R0 / R4)) if R0>0 and R4>0 else np.nan]

Weekly price responses derived from CRSP daily records.

beg, end = 19260101, LAST_DATE
columns = ['beta', 'idiovol', 'pricedelay']
wd = BusDay(sql, endweek='Wed') # custom weekly trading day calendar

width = 3*52+1 # up to 3 years of weekly returns
minvalid = 52 # at least 52 weeks required to compute beta
weekly = DataFrame() # rolling window of weekly stock returns
mkt = DataFrame() # to queue equal-weighted market returns
out = [] # to accumulate final calculations

for date in tqdm(wd.date_range(beg, end, 'weekly')):
df = crsp.get_ret(wd.begwk(date), date)
mkt = as_rolling(mkt, # rolling window of weekly mkt returns

DataFrame(data=[df.mean()], columns=[date]),
width=width)

weekly = as_rolling(weekly, # rolling window of weekly stock returns
df.rename(date),
width=width)

valid = weekly.count(axis=1) >= minvalid # require min number weeks
if valid.any():

result = DataFrame([regress(mkt.values[0], y)
for y in weekly.loc[valid].values],

columns=columns)
result['permno'] = weekly.index[valid].values
result['rebaldate'] = date
if wd.ismonthend(date): # signal value from last week of month

out.append(result)
out = pd.concat(out, axis=0, ignore_index=True)
for label in columns:

signals.write(out, label, overwrite=True)
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100%|██████████| 5165/5165 [31:49<00:00, 2.70it/s]

benchnames = ['Mkt-RF(mo)']
rebalbeg, rebalend = 19290601, LAST_DATE
for label in tqdm(columns):

holdings = univariate_sorts(monthly,
label,
SignalsFrame(signals.read(label)),
rebalbeg,
rebalend,
window=1,
months=[],
maxdecile=8,
pct=(10., 90.),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,
outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')

100%|██████████| 3/3 [07:48<00:00, 156.06s/it]
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6.1.4 Liquidity

Liquidity signals are derived from daily stock return data.

beg, end = 19830601, LAST_DATE # nasdaq/volume from after 1982
columns = ['ill', 'maxret', 'retvol', 'baspread', 'std_dolvol',

'zerotrade', 'std_turn', 'turn']

out = []
dolvol = []
turn = DataFrame() # to average turn signal over rolling 3-months
dt = bd.date_range(bd.begmo(beg,-3), end, 'endmo') # monthly rebalances
chunksize = 12 # each chunk is 12 months (1 year)
chunks = [dt[i:(i+chunksize)] for i in range(0, len(dt), chunksize)]
for chunk in tqdm(chunks):

q = (f"SELECT permno, date, ret, askhi, bidlo, prc, vol, shrout "

(continues on next page)
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f" FROM {crsp['daily'].key}"
f" WHERE date>={bd.begmo(chunk[0])}"
f" AND date<={chunk[-1]}") # retrieve a chunk

f = crsp.sql.read_dataframe(q).sort_values(['permno', 'date'])
f['baspread'] = ((f['askhi'] - f['bidlo']) / ((f['askhi'] + f['bidlo']) / 2))
f['dolvol'] = f['prc'].abs() * f['vol']
f['turn1'] = f['vol'] / f['shrout']
f.loc[f['dolvol']>0, 'ldv'] = np.log(f.loc[f['dolvol']>0, 'dolvol'])
f['ill'] = 1000000 * f['ret'].abs() / f['dolvol']

for rebaldate in chunk: # for each rebaldate in the chunk
grouped = f[f['date'].ge(bd.begmo(rebaldate))

& f['date'].le(rebaldate)].groupby('permno')
df = grouped[['ret']].max().rename(columns={'ret': 'maxret'})
df['retvol'] = grouped['ret'].std()
df['baspread'] = grouped['baspread'].mean()
df['std_dolvol'] = grouped['ldv'].std()
df['ill'] = grouped['ill'].mean()
dv = grouped['dolvol'].sum()
df.loc[dv > 0, 'dolvol'] = np.log(dv[dv > 0])
df['turn1'] = grouped['turn1'].sum()
df['std_turn'] = grouped['turn1'].std()
df['countzero'] = grouped['vol'].apply(lambda v: sum(v==0))
df['ndays'] = grouped['prc'].count()

turn = as_rolling(turn, df[['turn1']], width=3)
df['turn'] = turn.reindex(df.index).mean(axis=1, skipna=False)
df.loc[df['turn1'].le(0), 'turn1'] = 0
df.loc[df['ndays'].le(0), 'ndays'] = 0
df['zerotrade'] = ((df['countzero'] + ((1/df['turn1'])/480000))

* 21/df['ndays'])

df['rebaldate'] = rebaldate
df = df.reset_index()
out.append(df[['permno', 'rebaldate'] + columns])
if rebaldate < bd.endmo(end):

df['rebaldate'] = bd.endmo(rebaldate, 1)
dolvol.append(df[['permno','rebaldate','dolvol']])

out = pd.concat(out, axis=0, ignore_index=True)
dolvol = pd.concat(dolvol, axis=0, ignore_index=True)

100%|██████████| 42/42 [25:56<00:00, 37.05s/it]

for label in columns:
n = signals.write(out, label, overwrite=True)

n = signals.write(dolvol, 'dolvol', overwrite=True)

rebalbeg, rebalend = 19830601, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns + ['dolvol']):

holdings = univariate_sorts(monthly,
label,
SignalsFrame(signals.read(label)),
rebalbeg,

(continues on next page)

92 Chapter 6. Quant Factors



Financial Data Science Python Notebooks

(continued from previous page)

rebalend,
window=1,
months=[],
maxdecile=8,
pct=(10., 90.),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,
outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')

100%|██████████| 9/9 [09:46<00:00, 65.17s/it]
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6.1.5 Fundamentals

Fundamental signals are collected from Compustat, using both annual and quarterly datasets.

columns = ['absacc', 'acc', 'agr', 'bm', 'cashpr', 'cfp', 'chcsho',
'chinv', 'depr', 'dy', 'egr', 'ep', 'gma', 'grcapx',
'grltnoa', 'hire', 'invest', 'lev', 'lgr' ,
'pchdepr', 'pchgm_pchsale', 'pchquick',
'pchsale_pchinvt', 'pchsale_pchrect', 'pchsale_pchxsga',
'pchsaleinv', 'pctacc', 'quick', 'rd_sale', 'rd_mve',
'realestate', 'salecash', 'salerec', 'saleinv', 'secured',
'sgr', 'sp', 'tang', 'bm_ia', 'cfp_ia', 'chatoia' , 'chpmia',
'pchcapx_ia', 'chempia', 'mve_ia']

numlag = 6 # number of months to lag data for rebalance
end = LAST_DATE # last data date

# retrieve annual, keep [permno, datadate] with non null prccq if any
fields = ['sic', 'fyear', 'ib', 'oancf', 'at', 'act', 'che', 'lct',

'dlc', 'dltt', 'prcc_f', 'csho', 'invt', 'dp', 'ppent',
'dvt', 'ceq', 'txp', 'revt', 'cogs', 'rect', 'aco', 'intan',
'ao', 'ap', 'lco', 'lo', 'capx', 'emp', 'ppegt', 'lt',
'sale', 'xsga', 'xrd', 'fatb', 'fatl', 'dm']

df = pstat.get_linked(dataset='annual',
fields=fields,
date_field='datadate',
where=(f"indfmt = 'INDL' "

f" AND datafmt = 'STD'"
f" AND curcd = 'USD' "
f" AND popsrc = 'D'"
f" AND consol = 'C'"
f" AND datadate <= {end//100}31"))

fund = df.sort_values(['permno', 'datadate', 'ib'])\
.drop_duplicates(['permno', 'datadate'])\
.dropna(subset=['ib'])

fund.index = list(zip(fund['permno'], fund['datadate'])) # multi-index
fund['rebaldate'] = bd.endmo(fund.datadate, numlag)
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# precompute, and lag common metrics: mve_f avg_at sic2
fund['sic2'] = np.where(fund['sic'].notna(), fund['sic'] // 100, 0)
fund['fyear'] = fund['datadate'] // 10000 # can delete this
fund['mve_f'] = fund['prcc_f'] * fund['csho']

lag = fund.shift(1, fill_value=0)
lag.loc[lag['permno'] != fund['permno'], fields] = np.nan
fund['avg_at'] = (fund['at'] + lag['at']) / 2

lag2 = fund.shift(2, fill_value=0)
lag2.loc[lag2['permno'] != fund['permno'], fields] = np.nan
lag['avg_at'] = (lag['at'] + lag2['at']) / 2

fund['bm'] = fund['ceq'] / fund['mve_f']
fund['cashpr'] = (fund['mve_f'] + fund['dltt'] - fund['at'])/fund['che']
fund['depr'] = fund['dp'] / fund['ppent']
fund['dy'] = fund['dvt'] / fund['mve_f']
fund['ep'] = fund['ib'] / fund['mve_f']
fund['lev'] = fund['lt'] / fund['mve_f']
fund['quick'] = (fund['act'] - fund['invt']) / fund['lct']
fund['rd_sale'] = fund['xrd'] / fund['sale']
fund['rd_mve'] = fund['xrd'] / fund['mve_f']
fund['realestate'] = ((fund['fatb'] + fund['fatl']) /

np.where(fund['ppegt'].notna(),
fund['ppegt'], fund['ppent']))

fund['salecash'] = fund['sale'] / fund['che']
fund['salerec'] = fund['sale'] / fund['rect']
fund['saleinv'] = fund['sale'] / fund['invt']
fund['secured'] = fund['dm'] / fund['dltt']
fund['sp'] = fund['sale'] / fund['mve_f']
fund['tang'] = (fund['che'] + fund['rect'] * 0.715 + fund['invt'] * 0.547

+ fund['ppent'] * 0.535) / fund['at']

# changes: agr chcsho chinv egr gma egr grcapx grltnoa emp invest lgr
fund['agr'] = (fund['at'] / lag['at'])
fund['chcsho'] = (fund['csho'] / lag['csho'])
fund['chinv'] = ((fund['invt'] - lag['invt']) / fund['avg_at'])
fund['egr'] = (fund['ceq'] / lag['ceq'])
fund['gma'] = ((fund['revt'] - fund['cogs']) / lag['at'])
fund['grcapx'] = (fund['capx'] / lag2['capx'])
fund['grltnoa'] = (((fund['rect']

+ fund['invt']
+ fund['ppent']
+ fund['aco']
+ fund['intan']
+ fund['ao']
- fund['ap']
- fund['lco']
- fund['lo'])
/ (lag['rect']

+ lag['invt']
+ lag['ppent']
+ lag['aco']
+ lag['intan']

(continues on next page)
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+ lag['ao']
- lag['ap']
- lag['lco']
- lag['lo']))

- ((fund['rect']
+ fund['invt']
+ fund['aco']
- fund['ap']
- fund['lco'])

- (lag['rect']
+ lag['invt']
+ lag['aco']
- lag['ap']
- lag['lco']))) / fund['avg_at']

fund['hire'] = ((fund['emp'] / lag['emp']) - 1).fillna(0)
fund['invest'] = (((fund['ppegt'] - lag['ppegt'])

+ (fund['invt'] - lag['invt'])) / lag['at'])
fund['invest'] = fund['invest'].where(fund['invest'].notna(),

((fund['ppent'] - lag['ppent'])
+ (fund['invt'] - lag['invt'])) / lag['at'])

fund['lgr'] = (fund['lt'] / lag['lt'])
fund['pchdepr'] = ((fund['dp'] / fund['ppent']) / (lag['dp'] / lag['ppent']))
fund['pchgm_pchsale'] = (((fund['sale'] - fund['cogs']) / (lag['sale'] - lag['cogs']))

- (fund['sale'] / lag['sale']))
fund['pchquick'] = (((fund['act'] - fund['invt']) / fund['lct'])

/ ((lag['act'] - lag['invt']) / lag['lct']))
fund['pchsale_pchinvt'] = ((fund['sale'] / lag['sale']) - (fund['invt'] / lag['invt

↪']))
fund['pchsale_pchrect'] = ((fund['sale'] / lag['sale']) - (fund['rect'] / lag['rect

↪']))
fund['pchsale_pchxsga'] = ((fund['sale'] / lag['sale']) - (fund['xsga'] / lag['xsga

↪']))
fund['pchsaleinv'] = ((fund['sale'] / fund['invt']) / (lag['sale'] / lag['invt']))
fund['sgr'] = (fund['sale'] / lag['sale'])

fund['chato'] = ((fund['sale'] / fund['avg_at']) - (lag['sale'] / lag['avg_at']))
fund['chpm'] = (fund['ib'] / fund['sale']) - (lag['ib'] / lag['sale'])
fund['pchcapx'] = fund['capx'] / lag['capx']

# compute signals with alternative definitions: acc absacc cfp
fund['_acc'] = (((fund['act'] - lag['act']) - (fund['che'] - lag['che']))

- ((fund['lct'] - lag['lct']) - (fund['dlc'] - lag['dlc'])
- (fund['txp'] - lag['txp']) - fund['dp']))

fund['cfp'] = ((fund['ib'] - (((fund['act'] - lag['act']) - (fund['che'] - lag['che
↪']))

- ((fund['lct'] - lag['lct'])
- (fund['dlc'] - lag['dlc'])
- (fund['txp'] - lag['txp'])
- fund['dp']))) / fund['mve_f'])

g = fund['oancf'].notnull()
fund.loc[g, 'cfp'] = fund.loc[g, 'oancf'] / fund.loc[g, 'mve_f']
fund.loc[g, '_acc'] = fund.loc[g, 'ib'] - fund.loc[g, 'oancf']
fund['acc'] = fund['_acc'] / fund['avg_at']
fund['absacc'] = abs(fund['_acc']) / fund['avg_at']
fund['pctacc'] = fund['_acc'] / abs(fund['ib'])

(continues on next page)
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h = (fund['ib'].abs() <= 0.01)
fund.loc[h, 'pctacc'] = fund.loc[h, '_acc'] / 0.01

# industry-adjusted
cols = {'bm_ia': 'bm', 'cfp_ia': 'cfp', 'chatoia': 'chato',

'chpmia': 'chpm', 'pchcapx_ia': 'pchcapx',
'chempia': 'hire', 'mve_ia': 'mve_f'}

group = fund.groupby(['sic2', 'fyear'])
for k,v in cols.items():

fund[k] = fund[v] - group[v].transform('mean')

for label in columns:
signals.write(fund, label, overwrite=True)

rebalbeg, rebalend = 19700101, LAST_DATE
benchnames = ['Mkt-RF(mo)'] #['Mom'] #['ST_Rev(mo)'] #
for label in tqdm(columns):

holdings = univariate_sorts(monthly,
label,
SignalsFrame(signals.read(label)),
rebalbeg,
rebalend,
window=12,
months=[6],
maxdecile=8,
pct=(10., 90.),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,
outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')

44%|████▍ | 20/45 [29:40<39:56, 95.88s/it] /home/terence/Dropbox/github/data-
↪science-notebooks/finds/backtesting/backtest.py:310: RuntimeWarning: More than␣
↪20 figures have been opened. Figures created through the pyplot interface␣
↪(`matplotlib.pyplot.figure`) are retained until explicitly closed and may␣
↪consume too much memory. (To control this warning, see the rcParam `figure.max_
↪open_warning`). Consider using `matplotlib.pyplot.close()`.
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, clear=True,

100%|██████████| 45/45 [1:09:08<00:00, 92.19s/it]
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Fundamental signals from Compustat Quarterly

columns = ['stdacc', 'stdcf', 'roavol', 'sgrvol', 'cinvest', 'chtx',
'rsup', 'roaq', 'cash', 'nincr']

numlag = 4 # require 4 month lag of fiscal data
end = LAST_DATE

# retrieve quarterly, keep [permno, datadate] key with non null prccq
fields = ['ibq', 'actq', 'cheq', 'lctq', 'dlcq', 'saleq', 'prccq',

'cshoq', 'atq', 'txtq', 'ppentq']
df = pstat.get_linked(dataset='quarterly',

fields=fields,
date_field='datadate',
where=(f"datadate > 0 "

f"and datadate <= {end//100}31"))
fund = df.sort_values(['permno','datadate', 'ibq'])\

.drop_duplicates(['permno', 'datadate'])\

.dropna(subset=['ibq'])
fund.index = list(zip(fund['permno'], fund['datadate']))
rebaldate = bd.endmo(fund.datadate, numlag)

# compute current and lagged: scf sacc roaq nincr cinvest cash rsup chtx
lag = fund.shift(1, fill_value=0)
lag.loc[lag['permno'] != fund['permno'], fields] = np.nan
fund['_saleq'] = fund['saleq']
fund.loc[fund['_saleq'].lt(0.01), '_saleq'] = 0.01

fund['sacc'] = (((fund['actq'] - lag['actq']) - (fund['cheq'] - lag['cheq']))
- ((fund['lctq'] - lag['lctq'])

- (fund['dlcq'] - lag['dlcq']))) / fund['_saleq']
fund['cinvest'] = (fund['ppentq'] - lag['ppentq']) / fund['_saleq']
fund['nincr'] = (fund['ibq'] > lag['ibq']).astype(int)
fund['scf'] = (fund['ibq'] / fund['_saleq']) - fund['sacc']
fund['roaq'] = (fund['ibq'] / lag['atq'])
fund['cash'] = (fund['cheq'] / fund['atq'])

lag4 = fund.shift(4, fill_value=0)
lag4.loc[lag4['permno'] != fund['permno'], fields] = np.nan
fund['rsup'] = ((fund['saleq'] - lag4['saleq'])

/ (fund['prccq'].abs() * fund['cshoq'].abs()))
fund['chtx'] = (fund['txtq'] - lag4['txtq']) / lag4['atq']

# for each var: make dataframe of 15 lags (column names=[0,...,15])
lags = {col : as_lags(fund, var=col, key='permno', nlags=16)

for col in ['sacc', 'scf', 'roaq', 'rsup', 'cinvest', 'nincr']}
for i in range(1, 16): # lags[ninrc][i]=1 iff ibq

lags['nincr'][i] *= lags['nincr'][i-1] # increasing all prior qtrs

# compute signals from the 15 lags
fund['rebaldate'] = rebaldate
fund['stdacc'] = lags['sacc'].std(axis=1, skipna=False)
fund['stdcf'] = lags['scf'].std(axis=1, skipna=False)
fund['roavol'] = lags['roaq'].std(axis=1, skipna=False)
fund['sgrvol'] = lags['rsup'].std(axis=1, skipna=False)

(continues on next page)
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fund['cinvest'] = (fund['cinvest'] -
lags['cinvest'][[1, 2, 3, 4]].mean(axis=1, skipna=False))

# count number of consecutive increasing quarters
fund['nincr'] = lags['nincr'][np.arange(8)].sum(axis=1)

for label in columns:
signals.write(fund, label, overwrite=True)

rebalbeg, rebalend = 19700101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns):

holdings = univariate_sorts(monthly,
label,
SignalsFrame(signals.read(label)),
rebalbeg,
rebalend,
window=3,
months=[],
maxdecile=8,
pct=(10., 90.),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,
outdir=outdir,
suffix='(-)'*(leverage.get(label, 1) < 0))

100%|██████████| 10/10 [11:53<00:00, 71.38s/it]
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6.1.6 Earnings Estimates

Earnings estimate signals are drawn from IBES data, including fiscal year 1 projections, long-term growth forecasts, and
announcement dates linked to CRSP daily prices and Compustat quarterly.

columns = ['chfeps', 'chnanalyst', 'disp']

df = ibes.get_linked(dataset='statsum',
fields=['fpedats', 'meanest', 'medest',

'stdev', 'numest'],
date_field = 'statpers',
where=("meanest IS NOT NULL "

" AND fpedats IS NOT NULL "
" AND statpers IS NOT NULL"
" AND fpi = '1'"))

out = df.sort_values(['permno', 'statpers', 'fpedats', 'meanest'])\
.drop_duplicates(['permno', 'statpers', 'fpedats'])

out['rebaldate'] = bd.endmo(out['statpers'])

out['disp'] = out['stdev'] / abs(out['meanest'])
out.loc[abs(out['meanest']) < 0, 'disp'] = out['stdev'] / 0.01

lag1 = out.shift(1, fill_value=0)
f1 = (lag1['permno'] == out['permno'])
out.loc[f1, 'chfeps'] = out.loc[f1, 'meanest'] - lag1.loc[f1, 'meanest']

lag3 = out.shift(3, fill_value=0)
f3 = (lag3['permno'] == out['permno'])
out.loc[f3, 'chnanalyst'] = out.loc[f3, 'numest']-lag3.loc[f3, 'numest']

for label in columns:
signals.write(out, label, overwrite=True)

rebalbeg, rebalend = 19760101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns):

holdings = univariate_sorts(monthly,
label,
SignalsFrame(signals.read(label)),
rebalbeg,
rebalend,
window=3,
months=[],
maxdecile=8,
pct=(10., 90.),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,

(continues on next page)
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outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')

100%|██████████| 3/3 [03:39<00:00, 73.25s/it]
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IBES Long-term Growth signals

columns = ['fgr5yr']

df = ibes.get_linked(dataset='statsum',
fields = ['meanest'],
date_field = 'statpers',
where=("meanest IS NOT NULL "

" AND fpi = '0'"
" AND statpers IS NOT NULL"))

out = df.sort_values(['permno', 'statpers', 'meanest'])\
.drop_duplicates(['permno', 'statpers'])\
.dropna()

out['rebaldate'] = bd.endmo(out['statpers'])
out['fgr5yr'] = out['meanest']
signals.write(out, 'fgr5yr', overwrite=True)

1319938

rebalbeg, rebalend = 19760101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns):

holdings = univariate_sorts(monthly,
label,
SignalsFrame(signals.read(label)),
rebalbeg,
rebalend,
window=3,
months=[],
maxdecile=8,
pct=(10., 90.),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,

(continues on next page)
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benchnames,
overlap=0,
outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')

100%|██████████| 1/1 [01:06<00:00, 66.27s/it]

Announcement date in Quarterly, linked to CRSP daily

columns = ['ear', 'aeavol']

# retrieve rdq, and set rebalance date to at least one month delay
df = pstat.get_linked(dataset='quarterly',

fields=['rdq'],
date_field='datadate',
where=('rdq > 0'))

fund = df.sort_values(['permno', 'rdq', 'datadate'])\
.drop_duplicates(['permno', 'rdq'])\
.dropna()

fund['rebaldate'] = bd.offset(fund['rdq'], 2)

# ear is compounded return around 3-day window
out = crsp.get_window(dataset='daily',

field='ret',
date_field='date',
permnos=fund['permno'],
dates=fund['rdq'],
left=-1,
right=1)

fund['ear'] = (1 + out).prod(axis = 1).values

# aeavol is avg volume in 3-day window over 20-day average ten-days prior
actual = crsp.get_window(dataset='daily',

(continues on next page)
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field='vol',
date_field='date',
permnos=fund['permno'],
dates=fund['rdq'],
left=-1,
right=1)

normal = crsp.get_window(dataset='daily',
field='vol',
date_field='date',
permnos=fund['permno'],
dates=fund['rdq'],
left=-30,
right=-11,
avg=True)

fund['aeavol'] = normal['vol'].values

signals.write(fund, 'ear', overwrite=True)
signals.write(fund, 'aeavol', overwrite=True)

968315

rebalbeg, rebalend = 19700101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns):

holdings = univariate_sorts(monthly,
label,
SignalsFrame(signals.read(label)),
rebalbeg,
rebalend,
window=3,
months=[],
maxdecile=8,
pct=(10., 90.),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,
outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')

100%|██████████| 2/2 [02:07<00:00, 63.88s/it]
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IBES Fiscal Year 1 linked to Quarterly PSTAT

beg, end = 19760101, LAST_DATE
monthnum = lambda d: ((d//10000)-1900)*12 + ((d//100)%100) - 1

df = pstat.get_linked(dataset='quarterly',
fields=['prccq'],
date_field='datadate')

df = df.dropna()\
.sort_values(['permno', 'datadate'])\
.drop_duplicates(['permno', 'datadate'])

out = ibes.get_linked(dataset='statsum',
fields=['fpedats', 'meanest'],
date_field='statpers',
where="fpi='1'")

out = out.dropna()\

(continues on next page)
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.sort_values(['permno', 'statpers', 'fpedats'])\

.drop_duplicates(['permno', 'statpers'])
out['monthnum'] = monthnum(out['statpers'])
out = out.set_index(['permno', 'monthnum'], drop=False)
out['sfeq'] = np.nan

for num in range(4): # match ibes statpers to any datadate in last 4 mos
df['monthnum'] = monthnum(df['datadate']) - num
df = df.set_index(['permno', 'monthnum'], drop=False)
out = out.join(df[['prccq']], how='left')
out['sfeq'] = out['sfeq'].where(out['sfeq'].notna(),

out['meanest'] / out['prccq'].abs())
out = out.drop(columns=['prccq'])

out['rebaldate'] = bd.endmo(out['statpers'])
n = signals.write(out.reset_index(drop=True), 'sfeq', overwrite=True)

IBES Fiscal Year 1 linked to IBES price history

beg, end = 19760101, LAST_DATE

# retrieve monthly price history
df = ibes.get_linked(dataset='actpsum',

fields=['price'],
date_field='statpers')

hist = df.dropna()\
.sort_values(['permno', 'statpers'])\
.drop_duplicates(['permno', 'statpers'], keep='last')\
.set_index(['permno', 'statpers'])

# retrieve monthly FY1 mean estimate
df = ibes.get_linked(dataset='statsum',

fields=['fpedats', 'meanest'],
date_field='statpers',
where="fpi='1' AND statpers <= fpedats")

out = df.dropna()\
.sort_values(['permno', 'statpers', 'fpedats'])\
.drop_duplicates(['permno', 'statpers'])\
.set_index(['permno', 'statpers'])

# join on [permno, statpers], and reindex on [permno, rebaldate]
out = out.join(hist[['price']], how='left').reset_index()
out['rebaldate'] = bd.endmo(out['statpers'])
out = out.set_index(['permno', 'rebaldate'])
out['sfe'] = out['meanest'].div(out['price'].abs())
n = signals.write(out.reset_index(), 'sfe', overwrite=True)

rebalbeg, rebalend = 19760101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
label = 'sfe'
holdings = univariate_sorts(monthly,

label,

(continues on next page)
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SignalsFrame(signals.read(label)),
rebalbeg,
rebalend,
window=3,
months=[],
maxdecile=8,
pct=(10., 90.),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,
outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')

IBES Fiscal Quarter 1, linked to Quarterly

columns = ['sue']
numlag = 4
end = LAST_DATE

# retrieve quarterly, keep [permno, datadate] key with non null prccq
df = pstat.get_linked(dataset='quarterly',

fields=['prccq', 'cshoq', 'ibq'],
date_field='datadate',
where=f"datadate <= {end//100}31")

fund = df.dropna(subset=['ibq'])\
.sort_values(['permno', 'datadate', 'cshoq'])\
.drop_duplicates(['permno', 'datadate'])

fund['rebaldate'] = bd.endmo(fund['datadate'], numlag)
fund = fund.set_index(['permno', 'rebaldate'], drop=False)
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# retrieve ibes Q1 where forecast period <= fiscal date, keep latest
df = ibes.get_linked(dataset='statsum',

fields=['fpedats', 'medest', 'actual'],
date_field='statpers',
where=" fpi = '6' AND statpers <= fpedats")

summ = df.dropna()\
.sort_values(['permno', 'fpedats', 'statpers'])\
.drop_duplicates(['permno', 'fpedats'], keep='last')

summ['rebaldate'] = bd.endmo(summ['fpedats'], numlag)
summ = summ.set_index(['permno', 'statpers'])

# retrieve ibes price, then left join
df = ibes.get_linked(dataset='actpsum',

fields=['price'],
date_field='statpers')

hist = df.dropna()\
.sort_values(['permno', 'statpers'])\
.drop_duplicates(['permno', 'statpers'], keep='last')

hist = hist.set_index(['permno', 'statpers'])
summ = summ.join(hist[['price']], how='left')
summ = summ.reset_index()\

.set_index(['permno', 'rebaldate'])\

.reindex(fund.index)

# sue with ibes surprise and price
fund['sue'] = (summ['actual'] - summ['medest']) / summ['price'].abs()

# sue with ibes surprice and compustat quarterly price
fund['sue'] = fund['sue'].where(

fund['sue'].notna(), (summ['actual'] - summ['medest']) / fund['prccq'].abs())

# sue with lag(4) difference in compustat quarterly and price
lag = fund.shift(4, fill_value=0)
fund['sue'] = fund['sue'].where(

fund['sue'].notna() | (lag['permno'] != fund['permno']),
((fund['ibq'] - lag['ibq']) / (fund['prccq'] * fund['cshoq']).abs()))

signals.write(fund.reset_index(drop=True), 'sue', overwrite=True)

1089089

rebalbeg, rebalend = 19760101, LAST_DATE
benchnames = ['Mkt-RF(mo)']
for label in tqdm(columns):

holdings = univariate_sorts(monthly,
label,
SignalsFrame(signals.read(label)),
rebalbeg,
rebalend,
window=3,
months=[],
maxdecile=8,

(continues on next page)
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pct=(10., 90.),
leverage=leverage.get(label, 1))

excess = backtest_pipeline(backtest,
monthly,
holdings,
label,
benchnames,
overlap=0,
outdir=outdir,
suffix=(leverage.get(label, 1) < 0)*'(-)')

100%|██████████| 1/1 [01:14<00:00, 74.37s/it]

6.1.7 Backtests

All backtests are conducted on univariate, dollar-neutral spreads between the top and bottom deciles of a given charac-
teristic. Stocks are value-weighted within each decile, excluding the smallest quintile of NYSE-listed firms by market
capitalization. Spread portfolios are rebalanced monthly, with fundamental data lagged in the standard manner—six
months for annual data and four months for quarterly data.
Each backtest generates a time series of cumulative spread portfolio and market index returns, along with metrics such
as monthly turnover rates and the number of long and short positions. Results are ranked based on Welch’s t-statistic,
which tests for differences in mean returns before 2002 and after 2003. This aligns with findings from Green et al. (2017)
and others, who observed a significant decline in the predictive power of many factors after this period.
Additionally, we compute the maximum drawdown for each strategy, defined as the largest peak-to-trough loss in cu-
mulative returns before a new peak is reached. This measure provides insight into the worst-case historical performance
of each strategy.

def maximum_drawdown(x: Series, is_price_level: bool = False) -> Series:
"""Compute max drawdown (max loss from previous high) period and returns"""
cumsum = np.log(1 + x).cumsum()
cummax = cumsum.cummax()
end = (cummax - cumsum).idxmax()

(continues on next page)
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beg = cumsum[cumsum.index <= end].idxmax()
dd = cumsum.loc[[beg, end]]
return np.exp(dd)

zoo = backtest.read().sort_values(['begret', 'permno'])
r = []
rets = []
for label in zoo.index:

perf = backtest.read(label)
rets.append(perf['ret'].rename(label))
excess = {'ret': backtest.fit(['Mkt-RF(mo)'])}
excess['annualized'] = backtest.annualized
excess['dd'] = maximum_drawdown(backtest.perf['excess'])
post = {'ret': backtest.fit(['Mkt-RF(mo)'],

beg=20020101).copy()}
post['annualized'] = backtest.annualized.copy()
s = label + ('(-)' if leverage.get(label, 1) < 0 else '')
r.append(DataFrame({

# 'Start': excess['ret'].index[0],
'Sharpe Ratio': excess['annualized']['sharpe'],
'Alpha': excess['annualized']['alpha'],
'Appraisal Ratio': excess['annualized']['appraisal'],
'Avg Ret': excess['ret']['excess'].mean(),
'Vol': excess['ret']['excess'].std(ddof=0),
'Welch-t': excess['annualized']['welch-t'],
'Appraisal2002': post['annualized']['appraisal'],
'Ret2002': post['ret']['excess'].mean(),
'Drawdown': (excess['dd'].iloc[1]/excess['dd'].iloc[0]) - 1,

}, index=[s]))
df = pd.concat(r, axis=0).round(4).sort_values('Welch-t')

pd.set_option("display.max_colwidth", None, 'display.max_rows', None)
df #.sort_values('Sharpe Ratio', ascending=False)

Sharpe Ratio Alpha Appraisal Ratio Avg Ret Vol \
pchsale_pchrect -0.1169 -0.0121 -0.1368 -0.0009 0.0256
mom1m(-) 0.3820 0.0568 0.3132 0.0061 0.0543
bm 0.2233 0.0339 0.2141 0.0029 0.0457
bm_ia 0.2413 0.0216 0.1611 0.0027 0.0393
agr(-) 0.2493 0.0480 0.4320 0.0025 0.0341
pchsale_pchinvt 0.2434 0.0229 0.2392 0.0019 0.0276
chmom 0.4007 0.0509 0.3114 0.0058 0.0494
pchsaleinv 0.2446 0.0197 0.2238 0.0018 0.0254
lev 0.0261 -0.0002 -0.0012 0.0004 0.0488
absacc(-) 0.0380 0.0212 0.1520 0.0005 0.0414
ep 0.2831 0.0639 0.4231 0.0037 0.0452
chcsho(-) 0.5415 0.0725 0.7490 0.0047 0.0298
invest(-) 0.2479 0.0450 0.3776 0.0025 0.0356
acc(-) 0.3358 0.0377 0.3500 0.0030 0.0312
indmom 0.3518 0.0643 0.3708 0.0053 0.0512
sp 0.2303 0.0329 0.2220 0.0028 0.0428
pchdepr 0.0617 0.0048 0.0506 0.0005 0.0273
egr(-) 0.3157 0.0539 0.5072 0.0030 0.0327
sgrvol 0.1918 0.0082 0.0562 0.0024 0.0440
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mom12m 0.4699 0.1532 0.6550 0.0101 0.0732
realestate 0.1084 0.0508 0.3445 0.0014 0.0458
mom36m(-) 0.1778 0.0191 0.0953 0.0031 0.0601
cashpr(-) 0.2962 0.0475 0.3843 0.0031 0.0363
divyld -0.0470 0.0377 0.2455 -0.0008 0.0552
aeavol(-) 0.2160 0.0381 0.3568 0.0020 0.0320
ill(-) 0.3323 0.0504 0.4209 0.0034 0.0350
dy -0.0473 0.0382 0.2262 -0.0008 0.0569
chatoia 0.2567 0.0292 0.2994 0.0021 0.0282
chinv(-) 0.3601 0.0506 0.4775 0.0033 0.0314
retvol(-) 0.1306 0.1269 0.6067 0.0029 0.0772
maxret(-) 0.1807 0.1144 0.6383 0.0034 0.0646
pricedelay(-) 0.0819 0.0030 0.0302 0.0007 0.0292
chfeps 0.4741 0.0673 0.5567 0.0048 0.0353
stdcf(-) 0.2132 0.0613 0.5020 0.0024 0.0391
idiovol(-) -0.0126 0.0514 0.2623 -0.0003 0.0697
mve_ia(-) 0.1372 0.0025 0.0244 0.0012 0.0302
chpmia 0.1598 0.0266 0.2003 0.0018 0.0385
disp(-) 0.3267 0.1025 0.6640 0.0048 0.0508
cfp 0.2466 0.0511 0.3691 0.0029 0.0412
stdacc(-) 0.1414 0.0431 0.3801 0.0014 0.0354
pchsale_pchxsga -0.0415 -0.0053 -0.0480 -0.0004 0.0320
grltnoa 0.1595 0.0208 0.1793 0.0015 0.0335
sfe 0.2535 0.0763 0.4340 0.0039 0.0532
pchgm_pchsale 0.0106 -0.0035 -0.0337 0.0001 0.0297
cfp_ia -0.1814 -0.0331 -0.2501 -0.0020 0.0386
mom6m 0.3185 0.1085 0.5001 0.0064 0.0682
beta 0.0807 -0.0733 -0.3806 0.0022 0.0906
dolvol 0.1131 0.0017 0.0161 0.0010 0.0315
nincr 0.3410 0.0242 0.2728 0.0026 0.0259
cinvest(-) -0.4026 -0.0447 -0.3815 -0.0039 0.0339
cash 0.2751 0.0143 0.1021 0.0035 0.0438
chtx 0.2162 0.0211 0.1716 0.0022 0.0358
salecash 0.0170 0.0199 0.1773 0.0002 0.0342
rd_mve 0.1412 0.0114 0.0716 0.0019 0.0463
chnanalyst 0.0875 0.0021 0.0240 0.0006 0.0255
fgr5yr 0.0537 -0.0485 -0.2487 0.0010 0.0640
sue 0.4709 0.0557 0.5087 0.0043 0.0317
pchcapx_ia -0.1942 -0.0262 -0.2113 -0.0020 0.0359
roavol 0.0768 -0.0063 -0.0425 0.0010 0.0440
baspread -0.0851 -0.1231 -0.5790 -0.0020 0.0804
pchquick -0.0755 -0.0085 -0.0918 -0.0006 0.0268
rd_sale -0.0530 -0.0146 -0.0945 -0.0007 0.0446
pctacc(-) 0.1174 0.0248 0.2364 0.0011 0.0312
secured(-) 0.0364 0.0337 0.2793 0.0004 0.0376
std_turn 0.0539 -0.0490 -0.2884 0.0009 0.0582
std_dolvol -0.0176 0.0007 0.0068 -0.0002 0.0315
rsup 0.1644 0.0237 0.1859 0.0018 0.0369
depr 0.0696 -0.0201 -0.1534 0.0008 0.0422
zerotrade(-) 0.1663 -0.0351 -0.1939 0.0031 0.0644
sgr 0.0225 -0.0138 -0.1111 0.0002 0.0372
salerec 0.2028 0.0405 0.3172 0.0022 0.0378
roaq 0.2858 0.0610 0.4358 0.0035 0.0422
turn 0.1420 -0.0412 -0.2184 0.0027 0.0669
ear 0.1909 -0.0019 -0.0185 0.0018 0.0329
quick 0.0603 -0.0241 -0.1670 0.0008 0.0467
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gma 0.1117 0.0201 0.1363 0.0014 0.0426
hire -0.1215 -0.0324 -0.2790 -0.0012 0.0353
tang 0.2328 0.0149 0.1259 0.0024 0.0351
grcapx -0.2991 -0.0421 -0.4188 -0.0026 0.0298
saleinv 0.1401 0.0364 0.3711 0.0013 0.0312
chempia 0.0698 -0.0084 -0.0768 0.0007 0.0331
lgr -0.0573 -0.0162 -0.1720 -0.0005 0.0279

Welch-t Appraisal2002 Ret2002 Drawdown
pchsale_pchrect -3.1904 -0.6200 -0.0047 -0.8591
mom1m(-) -2.7253 -0.3205 -0.0017 -0.7606
bm -2.3167 -0.3007 -0.0019 -0.7651
bm_ia -2.2583 -0.2118 -0.0012 -0.7011
agr(-) -2.1174 0.0200 -0.0008 -0.5362
pchsale_pchinvt -2.1010 -0.1343 -0.0008 -0.4944
chmom -1.9158 -0.0634 0.0010 -0.6159
pchsaleinv -1.7332 -0.1297 -0.0003 -0.4843
lev -1.6920 -0.3338 -0.0035 -0.8698
absacc(-) -1.6578 -0.1800 -0.0027 -0.7840
ep -1.4698 0.2254 0.0007 -0.6637
chcsho(-) -1.4605 0.5437 0.0027 -0.3253
invest(-) -1.3936 0.1366 0.0001 -0.4268
acc(-) -1.3486 0.0828 0.0011 -0.3966
indmom -1.3305 0.2007 0.0020 -0.6892
sp -1.2746 -0.0372 0.0004 -0.5726
pchdepr -1.2651 -0.1436 -0.0011 -0.6979
egr(-) -1.2025 0.3026 0.0013 -0.3384
sgrvol -1.1672 -0.2804 0.0001 -0.6935
mom12m -1.1488 0.5282 0.0058 -0.9670
realestate -1.1485 0.2426 -0.0007 -0.6426
mom36m(-) -1.0582 -0.0673 -0.0000 -0.7280
cashpr(-) -1.0456 0.0969 0.0014 -0.4235
divyld -1.0071 -0.1090 -0.0032 -0.9650
aeavol(-) -0.9899 0.2019 0.0006 -0.5583
ill(-) -0.8358 0.4068 0.0022 -0.6150
dy -0.7118 -0.0399 -0.0025 -0.9190
chatoia -0.6699 0.1768 0.0012 -0.5082
chinv(-) -0.6658 0.2930 0.0023 -0.2747
retvol(-) -0.6457 0.5100 0.0009 -0.7990
maxret(-) -0.6188 0.5778 0.0017 -0.7173
pricedelay(-) -0.5810 -0.1441 -0.0002 -0.6155
chfeps -0.5669 0.5971 0.0040 -0.2969
stdcf(-) -0.5562 0.4330 0.0015 -0.4787
idiovol(-) -0.4946 0.3285 -0.0021 -0.9875
mve_ia(-) -0.4777 -0.0749 0.0005 -0.5605
chpmia -0.4676 0.1088 0.0009 -0.6303
disp(-) -0.3850 0.7927 0.0039 -0.5300
cfp -0.3045 0.2216 0.0024 -0.5708
stdacc(-) -0.2576 0.3357 0.0011 -0.5056
pchsale_pchxsga -0.2270 -0.1208 -0.0007 -0.7740
grltnoa -0.2164 0.1620 0.0012 -0.5122
sfe -0.1952 0.3435 0.0034 -0.7417
pchgm_pchsale -0.1935 0.0227 -0.0002 -0.5895
cfp_ia -0.1337 -0.3944 -0.0022 -0.8613
mom6m -0.1285 0.5223 0.0060 -0.9885
beta -0.1225 -0.4818 0.0016 -0.9586
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dolvol -0.1030 0.1331 0.0009 -0.7624
nincr -0.0929 0.3654 0.0024 -0.4061
cinvest(-) 0.0387 -0.3699 -0.0039 -0.9587
cash 0.0479 0.0796 0.0036 -0.7076
chtx 0.1783 0.3262 0.0025 -0.4779
salecash 0.2132 0.2326 0.0005 -0.7463
rd_mve 0.2541 0.0853 0.0024 -0.7868
chnanalyst 0.2806 0.1425 0.0010 -0.5443
fgr5yr 0.3620 -0.0030 0.0020 -0.8761
sue 0.3800 0.6849 0.0048 -0.4062
pchcapx_ia 0.4287 -0.0762 -0.0013 -0.8750
roavol 0.4640 0.0964 0.0019 -0.7812
baspread 0.4727 -0.5203 -0.0005 -0.9539
pchquick 0.5811 -0.0879 0.0001 -0.7586
rd_sale 0.6114 -0.0313 0.0005 -0.8706
pctacc(-) 0.6117 0.2568 0.0019 -0.3803
secured(-) 0.6222 0.3922 0.0014 -0.6406
std_turn 0.6391 -0.2285 0.0024 -0.8064
std_dolvol 0.7879 0.0782 0.0008 -0.5301
rsup 0.8444 0.4582 0.0032 -0.5353
depr 0.8697 0.0616 0.0024 -0.6522
zerotrade(-) 0.8812 -0.0779 0.0054 -0.8344
sgr 0.9168 0.0682 0.0018 -0.7062
salerec 0.9547 0.5194 0.0040 -0.6761
roaq 0.9856 0.7546 0.0054 -0.4532
turn 0.9945 -0.0831 0.0054 -0.8291
ear 1.0453 0.2661 0.0033 -0.5423
quick 1.2014 0.0018 0.0033 -0.7923
gma 1.2529 0.4330 0.0039 -0.6364
hire 1.4328 0.0264 0.0011 -0.8262
tang 1.4843 0.3043 0.0047 -0.7361
grcapx 1.5208 -0.1320 -0.0004 -0.8714
saleinv 1.9087 0.6251 0.0040 -0.4900
chempia 2.0683 0.3022 0.0038 -0.7319
lgr 2.2177 0.2295 0.0024 -0.8286

X = pd.concat(rets, join='outer', axis=1).dropna()
X = X/X.std() # standardize to unit variance
corr = X.corr()
dist = np.sqrt(1 - corr)

6.2 Cluster analysis

We use historical backtest returns as input features for cluster analysis, enabling the identification of peer benchmarks for
different investment strategies. Strategies that exhibit similar return patterns tend to load on the same“style”factors
and should be evaluated against one another.
The correlation between two return series is closely related to their Euclidean distance. When returns are standardized to
have unit variance, the squared Euclidean norm between two series 𝑥 and 𝑦 can be expressed as:

𝑑2 = ∑
𝑖

(𝑥𝑖 − 𝑦𝑖)2 = ∑
𝑖

𝑥2
𝑖 + ∑

𝑖
𝑦2

𝑖 − 2∑
𝑖

𝑥𝑖𝑦𝑖 = 𝑛 + 𝑛 − 2𝑛𝜌

since ∑𝑖 𝑥2
𝑖 = ∑𝑖 𝑦2

𝑖 = 𝑛, and 𝜌 = ∑𝑖 𝑥𝑖𝑦𝑖/𝑛, where 𝜌 represents the correlation between the two series. This
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relationship allows correlation to be rewritten as:

𝜌 = 1 − 𝑑2

2𝑛

6.2.1 Hiearchical clustering

Hierarchical clustering builds a tree-like structure by iteratively merging clusters based on their similarity. Different
linkage methods determine how clusters are merged:

• Single Linkage: Merges clusters based on the closest points, leading to elongated clusters.
• Complete Linkage: Uses the farthest points between clusters, producing compact, spherical clusters.
• Average Linkage: Merges clusters based on the average distance between all points, balancing between single and

complete linkage.
• Ward’s Method: Minimizes within-cluster variance, resulting in clusters of similar size and shape.

model = AgglomerativeClustering(metric='precomputed', linkage='average',
distance_threshold=0, n_clusters=None).fit(dist)

fig, ax = plt.subplots(figsize=(10, 12))
plt.title("Hierarchical Clustering Dendrogram")
# Create linkage matrix and then plot the dendrogram
# scikit-learn: "Plot Hierarchical Clustering Dendrogram"
counts = np.zeros(model.children_.shape[0])
n_samples = len(model.labels_)
# create the counts of samples under each node
for i, merge in enumerate(model.children_):

current_count = 0
for child_idx in merge:

if child_idx < n_samples:
current_count += 1 # leaf node

else:
current_count += counts[child_idx - n_samples]

counts[i] = current_count

linkage_matrix = np.column_stack([model.children_, model.distances_, counts])\
.astype(float)

# Plot the corresponding dendrogram
dendrogram(linkage_matrix, orientation='left', labels=dist.columns, leaf_font_size=10)
plt.tight_layout()
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6.2.2 K-means clustering

K-means is a widely used unsupervised learning algorithm that partitions data into 𝐾 non-overlapping clusters. The
process involves:

1. Selecting an initial number of clusters 𝐾.
2. Randomly assigning initial cluster centroids.
3. Iteratively assigning each data point to the nearest centroid.
4. Recalculating centroids based on the mean of points in each cluster.
5. Repeating until convergence.

K-means minimizes the within-cluster sum of squared distances, making it well-suited for datasets where clusters are
roughly spherical and of similar size.
The ElbowMethod is commonly used to determine the optimal number of clusters by plotting the within-cluster sum of
squares for different values of 𝐾. The optimal 𝐾 is where the graph forms an“elbow,”indicating diminishing returns
from adding more clusters.

# Selecting number of centers with elbow method
inertias = []
n_clusters = list(range(2, 32))
for n_cluster in n_clusters:

kmeans = KMeans(n_clusters=n_cluster, random_state=0, n_init="auto").fit(X.T)
inertias.append(kmeans.inertia_)

plt.figure(figsize=(10, 6))
plt.plot(n_clusters, inertias, 'bx-')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')
plt.title('Elbow Method using Inertia')
plt.show()
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Silhouette Analysis provides an alternative evaluation method by measuring how well-separated clusters are. The sil-
houette score compares cohesion (similarity within a cluster) to separation (difference from other clusters), with values
ranging from -1 to 1. Higher scores indicate better-defined clusters, and the number of clusters maximizing the average
silhouette score is considered optimal.

# scikit-learn: "Selecting the number of clusters with silhouette analysis on KMeans␣
↪clustering"

scores = {}
fig, ax = plt.subplots(ncols=4, nrows=int(np.round(len(n_clusters)/4)), figsize=(10,␣

↪15))
ax = ax.flatten()
for n_cluster, ax1 in zip(n_clusters, ax):

clusterer = KMeans(n_clusters=n_cluster, n_init='auto', random_state=10)
cluster_labels = clusterer.fit_predict(X)

# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_cluster,

"The average silhouette_score is :", silhouette_avg)
scores[n_cluster] = silhouette_avg
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

ax1.set_title(f"{n_cluster} clusters: {silhouette_avg:.4f}")
ax1.set_xlim([-0.1, .4])
ax1.set_ylim([0, len(X) + (n_cluster + 1) * 10])

y_lower = 10
for i in range(n_cluster):

# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]

ith_cluster_silhouette_values.sort()

size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

color = cm.nipy_spectral(float(i) / n_cluster)
ax1.fill_betweenx(

np.arange(y_lower, y_upper),
0,
ith_cluster_silhouette_values,
facecolor=color,
edgecolor=color,
alpha=0.7,

)

# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples

ax1.set_ylabel("Cluster label")

(continues on next page)
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# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")

ax1.set_yticks([]) # Clear the yaxis labels / ticks
# ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

plt.suptitle("Average silouette scores by number of clusters", fontweight="bold")
plt.tight_layout()

plt.show()

For n_clusters = 2 The average silhouette_score is : 0.12182520066378914
For n_clusters = 3 The average silhouette_score is : 0.12298455415373394
For n_clusters = 4 The average silhouette_score is : 0.06615920430551211
For n_clusters = 5 The average silhouette_score is : 0.062263203571522374
For n_clusters = 6 The average silhouette_score is : 0.05360073591339586
For n_clusters = 7 The average silhouette_score is : 0.043399891992264766
For n_clusters = 8 The average silhouette_score is : 0.01865524677198136
For n_clusters = 9 The average silhouette_score is : 0.013274893057161832
For n_clusters = 10 The average silhouette_score is : 0.014055548382794032
For n_clusters = 11 The average silhouette_score is : 0.013559353746117705
For n_clusters = 12 The average silhouette_score is : 0.019298192911994215
For n_clusters = 13 The average silhouette_score is : 0.029625503519344714
For n_clusters = 14 The average silhouette_score is : 0.011439750949169072
For n_clusters = 15 The average silhouette_score is : 0.010659851615184082
For n_clusters = 16 The average silhouette_score is : 0.010407061841623768
For n_clusters = 17 The average silhouette_score is : 0.017270693194767258
For n_clusters = 18 The average silhouette_score is : 0.01369810719820829
For n_clusters = 19 The average silhouette_score is : 0.016630208862778856
For n_clusters = 20 The average silhouette_score is : 0.019144464436508506
For n_clusters = 21 The average silhouette_score is : 0.005561006651677671
For n_clusters = 22 The average silhouette_score is : 0.006354452315559386
For n_clusters = 23 The average silhouette_score is : 0.005722873193904617
For n_clusters = 24 The average silhouette_score is : 0.006108458004688574
For n_clusters = 25 The average silhouette_score is : 0.004737653906771348
For n_clusters = 26 The average silhouette_score is : 0.007702186499322102
For n_clusters = 27 The average silhouette_score is : 0.009876913034750879
For n_clusters = 28 The average silhouette_score is : 0.008628670013359775
For n_clusters = 29 The average silhouette_score is : 0.00908060151674441
For n_clusters = 30 The average silhouette_score is : 0.01149725260958716
For n_clusters = 31 The average silhouette_score is : 0.009230744450581462
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Series(scores).plot.bar(title='Average Silhouette Score by Number of Clusters')

<Axes: title={'center': 'Average Silhouette Score by Number of Clusters'}>

Heatmap of strategy correlations
A heatmap visualizes the distances between strategy returns (y-axis) and their respective cluster centers (x-axis), with
clusters determined using the K-Means algorithm (K=20). The darkest-colored values appear along the jagged diagonal,
indicating that strategy returns are closest to the centers of their assigned clusters. This visualization aids in identifying
common style factors and risk exposures across different investment strategies.

kmeans = KMeans(n_clusters=13, random_state=0, n_init="auto").fit(X.T)
Z = DataFrame(kmeans.transform(X.T), index=X.columns)
Z['distance'] = np.min(Z.iloc[:, :kmeans.n_clusters], axis=1)
Z['cluster'] = np.argmin(Z.iloc[:, :kmeans.n_clusters], axis=1)
Z = Z.sort_values(['cluster', 'distance']) # group by cluster and distance to center

fig, ax = plt.subplots(figsize=(10, 9))
plt.title('Distance of Factor Returns to Cluster Centers')
plt.imshow(Z.iloc[:, :kmeans.n_clusters], cmap='hot', aspect=1/3)
plt.yticks(range(len(Z)), labels=Z.index, fontsize=8)
plt.xticks(range(kmeans.n_clusters), labels=range(kmeans.n_clusters), fontsize=8)
plt.xlabel('Cluster')
plt.colorbar(label='distance from cluster centers')
plt.tight_layout()
plt.show()
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CHAPTER

SEVEN

EVENT STUDY

All strange and terrible events are welcome, but comforts we despise - Cleopatra
Event studies are a fundamental tool in financial research used to assess how specific events impact stock returns, see
Mackinlay (1997). These events, such as mergers, earnings announcements, or regulatory changes, can cause deviations
in stock prices known as abnormal returns. By comparing stock returns to a market benchmark, event studies help analysts
determine whether an event had a statistically significant impact on a company’s stock price.
This notebook explores key methodologies used in event studies, including the computation of abnormal returns, cumu-
lative abnormal returns, and buy-and-hold abnormal returns. Additionally, it delves into the announcement effect, which
examines how stock prices react immediately around an event, and investigates potential pre- and post-announcement
drifts. To account for overlapping event windows and cross-sectional dependencies, we apply statistical corrections based
on the work of Kolari et al. (2010, 2018).
We also introduce frequency domain methods, leveraging the Fourier Transform and Convolution Theorem to efficiently
compute cross-correlations between time series. Finally, we address the multiple testing problem, ensuring that statistical
inferences remain valid when analyzing a large number of events.

import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from scipy.stats import norm
from statsmodels.stats.multitest import multipletests
from tqdm import tqdm
import warnings
from finds.database import SQL, RedisDB
from finds.structured import BusDay, Benchmarks, Stocks, CRSP, PSTAT
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
if not VERBOSE:

warnings.simplefilter(action='ignore', category=FutureWarning)
#%matplotlib qt

# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
keydev = PSTAT(sql, bd, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
bench = Benchmarks(sql, bd, verbose=VERBOSE)
imgdir = paths['images'] / 'events'
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7.1 Abnormal returns

Event studies analyze how stock returns respond to specific company events, such as mergers or public announcements.
These studies examine deviations from expected returns, known as abnormal returns, in the days surrounding the news
release.
Let the event date be 𝑡 = 0, and define the stock return for firm 𝑖 at time 𝑡 as 𝑅𝑖,𝑡. To provide a benchmark, we also
compute the returns of a relevant market or sector index, denoted 𝑅𝑚,𝑡. Then:

• Abnormal returns (AR): The deviation of a stock’s return from the market return: $𝐴𝑅𝑖,𝑡 = 𝑅𝑖,𝑡 − 𝑅𝑚,𝑡$

• Average abnormal returns (AAR): The mean abnormal return across all firms: $𝐴𝐴𝑅𝑡 = 1
𝑁 ∑𝑁

𝑖 𝐴𝑅𝑖,𝑡$

• Cumulative average abnormal returns (CAR): The sum of average abnormal returns over time: $𝐶𝐴𝑅𝑇 =
∑𝑡 𝐴𝐴𝑅𝑡$

• Buy-and-hold average abnormal returns (BHAR): The average buy-and-hold abnormal returns across firms:
$𝐵𝐻𝐴𝑅𝑇 = 1

𝑁 ∑𝑁
𝑖 [∏𝑡(1 + 𝐴𝑅𝑖,𝑡) − ∏𝑡(1 + 𝑅𝑚,𝑡)]$

7.1.1 Announcement effect

The announcement effect refers to the immediate stock price movement around a news release. The nature of this
reaction varies:

• An efficient reaction occurs when the stock price stabilizes at its new level after the event.
• An under-reaction happens when the price continues trending in the same direction post-announcement.
• An over-reaction is when the price initially spikes but then reverses course.

In historical data, pinpointing the exact announcement time can be challenging. To account for this uncertainty, studies
often consider an announcement window, typically covering one day before and after the event.

• A pre-announcement drift may indicate information leakage before the official announcement.
• A post-announcement drift may suggest that investors either under- or over-reacted to the news.

When analyzing multiple events, researchers often aggregate returns for stocks with the same announcement date. How-
ever, Kolari et al. (2010) caution that even small correlations among abnormal returns can lead to significant over-rejection
of the null hypothesis of zero abnormal returns. To correct for this cross-sectional dependence, the unbiased estimate of
abnormal return variance is:

𝜎2 = 𝑠2

𝑛 (1 + (𝑛 − 1) ̂𝑟)

where:
• ̂𝑟 is the average sample cross-sectional correlation of residuals,
• 𝑠2 is the (biased) cross-sectional standard deviation of abnormal returns.

In the next subsection, we explore how cross-correlations can be be measured efficiently using the Fourier Transform
technique from the field of signal processing.
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7.1.2 FinDS eventstudy module

The eventstudy module in the FinDS package provides a comprehensive tool for analyzing announcement effects.

from finds.backtesting import EventStudy
eventstudy = EventStudy(user, bench=bench, stocks=crsp, max_date=CRSP_DATE)

# event window parameters
left, right, post = -1, 1, 21
end = bd.offset(CRSP_DATE, left - post)
beg = 20020101
mindays = 1000

• Retrieve event dates and company roles from CapitalIQ Key Developments

# sorted list of all eventids and roleids, provided in keydev class
events = sorted(keydev.event.index)
roles = sorted(keydev.role.index)

# str formatter to pretty print descriptions, provided in keydev class
eventformat = lambda e, r: "{event} ({eventid}) {role} [{roleid}]"\

.format(event=keydev.event[e], eventid=e, role=keydev.role[r], roleid=r)

• Helper functions to retrieve size decile of universe stocks

class Universe:
"""Helper to lookup prevailing size decile of universe stocks"""
def __init__(self, beg: int, end: int, stocks: Stocks, annual: bool = False):

# whether to offset previous month or year end when lookup
self.offset = stocks.bd.endyr if annual else stocks.bd.endmo

# populate dictionary, keyed by permno and date, with size decile
self.decile = dict()
date_range = stocks.bd.date_range(start=self.offset(beg, -1), end=end,

freq=12 if annual else 'e')
for date in date_range:

univ = crsp.get_universe(date)
for permno in univ.index:

self.decile[(permno, date)] = univ.loc[permno, 'decile']

def __getitem__(self, item):
"""Returns size decile, else 0 if not universe stock"""
permno, date = item
return self.decile.get((permno, self.offset(date, -1)), 0)

univ = Universe(beg=beg, end=end, stocks=crsp)

• Define the event study pipeline:
1. retrieve announcement dates for the desired event and test period
2. filter the universe
3. retrieve announcement window daily stock returns, and compute event study metrics
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# run event study after screening stock universe
def event_pipeline(eventstudy: EventStudy,

beg: int,
end: int,
eventid: int,
roleid: int,
left: int,
right: int,
post: int) -> DataFrame:

"""helper to screen stock universe, and merge keydev events and crsp daily"""

# Retrieve announcement dates for this event
df = keydev.get_linked(

dataset='keydev',
date_field='announcedate',
fields=['keydevid',

'keydeveventtypeid',
'keydevtoobjectroletypeid'],

where=(f"announcedate >= {beg} "
f" and announcedate <= {end}"
f" and keydeveventtypeid = {eventid} "
f" and keydevtoobjectroletypeid = {roleid}"))\
.drop_duplicates(['permno', 'announcedate'])\
.set_index(['permno', 'announcedate'], drop=False)

# Require universe size decile
df['size'] = [univ[row.permno, row.announcedate] for row in df.itertuples()]

# Call eventstudy to compute daily abnormal returns, with named label
rows = eventstudy(label=f"{eventid}_{roleid}",

df=df[df['size'].gt(0)],
left=left,
right=right,
post=post,
date_field='announcedate')

return df.loc[rows.to_records(index=False).tolist()] # restrict successful rows

Examine and show subsample plots for events that exhibited large post-announcement drift

events_list = [[93, 1], [232, 1]] # largest drift returns
for i, (eventid, roleid) in enumerate(events_list):

df = event_pipeline(eventstudy,
eventid=eventid,
roleid=roleid,
beg=beg,
end=end,
left=left,
right=right,
post=post)

halfperiod = np.median(df['announcedate'])
sample = {'First Half': df['announcedate'].lt(halfperiod).values,

'Second Half': df['announcedate'].ge(halfperiod).values,
'Large': df['size'].le(5).values,
'Small': df['size'].gt(5).values,
'ALL': [],

}
fig, axes = plt.subplots(nrows=2, ncols=2, clear=True, figsize=(12, 6),

(continues on next page)
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sharex=True, sharey=True)
axes = axes.flatten()
for ifig, (label, rows) in enumerate(sample.items()):

if ifig >= len(axes):
plt.show()
fig, ax = plt.subplots(clear = True, figsize=(10, 5))

else:
ax = axes[ifig]

bhar = eventstudy.fit(model='sbhar', rows=rows)
eventstudy.plot(model='sbhar',

title=eventformat(eventid, roleid) + f" ({label})",
drift=True,
ax=ax,
fontsize=(8 if ifig < len(axes) else 10),
c=f"C{i*5+ifig}")

plt.tight_layout()
plt.savefig(imgdir / (label + f"{eventid}_{roleid}.jpg"))

plt.show()

7.1. Abnormal returns 147



Financial Data Science Python Notebooks

148 Chapter 7. Event Study



Financial Data Science Python Notebooks

Examine and show subsample plots for events that exhibited large announcement window returns

events_list = [[80,1], [26,1]] # largest announcement window returns
for i, (eventid, roleid) in enumerate(events_list):

#eventid, roleid = 50, 1
#eventid, roleid = 83, 1
df = event_pipeline(eventstudy,

eventid=eventid,
roleid=roleid,
beg=beg,
end=end,
left=left,
right=right,
post=post)

halfperiod = np.median(df['announcedate'])
sample = {'FirstHalf': df['announcedate'].lt(halfperiod).values,

'SecondHalf': df['announcedate'].ge(halfperiod).values,
'Large': df['size'].le(5).values,
'Small': df['size'].gt(5).values,
'ALL': []}

fig, axes = plt.subplots(nrows=2, ncols=2, clear=True, figsize=(12, 6),
sharex=True, sharey=True)

axes = axes.flatten()
for ifig, (label, rows) in enumerate(sample.items()):

if ifig >= len(axes):
plt.show()
fig, ax = plt.subplots(clear = True, figsize=(10, 5))

else:
ax = axes[ifig]

bhar = eventstudy.fit(model='sbhar', rows=rows)
eventstudy.plot(model='sbhar',

title=eventformat(eventid, roleid) + f" ({label})",
drift=False,
ax=ax,
c=f"C{i*5+ifig}")

plt.tight_layout()
plt.savefig(imgdir / (label + f"{eventid}_{roleid}.jpg"))

(continues on next page)
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plt.show()
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7.2 Fourier transforms

7.2.1 Cross-sectional Correlations

Kolari et al. (2018) address event windows that partially overlap in calendar time. To account for this overlap and
cross-sectional correlation effects, they adjust the variance estimate as follows:

𝜎2 = 𝑠2

𝑛 𝑚(1 + 𝜏(𝑛 − 1)𝜌)

where:
• 𝑚 = length of the event window,
• 𝜏 = proportion of overlapping days between event windows,
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• 𝜌 = ratio of average covariance between abnormal returns to their variance.
If all events share the same calendar date, such that all event windows fully overlap, then 𝜌 simplifies to the average
cross-sectional correlation of residuals during the estimation period.
To estimate 𝜌, we assume cross-sectional correlations arise mainly from time misalignment. By shifting and aligning event
window residuals for each stock pair to maximize their correlation, we approximate 𝜌 as the average of these best-aligned
correlations. We leverage the methodology of Fourier transforms and convolutions to effeciently compute all pairs of
correlations.

7.2.2 Fast Fourier Transforms

Fourier transforms allow us to express a time series (or any function) as a sum of sinusoids. Given a function over an
interval of length ( L ), we can decompose it into sinusoidal components with periods ( L, L/2, L/3, ) etc. Each component
has:

• A magnitude (scale factor)
• A phase (shift)
• A frequency (inverse of the period)

This means that any function can be represented as a weighted sum of sinusoidal waves. By using complex numbers, we
can efficiently store and manipulate these sinusoidal components in Fourier space rather than the original time domain.
The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete Fourier Transform (DFT).
The DFT converts a sequence of time-domain data points into its sinusoidal coefficients, converting it from real space to
frequency space. The Inverse Fast Fourier Transform reconstructs the original function.

7.2.3 Convolution Theorem

Convolution is a mathematical operation that combines two functions (𝑓 and 𝑔) to produce a third function (𝑓 ∗ 𝑔),
expressing how one function modifies the other:

(𝑓 ∗ 𝑔)(𝑡) = ∫
∞

−∞
𝑓(𝑠)𝑔(𝑡 − 𝑠)𝑑𝑠

In one dimension, convolution acts like a moving average, smoothing a time series by weighting neighboring values. In
two dimensions, it applies filters (e.g., blurring, edge detection) in image processing.
In signal processing, frequency-domain techniques efficiently compute cross-correlations across various time shifts. In-
stead of directly computing correlations for every possible lag (which is computationally expensive), we leverage the
Convolution Theorem. A key property of Fourier transforms is that convolution in the time domain corresponds to
multiplication in the frequency domain.

ℱ{𝑓(𝑡) ∗ 𝑔(𝑡)} = ℱ{𝑓(𝑡)}ℱ{𝑔(𝑡)}

Since direct convolution requires 𝑂(𝑁2) operations, computing it directly is slow. However:
1. We can first apply the Fast Fourier Transform (FFT) to convert both functions into frequency space in 𝑂(𝑁 log 𝑁)

time.
2. In frequency space, convolution is just element-wise multiplication of Fourier coefficients, which is very fast.
3. We then apply the Inverse FFT (IFFT) to obtain the final result in 𝑂(𝑁 log 𝑁) time.
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# best alignment and cross-correlation using convolution theorem method
from scipy.fft import rfft, irfft
def fft_align(X):

"""Find best alignment, max cross-correlation and indices of all pairs of columns"
↪""

def _normalize(X: np.ndarray) -> np.ndarray:
"""Helper to demean columns and divide by norm"""
X = X - np.mean(X, axis=0)
X = X / np.linalg.norm(X, axis=0)
return X

N, M = X.shape
X = np.pad(_normalize(X), [(0, N), (0,0)]) # normalize and zero pad
Y = rfft(np.flipud(X), axis=0) # FFT of all series flipped
X = rfft(X, axis=0) # FFT of all original series
corr, disp, cols = [], [], [] # to accumulate results
for col in range(M-1): # at each iter: compute column col * all remaining columns

conv = irfft(X[:, [col]] * Y[:, col+1:], axis=0) # inverse of product of FFT
corr.extend(np.max(conv, axis=0))
shift = (N//2) + 1 # displacement location relative to center
disp.extend(((np.argmax(conv, axis=0) + shift) % N) - shift + 1)
cols.extend([(col, j) for j in range(col+1, M)])

return corr, disp, cols

Z = np.random.uniform(size=(10000, 1))
fft_align(np.hstack((Z[:-1], Z[1:])))

([0.9998967076018761], [1], [(0, 1)])

#fft_align(np.hstack(np.hstack((Z[:-5], Z[5:])))[:,2:], Z[:-2])
fft_align(np.hstack((np.hstack((Z[:-5], Z[5:]))[:-2], Z[7:])))

([0.9997503757740265, 0.9993943885689067, 0.9996440440611477],
[5, 7, 2],
[(0, 1), (0, 2), (1, 2)])

7.3 Multiple testing

When testing a huge number of null hypotheses, we are bound to get some very testing small p-values by chance. Data
snooping occurs when the analyst fits a great number of models to a dataset. When explanatory variables are selected
using the data, t-ratios and F-ratios will be too large, thus overstating the importance of variables in the model. Multiple
testing adjusts the hurdle for significance because some tests will appear significant by chance. The downside of doing
this is that some truly significant strategies might be overlooked because they did not pass the more stringent hurdle. This
is the classic tension between Type I errors and Type II errors. The Type I error is the false discovery (investing in an
unprofitable trading strategy). The Type II error is missing a truly profitable trading strategy.
The Family-Wise Error Rate (FWER) controls the probability of making at least one false discovery. If all 𝑚 null
hypotheses are independent and true:

FWER(𝛼) = 1 − (1 − 𝛼)𝑚
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To maintain a stricter significance threshold, the Bonferroni correction divides the confidence level by the number of
tests:

𝛼′ = 𝛼
𝑚

This ensures that across multiple tests, the probability of making even one false discovery remains below 𝛼. However, it
can be overly conservative.
The false discovery rate (FDR) controls the proportion of false positives among rejected hypotheses. The Benjamini-
Hochberg (BH) procedure is a widely used method for FDR control. Instead of adjusting individual significance thresh-
olds like Bonferroni, BH ranks p-values and sets a significance cutoff where false discoveries remain within acceptable
limits.
Compute BHAR and CAR of all events

restart_event = 0 # 75,1
for i, eventid in tqdm(enumerate(events), total=len(events)):

if eventid <= restart_event: # kludge to resume loop
continue

for roleid in roles:
# retrieve all returns observations of this eventid, roleid
df = event_pipeline(eventstudy,

beg=beg,
end=end,
eventid=eventid,
roleid=roleid,
left=left,
right=right,
post=post)

if df['announcedate'].nunique() < mindays: # require min number of dates
continue

# compute both BHAR and CAR averages, then plot and save
bhar = eventstudy.fit(model='sbhar')
car = eventstudy.fit(model='scar')
#eventstudy.write()
eventstudy.write_summary()
#print(eventstudy.label, eventid, roleid)

fig, axes = plt.subplots(1, 2, clear=True, figsize=(12, 4), num=1)
eventstudy.plot(model='sbhar', ax=axes[0],

title=eventformat(eventid, roleid) + ' BHAR',
fontsize=8, vline=[right])

eventstudy.plot(model='scar', ax=axes[1],
title=eventformat(eventid, roleid) + ' CAR',
fontsize=8, vline=[right])

plt.tight_layout()
plt.savefig(imgdir / f"{eventid}_{roleid}.jpg")

45%|████▍ | 52/116 [20:04:50<22:46:35, 1281.17s/it]/home/terence/Dropbox/
↪github/data-science-notebooks/finds/recipes/filters.py:28: RuntimeWarning:␣
↪invalid value encountered in divide
X = X / np.linalg.norm(X, axis=0)

53%|█████▎ | 62/116 [23:27:18<18:41:48, 1246.45s/it]/home/terence/Dropbox/
↪github/data-science-notebooks/finds/recipes/filters.py:28: RuntimeWarning:␣
↪invalid value encountered in divide
X = X / np.linalg.norm(X, axis=0)

(continues on next page)
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61%|██████ | 71/116 [26:38:56<16:18:29, 1304.66s/it]/home/terence/Dropbox/
↪github/data-science-notebooks/finds/recipes/filters.py:28: RuntimeWarning:␣
↪invalid value encountered in divide
X = X / np.linalg.norm(X, axis=0)

100%|██████████| 116/116 [42:41:25<00:00, 1324.87s/it]

Summarize BHAR’s of all events

# Create (eventid, roleid) multiindex for table of all BHAR's
df = eventstudy.read_summary(model='sbhar')\

.set_index('label')\

.drop(columns=['rho', 'tau', 'created'])
df = df[df['effective'] > 400].sort_values('post_t') # sorted by post drift t-stat
multiIndex = DataFrame(df.index.str.split('_').to_list()).astype(int)
df.index = pd.MultiIndex.from_frame(multiIndex, names=['eventid', 'roleid'])
df['event'] = keydev.event[df.index.get_level_values(0)].values
df['role'] = keydev.role[df.index.get_level_values(1)].values
print("Post-Announcement Drift")
pd.set_option('display.max_rows', None)
df.set_index(['event', 'role']).drop(columns=['model'])

Post-Announcement Drift

beg end \
event role
Shelf Registration Filings Target 20020102 20241127
Special/Extraordinary Shareholders Meeting Target 20040106 20241127
Name Changes Target 20020430 20241121
Changes in Company Bylaws/Rules Target 20020430 20241127
Product-Related Announcements Target 20020102 20241127
M&A Transaction Closings Target 20020108 20241125
Auditor Changes Target 20020103 20241127
Executive/Board Changes - Other Target 20020101 20241127
Executive Changes - CFO Target 20020102 20241127
Business Expansions Target 20020102 20241127
Special Calls Target 20030211 20241127
Executive Changes - CEO Target 20020102 20241127
M&A Transaction Cancellations Buyer 20020107 20241122
Client Announcements Target 20020102 20241127
Follow-on Equity Offerings Target 20020102 20241127

(continues on next page)
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Investor Activism - Target Communication Target 20020402 20241127
Earnings Calls Target 20020108 20241127
Strategic Alliances Target 20020102 20241127
Lawsuits & Legal Issues Target 20020101 20241127
Investor Activism - Activist Communication Target 20020102 20241126
Corporate Guidance - Lowered Target 20020102 20241126
Private Placements Buyer 20020103 20241127
M&A Transaction Announcements Seller 20020101 20241127
M&A Transaction Closings Buyer 20020101 20241127
Company Conference Presentations Target 20041101 20241127
M&A Calls Target 20031027 20241125
Index Constituent Adds Target 20020102 20241127
Buyback Transaction Closings Target 20020103 20241123
M&A Rumors and Discussions Target 20020918 20241127
Shareholder/Analyst Calls Target 20020108 20241127
Labor-related Announcements Target 20020111 20241121
Business Reorganizations Target 20020102 20241122
Conferences Participant 20070125 20241127
M&A Transaction Announcements Buyer 20020101 20241127
Delayed SEC Filings Target 20020102 20241127
Earnings Release Date Target 20020411 20241127
M&A Transaction Closings Seller 20020101 20241127
M&A Transaction Announcements Target 20020102 20241126
Discontinued Operations/Downsizings Target 20020102 20241127
Fixed Income Offerings Target 20020101 20241127
Corporate Guidance - New/Confirmed Target 20020101 20241127
Private Placements Target 20020103 20241127
Seeking Acquisitions/Investments Target 20020103 20241125
Board Meeting Target 20020204 20241120
Considering Multiple Strategic Alternatives Target 20040324 20241122
Announcements of Sales/Trading Statement Target 20020102 20241119
Debt Financing Related Target 20020102 20241127
Annual General Meeting Target 20020122 20241127
Seeking to Sell/Divest Target 20020110 20241125
End of Lock-Up Period Target 20020115 20241126
Buyback Tranche Update Target 20020107 20241127
Announcements of Earnings Target 20020101 20241127
Analyst/Investor Day Target 20040204 20241126
Investor Activism - Proxy/Voting Related Target 20020107 20241126
Delistings Target 20020102 20241127
Impairments/Write Offs Target 20020408 20241126
Corporate Guidance - Raised Target 20020103 20241126
Index Constituent Drops Target 20020107 20241126
Buyback - Change in Plan Terms Target 20020102 20241126
Buyback Transaction Announcements Target 20020102 20241126

rows days \
event role
Shelf Registration Filings Target 46949 5666
Special/Extraordinary Shareholders Meeting Target 6183 3353
Name Changes Target 1563 1329
Changes in Company Bylaws/Rules Target 27834 4825
Product-Related Announcements Target 209897 5767
M&A Transaction Closings Target 1508 1234
Auditor Changes Target 9563 3888
Executive/Board Changes - Other Target 222258 5766

(continues on next page)
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Executive Changes - CFO Target 22715 5544
Business Expansions Target 58224 5709
Special Calls Target 16738 4501
Executive Changes - CEO Target 17079 5269
M&A Transaction Cancellations Buyer 1508 1258
Client Announcements Target 212795 5761
Follow-on Equity Offerings Target 21917 5219
Investor Activism - Target Communication Target 5248 3059
Earnings Calls Target 236084 5442
Strategic Alliances Target 29517 5463
Lawsuits & Legal Issues Target 41158 5599
Investor Activism - Activist Communication Target 8556 3875
Corporate Guidance - Lowered Target 10996 3606
Private Placements Buyer 11631 4362
M&A Transaction Announcements Seller 12325 4804
M&A Transaction Closings Buyer 43177 5699
Company Conference Presentations Target 339716 4975
M&A Calls Target 7218 3305
Index Constituent Adds Target 29372 2248
Buyback Transaction Closings Target 13012 3913
M&A Rumors and Discussions Target 21747 4605
Shareholder/Analyst Calls Target 24420 4417
Labor-related Announcements Target 3975 2485
Business Reorganizations Target 4398 2766
Conferences Participant 296636 3676
M&A Transaction Announcements Buyer 25352 5501
Delayed SEC Filings Target 13297 2078
Earnings Release Date Target 226653 5294
M&A Transaction Closings Seller 18467 5138
M&A Transaction Announcements Target 6089 3557
Discontinued Operations/Downsizings Target 18782 4447
Fixed Income Offerings Target 28237 5403
Corporate Guidance - New/Confirmed Target 148835 5649
Private Placements Target 15216 5057
Seeking Acquisitions/Investments Target 37787 5239
Board Meeting Target 6563 2705
Considering Multiple Strategic Alternatives Target 4017 2491
Announcements of Sales/Trading Statement Target 12367 3306
Debt Financing Related Target 41158 5708
Annual General Meeting Target 71528 5094
Seeking to Sell/Divest Target 5250 2922
End of Lock-Up Period Target 7107 3293
Buyback Tranche Update Target 113233 5073
Announcements of Earnings Target 343641 5712
Analyst/Investor Day Target 6664 3353
Investor Activism - Proxy/Voting Related Target 7449 3165
Delistings Target 17906 4928
Impairments/Write Offs Target 23529 3527
Corporate Guidance - Raised Target 20044 4162
Index Constituent Drops Target 18202 3039
Buyback - Change in Plan Terms Target 6897 3412
Buyback Transaction Announcements Target 20353 4996

effective window \
event role
Shelf Registration Filings Target 681.0 -0.005224

(continues on next page)
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Special/Extraordinary Shareholders Meeting Target 534.0 -0.002029
Name Changes Target 454.0 0.012626
Changes in Company Bylaws/Rules Target 592.0 -0.000070
Product-Related Announcements Target 686.0 0.005712
M&A Transaction Closings Target 430.0 0.010726
Auditor Changes Target 609.0 -0.003402
Executive/Board Changes - Other Target 685.0 -0.000533
Executive Changes - CFO Target 677.0 -0.007618
Business Expansions Target 688.0 0.002006
Special Calls Target 597.0 0.014764
Executive Changes - CEO Target 671.0 -0.005253
M&A Transaction Cancellations Buyer 455.0 -0.000106
Client Announcements Target 687.0 0.008237
Follow-on Equity Offerings Target 667.0 -0.030227
Investor Activism - Target Communication Target 525.0 0.008690
Earnings Calls Target 654.0 0.000499
Strategic Alliances Target 679.0 0.010685
Lawsuits & Legal Issues Target 682.0 -0.000897
Investor Activism - Activist Communication Target 576.0 0.014757
Corporate Guidance - Lowered Target 583.0 -0.066909
Private Placements Buyer 645.0 0.000440
M&A Transaction Announcements Seller 662.0 0.009878
M&A Transaction Closings Buyer 687.0 0.004541
Company Conference Presentations Target 592.0 0.001272
M&A Calls Target 566.0 0.059589
Index Constituent Adds Target 517.0 -0.004618
Buyback Transaction Closings Target 620.0 0.003593
M&A Rumors and Discussions Target 584.0 0.013315
Shareholder/Analyst Calls Target 585.0 0.001265
Labor-related Announcements Target 485.0 0.001723
Business Reorganizations Target 519.0 -0.001773
Conferences Participant 451.0 -0.000775
M&A Transaction Announcements Buyer 682.0 0.010533
Delayed SEC Filings Target 519.0 -0.017189
Earnings Release Date Target 632.0 -0.000074
M&A Transaction Closings Seller 672.0 0.003516
M&A Transaction Announcements Target 622.0 0.234380
Discontinued Operations/Downsizings Target 594.0 -0.009840
Fixed Income Offerings Target 677.0 -0.004932
Corporate Guidance - New/Confirmed Target 687.0 -0.001445
Private Placements Target 657.0 0.023461
Seeking Acquisitions/Investments Target 668.0 -0.000697
Board Meeting Target 473.0 0.002824
Considering Multiple Strategic Alternatives Target 479.0 -0.008435
Announcements of Sales/Trading Statement Target 588.0 0.004235
Debt Financing Related Target 684.0 0.004347
Annual General Meeting Target 620.0 0.001460
Seeking to Sell/Divest Target 504.0 -0.002623
End of Lock-Up Period Target 565.0 -0.060075
Buyback Tranche Update Target 646.0 0.000906
Announcements of Earnings Target 685.0 0.000446
Analyst/Investor Day Target 548.0 0.008374
Investor Activism - Proxy/Voting Related Target 530.0 -0.001100
Delistings Target 625.0 -0.020833
Impairments/Write Offs Target 521.0 -0.003683
Corporate Guidance - Raised Target 631.0 0.033832
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Index Constituent Drops Target 507.0 -0.003266
Buyback - Change in Plan Terms Target 605.0 0.009150
Buyback Transaction Announcements Target 666.0 0.015343

window_t post \
event role
Shelf Registration Filings Target -2.542320 -0.012755
Special/Extraordinary Shareholders Meeting Target -0.537886 -0.018210
Name Changes Target 1.944510 -0.023076
Changes in Company Bylaws/Rules Target -0.024033 -0.010242
Product-Related Announcements Target 4.608120 -0.004112
M&A Transaction Closings Target 1.184190 -0.019140
Auditor Changes Target -1.173250 -0.009535
Executive/Board Changes - Other Target -0.537347 -0.003171
Executive Changes - CFO Target -3.312440 -0.006563
Business Expansions Target 1.663570 -0.003755
Special Calls Target 1.100980 -0.014743
Executive Changes - CEO Target -1.572760 -0.007032
M&A Transaction Cancellations Buyer -0.019428 -0.010588
Client Announcements Target 7.380600 -0.002300
Follow-on Equity Offerings Target -5.005380 -0.007275
Investor Activism - Target Communication Target 2.362150 -0.004881
Earnings Calls Target 0.481335 -0.002042
Strategic Alliances Target 2.626260 -0.003538
Lawsuits & Legal Issues Target -0.413061 -0.002723
Investor Activism - Activist Communication Target 4.288130 -0.004063
Corporate Guidance - Lowered Target -14.887900 -0.002680
Private Placements Buyer 0.272817 -0.002208
M&A Transaction Announcements Seller 2.630630 -0.002869
M&A Transaction Closings Buyer 3.186290 -0.001394
Company Conference Presentations Target 1.292770 -0.001116
M&A Calls Target 8.955770 -0.002523
Index Constituent Adds Target -1.557500 -0.002675
Buyback Transaction Closings Target 1.725140 -0.001955
M&A Rumors and Discussions Target 4.876590 -0.001790
Shareholder/Analyst Calls Target 0.428922 -0.002059
Labor-related Announcements Target 0.546605 -0.002090
Business Reorganizations Target -0.381681 -0.002317
Conferences Participant -0.643617 -0.000928
M&A Transaction Announcements Buyer 3.253760 -0.001108
Delayed SEC Filings Target -3.797660 -0.001306
Earnings Release Date Target -0.071140 -0.000190
M&A Transaction Closings Seller 1.461850 -0.000303
M&A Transaction Announcements Target 18.265800 -0.000214
Discontinued Operations/Downsizings Target -2.844410 -0.000069
Fixed Income Offerings Target -2.922310 0.000168
Corporate Guidance - New/Confirmed Target -0.883251 0.000366
Private Placements Target 4.328510 0.002351
Seeking Acquisitions/Investments Target -0.305334 0.001316
Board Meeting Target 0.980749 0.002164
Considering Multiple Strategic Alternatives Target -1.135750 0.012629
Announcements of Sales/Trading Statement Target 1.329410 0.005084
Debt Financing Related Target 2.013270 0.002883
Annual General Meeting Target 0.950287 0.004452
Seeking to Sell/Divest Target -0.531814 0.006912
End of Lock-Up Period Target -9.088620 0.007541

(continues on next page)

7.3. Multiple testing 159



Financial Data Science Python Notebooks

(continued from previous page)

Buyback Tranche Update Target 0.559217 0.002991
Announcements of Earnings Target 0.305990 0.002854
Analyst/Investor Day Target 3.238440 0.006292
Investor Activism - Proxy/Voting Related Target -0.472323 0.011292
Delistings Target -3.871270 0.016593
Impairments/Write Offs Target -1.122100 0.008273
Corporate Guidance - Raised Target 11.737600 0.006226
Index Constituent Drops Target -0.751127 0.017488
Buyback - Change in Plan Terms Target 3.837660 0.008018
Buyback Transaction Announcements Target 7.037260 0.008389

post_t
event role
Shelf Registration Filings Target -2.753130
Special/Extraordinary Shareholders Meeting Target -1.970180
Name Changes Target -1.968600
Changes in Company Bylaws/Rules Target -1.815650
Product-Related Announcements Target -1.607030
M&A Transaction Closings Target -1.506510
Auditor Changes Target -1.433420
Executive/Board Changes - Other Target -1.410500
Executive Changes - CFO Target -1.390520
Business Expansions Target -1.327890
Special Calls Target -1.257180
Executive Changes - CEO Target -1.120140
M&A Transaction Cancellations Buyer -1.037350
Client Announcements Target -0.908251
Follow-on Equity Offerings Target -0.892820
Investor Activism - Target Communication Target -0.801679
Earnings Calls Target -0.761636
Strategic Alliances Target -0.741016
Lawsuits & Legal Issues Target -0.677482
Investor Activism - Activist Communication Target -0.657731
Corporate Guidance - Lowered Target -0.590799
Private Placements Buyer -0.569800
M&A Transaction Announcements Seller -0.472392
M&A Transaction Closings Buyer -0.464066
Company Conference Presentations Target -0.455673
M&A Calls Target -0.436285
Index Constituent Adds Target -0.417274
Buyback Transaction Closings Target -0.416104
M&A Rumors and Discussions Target -0.409002
Shareholder/Analyst Calls Target -0.313663
Labor-related Announcements Target -0.306394
Business Reorganizations Target -0.301770
Conferences Participant -0.281036
M&A Transaction Announcements Buyer -0.268724
Delayed SEC Filings Target -0.113672
Earnings Release Date Target -0.069660
M&A Transaction Closings Seller -0.069015
M&A Transaction Announcements Target -0.028792
Discontinued Operations/Downsizings Target -0.010337
Fixed Income Offerings Target 0.047205
Corporate Guidance - New/Confirmed Target 0.133957
Private Placements Target 0.223887
Seeking Acquisitions/Investments Target 0.366793
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Board Meeting Target 0.375795
Considering Multiple Strategic Alternatives Target 0.556299
Announcements of Sales/Trading Statement Target 0.662073
Debt Financing Related Target 0.696258
Annual General Meeting Target 0.760826
Seeking to Sell/Divest Target 0.809188
End of Lock-Up Period Target 1.033670
Buyback Tranche Update Target 1.077510
Announcements of Earnings Target 1.128810
Analyst/Investor Day Target 1.208400
Investor Activism - Proxy/Voting Related Target 1.211770
Delistings Target 1.223670
Impairments/Write Offs Target 1.460700
Corporate Guidance - Raised Target 1.547110
Index Constituent Drops Target 1.557680
Buyback - Change in Plan Terms Target 1.846240
Buyback Transaction Announcements Target 2.327460

# Expected p-values (with continuity correction)
pvals = norm.cdf(-df['post_t'].abs()) * 2
fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 9))
ax.plot(sorted(pvals))
ax.plot([0, len(pvals)-1], [0.5/len(pvals), (len(pvals)-0.5)/len(pvals)], 'r--')
ax.set_title('Distribution of p-values')
ax.legend(['actual', 'expected'])
plt.tight_layout()
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# Number of rejections with uncorrected pvals
#argmin = np.argmin(pvals)
#header = df.iloc[argmin][['event', 'role', 'days', 'effective', 'post_t']]
alpha = 0.05
uncorrected = DataFrame({'rejections': sum(pvals < alpha),

'min p-value': min(pvals)},
index=['uncorrected'])

uncorrected.round(4)

rejections min p-value
uncorrected 4 0.0059
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7.3.1 Bonferroni correction

The best-known FWER test is called the Bonferroni test which adjusts for the multiple tests. Given the chance that one
test could randomly show up as significant, the Bonferroni requires the confidence level to increase. Instead of 5%, you
take the 5% and divide by the number of tests, that is, 5%/10 = 0.5%. Again equivalently, you need to be 99.5% confident
with 10 tests that you are not making a single false discovery. In terms of the t-statistic, the Bonferroni requires a statistic
of at least 2.8 for 10 tests. For 1,000 tests, the statistic must exceed 4.1.
It sets the threshold for rejecting each hypothesis to 𝛼/𝑚, by applying the union bound inequality:

FWER(𝛼) = Pr(∪𝑚
𝑗=1𝐴𝑗) ≤

𝑚
∑
𝑗=1

Pr(𝐴𝑗) ≤ 𝑚 × 𝛼
𝑚 = 𝛼

where 𝐴𝑗 denotes the probability of rejecting the 𝑗-th hypothesis. The Bonferroni correction can be quite conservative,
in the sense that the true FWER is often quite a bit lower than the nominal (or target) FWER;

# The Bonferroni p-values bonf are simply the uncorrected pvalues multiplied by
# the number of samples and truncated to be less than or equal to 1.
reject, bonf_corrected, _, _ = multipletests(pvals, alpha=alpha, method='bonferroni')
bonf = DataFrame({'rejections': np.sum(bonf_corrected < alpha),

'min p-value': np.min(bonf_corrected)},
index=['bonferroni'])

pd.concat([uncorrected, bonf], axis=0).round(4)

rejections min p-value
uncorrected 4 0.0059
bonferroni 0 0.3542

7.3.2 Holm’s step-down procedure

Holm’s method, also known as Holm’s step-down procedure or the Holm-Bonferroni method, is an alternative to
the Bonferroni procedure. Holm’s method method controls the FWER, but it is less conservative than Bonferroni, in
the sense that it will reject more null hypotheses, typically resulting in fewer Type II errors and hence greater power.
Holm’s method makes no independence assumptions about the hypothesis tests, and is uniformly more powerful than
the Bonferroni method –it will always reject at least as many null hypotheses as Bonferroni–and so it should always be
preferred. It is worth noting that in Holm’s procedure, the threshold that we use to reject each null hypothesis actually
depends on the values of all the p-values.
The Holm method begins by sorting the tests from the lowest p-value (most significant) to the highest (least significant),
and comparing a threshold computed with the Holm function. In contrast to the Bonferroni, which has a single threshold
for all tests, the other tests will have a different hurdle under Holm. Starting from the first test, we sequentially compare
the p-values with their hurdles. When we first come across the test such that its p-value fails to meet the hurdle, we reject
this test and all others with higher p-values.

# Holm method
reject, holm_corrected, _, _ = multipletests(pvals, alpha=alpha, method='holm')
holm = DataFrame({'rejections': np.sum(holm_corrected < alpha),

'min p-value': np.min(holm_corrected)},
index=['holm'])

pd.concat([uncorrected, bonf, holm], axis=0).round(4)

rejections min p-value
uncorrected 4 0.0059

(continues on next page)
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bonferroni 0 0.3542
holm 0 0.3542

7.3.3 Benjamin-Hochberg procedure

The false discovery rate approach allows an expected proportional error rate. As such, it is less stringent than both the
Bonferroni and the Holm test. FDR control is much milder –and more powerful –than FWER control, in the sense that
it allows us to reject many more null hypotheses, with a cost of substantially more false positives.
Similar to the Holm test, Benjamin-Hochberg also relies on the distribution of test statistics. However, in contrast to the
Holm test that begins with the most significant test, the Benjamin-Hochberg approach starts with the least significant. We
sort the tests from the lowest p-value (most significant) to the highest (least significant). Starting from the last test, we
sequentially compare the p-values with their Benjamin-Hochberg thresholds. When we first come across the test such that
its p-value falls below its threshold, we declare this test significant and all tests that have a lower p-value.
The multipletests function can be used to carry out the Benjamini–Hochberg procedure. The q-values output by
the Benjamini–Hochberg procedure can be interpreted as the smallest FDR threshold at which we would reject a particular
null hypothesis. For instance, a q-value of 0.1 indicates that we can reject the corresponding null hypothesis at an FDR
of 10% or greater, but that we cannot reject the null hypothesis at an FDR below 10%.

# Benjamini-Hochberg method
reject, fdr_bh_corrected, _, _ = multipletests(pvals, alpha=alpha, method='fdr_bh')
fdr_bh = DataFrame({'rejections': np.sum(fdr_bh_corrected < alpha),

'min p-value': np.min(fdr_bh_corrected)},
index=['fdr_bh'])

pd.concat([uncorrected, bonf, holm, fdr_bh], axis=0).round(4)

rejections min p-value
uncorrected 4 0.0059
bonferroni 0 0.3542
holm 0 0.3542
fdr_bh 0 0.3542

# Plot uncorrected and corrected p-values from Benjamini-Hochberg method
fig, ax = plt.subplots(figsize=(10, 9))
ax.scatter(pvals, fdr_bh_corrected, color='red')
ax.set_ylim(bottom=0, top=1)
ax.set_title(f"Benjamini–Hochberg method to control the FDR at alpha={alpha}")
ax.set_xlabel('uncorrected p-values')
ax.set_ylabel('Benjamini–Hochberg corrected p-values')
plt.tight_layout()
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CHAPTER

EIGHT

ECONOMIC INDICATORS

What we learn from history is that people don’t learn from history - Warren Buffett
Economic data is fundamental to financial analysis, policymaking, and investment strategies. However, many economic
indicators are subject to revisions, meaning initial estimates may change over time as more accurate data becomes avail-
able. Understanding these revisions is crucial for interpreting past economic conditions, refining forecasting models, and
making informed decisions. We explore retrieving data from online sources such as the Federal Reserve Economic Data
(FRED), its archival counterpart (ALFRED), and key derived datasets such as FRED-MD and FRED-QD. Additionally,
we examine the impact of data revisions on critical economic indicators like Total Nonfarm Payrolls (PAYEMS), and
methods for detecting outliers in historical data.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import textwrap
from finds.readers import Alfred, fred_md, fred_qd
from finds.utils import plot_date, plot_groupbar
from finds.recipes import is_outlier
from datetime import datetime
from pprint import pprint
from secret import credentials
VERBOSE = 0
# %matplotlib qt
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8.1 FRED

Federal Reserve Economic Data (FRED) is a widely used online database maintained by the Federal Reserve Bank of St.
Louis, providing access to hundreds of thousands of economic data series from national and international sources. Users
can retrieve data via the website, an Excel add-in, or API calls.

8.2 Retrieving data from websites

Economic data can be retrieved from the web through several methods:
1. Downloading structured files –Many websites provide data in formats like CSV, Excel, or JSON, making it easy

to import into analytical tools.
2. Web scraping –Extracting information directly from web pages by identifying specific HTML tags or text patterns.
3. Using APIs –Some platforms, including FRED, offer APIs that allow developers to automate data retrieval via

structured queries.

8.2.1 Download structured files

Many economic data providers allow users to download pre-structured files containing historical and current data. These
files often include metadata, timestamps, and adjustment information.

# This URL is the location of the FRED-MD csv file from the St Louis FRED
url = 'https://www.stlouisfed.org/-/media/project/frbstl/stlouisfed/research/fred-md/

↪monthly/current.csv'

# Pandas has several built-in readers for csv, xml, json, excel and even html files ␣
↪

df = pd.read_csv(url, header=0)
df

sasdate RPI W875RX1 DPCERA3M086SBEA CMRMTSPLx \
0 Transform: 5.000 5.0 5.000 5.000000e+00
1 1/1/1959 2583.560 2426.0 15.188 2.766768e+05
2 2/1/1959 2593.596 2434.8 15.346 2.787140e+05
3 3/1/1959 2610.396 2452.7 15.491 2.777753e+05
4 4/1/1959 2627.446 2470.0 15.435 2.833627e+05
.. ... ... ... ... ...
788 8/1/2024 20007.209 16322.1 121.052 1.530317e+06
789 9/1/2024 20044.142 16333.7 121.690 1.541305e+06
790 10/1/2024 20128.752 16397.9 121.948 1.539382e+06
791 11/1/2024 20161.687 16432.8 122.519 1.544190e+06
792 12/1/2024 20184.060 16457.8 123.013 NaN

RETAILx INDPRO IPFPNSS IPFINAL IPCONGD ... \
0 5.00000 5.0000 5.0000 5.0000 5.0000 ...
1 18235.77392 21.9616 23.3868 22.2620 31.6664 ...
2 18369.56308 22.3917 23.7024 22.4549 31.8987 ...
3 18523.05762 22.7142 23.8459 22.5651 31.8987 ...
4 18534.46600 23.1981 24.1903 22.8957 32.4019 ...
.. ... ... ... ... ... ...

(continues on next page)
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788 710038.00000 103.0135 100.9825 100.9803 102.2118 ...
789 716388.00000 102.5969 100.3826 100.0630 101.9696 ...
790 720393.00000 102.0854 99.5434 98.9267 101.3127 ...
791 725925.00000 102.2549 99.8216 99.4970 101.7893 ...
792 729191.00000 103.1942 100.5351 100.1302 102.2582 ...

DNDGRG3M086SBEA DSERRG3M086SBEA CES0600000008 CES2000000008 \
0 6.000 6.000 6.00 6.00
1 18.294 10.152 2.13 2.45
2 18.302 10.167 2.14 2.46
3 18.289 10.185 2.15 2.45
4 18.300 10.221 2.16 2.47
.. ... ... ... ...
788 119.653 128.291 31.26 35.81
789 119.220 128.682 31.44 36.00
790 119.064 129.169 31.55 36.22
791 119.112 129.375 31.61 36.21
792 119.689 129.760 31.73 36.44

CES3000000008 UMCSENTx DTCOLNVHFNM DTCTHFNM INVEST VIXCLSx
0 6.00 2.0 6.00 6.00 6.0000 1.0000
1 2.04 NaN 6476.00 12298.00 84.2043 NaN
2 2.05 NaN 6476.00 12298.00 83.5280 NaN
3 2.07 NaN 6508.00 12349.00 81.6405 NaN
4 2.08 NaN 6620.00 12484.00 81.8099 NaN
.. ... ... ... ... ... ...
788 27.97 67.9 551667.22 933066.90 5327.6461 19.6750
789 28.11 70.1 553347.06 934283.59 5368.5818 17.6597
790 28.14 70.5 554377.25 937299.96 5407.3304 19.9478
791 28.29 71.8 555000.61 938899.31 5382.4019 15.9822
792 28.34 74.0 NaN NaN 5370.6184 15.6997

[793 rows x 127 columns]

8.2.2 Web scraping

Web scraping involves extracting data from unstructured web pages by identifying patterns in the HTML structure. This
method is useful when structured data files are unavailable, but it requires compliance with website policies.

# URL that displays the most popular series in the FRED economic data web site
url = f"https://fred.stlouisfed.org/tags/series?ob=pv&pageID=1"

# use requests package to retrieve the web page
import requests
data = requests.get(url)
data # a response code of 200 indicates the request has succeeded

<Response [200]>

# the content is just a byte-string that you can parse with Python string (or other)␣
↪methods

data.content[:200]
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b'<!DOCTYPE html>\n<html lang="en">\n<head>\n <meta http-equiv="X-UA-Compatible
↪" content="IE=edge">\n <meta charset="utf-8">\n <title>
↪Economic Data Series by Tag | FRED | St. Louis Fed</'

# use the BeautifulSoup package to parse html formats
from bs4 import BeautifulSoup
soup = BeautifulSoup(data.content, 'lxml')

# based on this snippet, we want to extract the href property of the series-title␣
↪class tag

print(soup.decode()[39000:40000])

s="series-title pager-series-title-gtm" href="/series/T10Y2Y" id="titleLink" style=
↪"font-size:1.2em; padding-bottom: 2px">10-Year Treasury Constant Maturity Minus␣
↪2-Year Treasury Constant Maturity</a></h3>

</div>
<div class="display-results-popularity-bar d-none d-sm-block col-sm-2">
<span aria-label="popularity 100% popular" class="popularity-bar-span-parent" data-

↪target="popularity-bar-span-T10Y2Y" tabindex="0" title="100% popular">
<span aria-hidden="true" class="popularity_bar" style="padding-top: 3px; padding-

↪left:60px;"> </span> <span aria-hidden="true" class="popularity_bar_background"␣
↪id="popularity-bar-span-T10Y2Y"> </span></span>

</div>
</td>
</tr>
<tr class="series-pager-attr">
<td colspan="2">
<div class="series-meta series-group-meta">
<span class="attributes">Percent, Not Seasonally Adjusted</span>
<br class="clear"/>
</div>
<div class="series-meta">
<input aria-labelledby="unitLinkT10Y2Y" class="pager-item-checkbox pager-check-

↪series-gtm" name="sids[0]" type="checkbox" v

# identify all the tags whose class starts with 'series-title'
tags = soup.findAll(name='a', attrs={'class': 'series-title'})
tags[0] # show first tag found

<a class="series-title pager-series-title-gtm" href="/series/T10Y2Y" id="titleLink
↪" style="font-size:1.2em; padding-bottom: 2px">10-Year Treasury Constant␣
↪Maturity Minus 2-Year Treasury Constant Maturity</a>

# extract desired substring (which is a data series mnemonic) from the href property
details = [tag.get('href').split('/')[-1] for tag in tags] # only want substring␣

↪after last '/'
details[0] # show first mnemonic string found

'T10Y2Y'
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8.2.3 Using APIs

APIs (Application Programming Interfaces) enable direct communication with data servers, allowing for real-time data
retrieval. Many economic research institutions, including the St Louis Fed, offer APIs to access macroeconomic data
programmatically.

# an API call is simply a URL string containing your parameters for the request
url = "{root}?series_id={series_id}&file_type={file_type}&api_key={api_key}".format(

root="https://api.stlouisfed.org/fred/series", # base url of the API call
series_id=details[0], # mnemonic of the data series to␣

↪retrieve
file_type='json', # request data be returned in json␣

↪format
api_key=credentials['fred']['api_key']) # private api key (obtain from␣

↪FRED for free)

# make the API call to retrieve the data
data = requests.get(url)
data.content

b'{"realtime_start":"2025-02-28","realtime_end":"2025-02-28","seriess":[{"id":
↪"T10Y2Y","realtime_start":"2025-02-28","realtime_end":"2025-02-28","title":"10-
↪Year Treasury Constant Maturity Minus 2-Year Treasury Constant Maturity",
↪"observation_start":"1976-06-01","observation_end":"2025-02-28","frequency":
↪"Daily","frequency_short":"D","units":"Percent","units_short":"%","seasonal_
↪adjustment":"Not Seasonally Adjusted","seasonal_adjustment_short":"NSA","last_
↪updated":"2025-02-28 16:02:07-06","popularity":100,"notes":"Starting with the␣
↪update on June 21, 2019, the Treasury bond data used in calculating interest␣
↪rate spreads is obtained directly from the U.S. Treasury Department (https:\\/\\/
↪www.treasury.gov\\/resource-center\\/data-chart-center\\/interest-rates\\/Pages\\
↪/TextView.aspx?data=yield).\\r\\nSeries is calculated as the spread between 10-
↪Year Treasury Constant Maturity (BC_10YEAR) and 2-Year Treasury Constant␣
↪Maturity (BC_2YEAR). Both underlying series are published at the U.S. Treasury␣
↪Department (https:\\/\\/www.treasury.gov\\/resource-center\\/data-chart-center\\/
↪interest-rates\\/Pages\\/TextView.aspx?data=yield)."}]}'

# use the json package to convert byte-string data content
import json
v = json.loads(data.content)
v

{'realtime_start': '2025-02-28',
'realtime_end': '2025-02-28',
'seriess': [{'id': 'T10Y2Y',

'realtime_start': '2025-02-28',
'realtime_end': '2025-02-28',
'title': '10-Year Treasury Constant Maturity Minus 2-Year Treasury Constant␣

↪Maturity',
'observation_start': '1976-06-01',
'observation_end': '2025-02-28',
'frequency': 'Daily',
'frequency_short': 'D',
'units': 'Percent',
'units_short': '%',

(continues on next page)
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'seasonal_adjustment': 'Not Seasonally Adjusted',
'seasonal_adjustment_short': 'NSA',
'last_updated': '2025-02-28 16:02:07-06',
'popularity': 100,
'notes': 'Starting with the update on June 21, 2019, the Treasury bond data␣

↪used in calculating interest rate spreads is obtained directly from the U.S.␣
↪Treasury Department (https://www.treasury.gov/resource-center/data-chart-center/
↪interest-rates/Pages/TextView.aspx?data=yield).\r\nSeries is calculated as the␣
↪spread between 10-Year Treasury Constant Maturity (BC_10YEAR) and 2-Year␣
↪Treasury Constant Maturity (BC_2YEAR). Both underlying series are published at␣
↪the U.S. Treasury Department (https://www.treasury.gov/resource-center/data-
↪chart-center/interest-rates/Pages/TextView.aspx?data=yield).'}]}

# Pandas can create a DataFrame directly from a dict data structure
df = DataFrame(v['seriess'])
df

id realtime_start realtime_end \
0 T10Y2Y 2025-02-28 2025-02-28

title observation_start \
0 10-Year Treasury Constant Maturity Minus 2-Yea... 1976-06-01

observation_end frequency frequency_short units units_short \
0 2025-02-28 Daily D Percent %

seasonal_adjustment seasonal_adjustment_short last_updated \
0 Not Seasonally Adjusted NSA 2025-02-28 16:02:07-06

popularity notes
0 100 Starting with the update on June 21, 2019, the...

8.2.4 ALFRED (Archival FRED)

ALFRED extends FRED’s functionality by preserving historical versions of economic data. This allows researchers to
track how data revisions impact economic narratives over time.

today = int(datetime.today().strftime('%Y%m%d'))
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)

8.2.5 Popular FRED series

FRED organizes its data into categories, frequencies, and seasonal adjustments. Some of the most frequently accessed
series include employment figures, inflation metrics, and GDP growth rates. A current list of the most popular FRED
series can be found here.

# scrape FRED most popular page
popular = {}
titles = Alfred.popular(1)
for title in titles:

(continues on next page)
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series = alf.request_series(title) # requests 'series' FRED api
if not series.empty:

popular[title] = series.iloc[-1][['title', 'popularity']]
print(f"Most Popular Series in FRED, retrieved {today}")
DataFrame.from_dict(popular, orient='index')

Most Popular Series in FRED, retrieved 20250302

title popularity
T10Y2Y 10-Year Treasury Constant Maturity Minus 2-Yea... 100
MORTGAGE30US 30-Year Fixed Rate Mortgage Average in the Uni... 99
FEDFUNDS Federal Funds Effective Rate 98
M2SL M2 93
RRPONTSYD Overnight Reverse Repurchase Agreements: Treas... 95
CPIAUCSL Consumer Price Index for All Urban Consumers: ... 95
UNRATE Unemployment Rate 95
WALCL Assets: Total Assets: Total Assets (Less Elimi... 94
T10Y3M 10-Year Treasury Constant Maturity Minus 3-Mon... 94
GDP Gross Domestic Product 93
GDPC1 Real Gross Domestic Product 92
DGS10 Market Yield on U.S. Treasury Securities at 10... 92
BAMLH0A0HYM2 ICE BofA US High Yield Index Option-Adjusted S... 92
MSPUS Median Sales Price of Houses Sold for the Unit... 90
CSUSHPINSA S&P CoreLogic Case-Shiller U.S. National Home ... 88
T10YIE 10-Year Breakeven Inflation Rate 89
FPCPITOTLZGUSA Inflation, consumer prices for the United States 85
M1SL M1 84

# plot popular series
fig, axes = plt.subplots(ncols=3, nrows=5, figsize=(10, 12), layout='constrained')
for cn, (ax, title) in enumerate(zip(np.ravel(axes), titles[:15])):

series = alf(title)
plot_date(series, ax=ax, title=f"{cn+1}. {title}", xlabel=alf.header(title)[:70],

fontsize=6, ls='-', cn=cn, nbins=4)
plt.suptitle(f"FRED Most Popular series (retrieved {today})")

Text(0.5, 0.98, 'FRED Most Popular series (retrieved 20250302)')
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8.2.6 FRED series categories

One of the most closely watched FRED series is Total Nonfarm Payroll Employment (PAYEMS), a key
labor market indicator. This series belongs to broader employment-related categories.

# Retrieve grandparent, parent and siblings of series
series_id, freq = 'PAYEMS', 'M'
category = alf.categories(series_id).iloc[0]
grand_category = alf.get_category(category['parent_id'])
parent_category = alf.get_category(category['id'])
category.to_frame().T

id name parent_id
PAYEMS 32305 Total Nonfarm 11

print(f"Super category {grand_category['id']}: {grand_category['name']}")
if 'notes' in grand_category:

print(textwrap.fill(grand_category['notes']))

Super category 11: Current Employment Statistics (Establishment Survey)
The establishment survey provides data on employment, hours, and
earnings by industry. Numerous conceptual and methodological
differences between the current population (household) and
establishment surveys result in important distinctions in the
employment estimates derived from the surveys. Among these are: The
household survey includes agricultural workers, the self- employed,
unpaid family workers, and private household workers among the
employed. These groups are excluded from the establishment survey.
The household survey includes people on unpaid leave among the
employed. The establishment survey does not. The household survey is
limited to workers 16 years of age and older. The establishment survey
is not limited by age. The household survey has no duplication of
individuals, because individuals are counted only once, even if they
hold more than one job. In the establishment survey, employees working
at more than one job and thus appearing on more than one payroll are
counted separately for each appearance. For more information, visit
http://www.bls.gov/news.release/empsit.tn.htm.

print("Parent categories:")
for child in grand_category['children']:

node = alf.get_category(child['id'])
if node:

print(f" {node['id']}: {node['name']} "
f" (children={len(node['children'])}, series={len(node['series'])})")

Parent categories:
32305: Total Nonfarm (children=0, series=5)
32306: Total Private (children=0, series=27)
32307: Goods-Producing (children=0, series=27)
32326: Service-Providing (children=0, series=1)
32308: Private Service-Providing (children=0, series=27)
32309: Mining and Logging (children=0, series=39)
32310: Construction (children=0, series=41)
32311: Manufacturing (children=0, series=31)

(continues on next page)
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32312: Durable Goods (children=0, series=63)
32313: Nondurable Goods (children=0, series=55)
32314: Trade, Transportation, and Utilities (children=0, series=27)
32315: Wholesale Trade (children=0, series=33)
32316: Retail Trade (children=0, series=55)
32317: Transportation and Warehousing (children=0, series=47)
32318: Utilities (children=0, series=27)
32319: Information (children=0, series=39)
32320: Financial Activities (children=0, series=51)
32321: Professional and Business Services (children=0, series=55)
32322: Education and Health Services (children=0, series=51)
32323: Leisure and Hospitality (children=0, series=41)
32324: Other Services (children=0, series=33)
32325: Government (children=0, series=23)

print("Sibling series:")
for child in parent_category['series']:

if child['id'] == series_id:
node = child

print(f" {child['id']}: {child['title']} {child['seasonal_adjustment']}"
f" (popularity={child['popularity']})")

Sibling series:
CES0000000010: Women Employees, Total Nonfarm Seasonally Adjusted (popularity=4)
CES0000000039: Women Employees-To-All Employees Ratio: Total Nonfarm Seasonally␣

↪Adjusted (popularity=16)
CEU0000000010: Women Employees, Total Nonfarm Not Seasonally Adjusted␣

↪(popularity=1)
PAYEMS: All Employees, Total Nonfarm Seasonally Adjusted (popularity=83)
PAYNSA: All Employees, Total Nonfarm Not Seasonally Adjusted (popularity=47)

print(f"{node['id']}: {node['title']} {node['seasonal_adjustment']}",
f" ({node['observation_start']}-{node['observation_end']})")

print()
print(textwrap.fill(node['notes']))

PAYEMS: All Employees, Total Nonfarm Seasonally Adjusted (1939-01-01-2025-01-01)

All Employees: Total Nonfarm, commonly known as Total Nonfarm Payroll,
is a measure of the number of U.S. workers in the economy that
excludes proprietors, private household employees, unpaid volunteers,
farm employees, and the unincorporated self-employed. This measure
accounts for approximately 80 percent of the workers who contribute to
Gross Domestic Product (GDP). This measure provides useful insights
into the current economic situation because it can represent the
number of jobs added or lost in an economy. Increases in employment
might indicate that businesses are hiring which might also suggest
that businesses are growing. Additionally, those who are newly
employed have increased their personal incomes, which means (all else
constant) their disposable incomes have also increased, thus fostering
further economic expansion. Generally, the U.S. labor force and
levels of employment and unemployment are subject to fluctuations due
to seasonal changes in weather, major holidays, and the opening and

(continues on next page)
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closing of schools. The Bureau of Labor Statistics (BLS) adjusts the
data to offset the seasonal effects to show non-seasonal changes: for
example, women's participation in the labor force; or a general
decline in the number of employees, a possible indication of a
downturn in the economy. To closely examine seasonal and non-seasonal
changes, the BLS releases two monthly statistical measures: the
seasonally adjusted All Employees: Total Nonfarm (PAYEMS) and All
Employees: Total Nonfarm (PAYNSA), which is not seasonally adjusted.
The series comes from the 'Current Employment Statistics
(Establishment Survey).' The source code is: CES0000000001

8.3 Revisions and vintage dates

Economic data revisions occur as new information becomes available, improving the accuracy of initial estimates. The Bu-
reau of Labor Statistics (BLS), for instance, releases an initial estimate of Total Nonfarm Payroll Employment (PAYEMS)
on the first Friday of each month. However, this figure is a very rough estimate, which is then revised in subsequent months
as more firm-level data is collected.
These revisions can be significant, sometimes altering economic assessments. ALFRED, the archival FRED tool, allows
users to compare initial estimates with later revisions. For the monthly values of PAYEMS in 2023, we examine the total
amount of changes at each subsequent revision.

start, end = 20230101, 20231231
data = {}
print(f"{alf.header(series_id)} (retrieved {today}):")
latest = alf(series_id, start=start, end=end, freq=freq, realtime=True)
latest

All Employees, Total Nonfarm (retrieved 20250302):

PAYEMS realtime_start realtime_end
date
20230131 154780 20250207 99991231
20230228 155086 20250207 99991231
20230331 155171 20250207 99991231
20230430 155387 20250207 99991231
20230531 155614 20250207 99991231
20230630 155871 20250207 99991231
20230731 156019 20250207 99991231
20230831 156176 20250207 99991231
20230930 156334 20250207 99991231
20231031 156520 20250207 99991231
20231130 156661 20250207 99991231
20231231 156930 20250207 99991231

print("First Release:")
data[0] = alf(series_id, release=1, start=start, end=end, freq=freq, realtime=True)
data[0]

First Release:
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PAYEMS realtime_start realtime_end
date
20230131 155073 20230203 20230309
20230228 155350 20230310 20230406
20230331 155569 20230407 20230504
20230430 155673 20230505 20230601
20230531 156105 20230602 20230706
20230630 156204 20230707 20230803
20230731 156342 20230804 20230831
20230831 156419 20230901 20231005
20230930 156874 20231006 20231102
20231031 156923 20231103 20231207
20231130 157087 20231208 20240104
20231231 157232 20240105 20240201

print("Second Release:")
data[1] = alf(series_id, release=2, start=start, end=end, freq=freq, realtime=True)
data[1]

Second Release:

PAYEMS realtime_start realtime_end
date
20230131 155039 20230310 20230406
20230228 155333 20230407 20230504
20230331 155420 20230505 20230601
20230430 155766 20230602 20230706
20230531 155995 20230707 20230803
20230630 156155 20230804 20230831
20230731 156232 20230901 20231005
20230831 156538 20231006 20231102
20230930 156773 20231103 20231207
20231031 156888 20231208 20240104
20231130 157016 20240105 20240201
20231231 157347 20240202 20240307

print("Third Release:")
data[2] = alf(series_id, release=3, start=start, end=end, freq=freq, realtime=True)
data[2]

Third Release:

PAYEMS realtime_start realtime_end
date
20230131 155007 20230407 20240201
20230228 155255 20230505 20240201
20230331 155472 20230602 20240201
20230430 155689 20230707 20240201
20230531 155970 20230804 20240201
20230630 156075 20230901 20240201
20230731 156311 20231006 20240201
20230831 156476 20231103 20240201
20230930 156738 20231208 20240201
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20231031 156843 20240105 20240201
20231130 157014 20240202 20250206
20231231 157304 20240308 20250206

print("Fourth Release:")
data[3] = alf(series_id, release=4, start=start, end=end, freq=freq, realtime=True)
data[3]

Fourth Release:

PAYEMS realtime_start realtime_end
date
20230131 154773 20240202 20250206
20230228 155060 20240202 20250206
20230331 155206 20240202 20250206
20230430 155484 20240202 20250206
20230531 155787 20240202 20250206
20230630 156027 20240202 20250206
20230731 156211 20240202 20250206
20230831 156421 20240202 20250206
20230930 156667 20240202 20250206
20231031 156832 20240202 20250206
20231130 156661 20250207 99991231
20231231 156930 20250207 99991231

df = pd.concat([(data[i][series_id] - data[i-1][series_id]).rename(f"Revision {i}")
for i in range(1, len(data))], axis=1)

labels = pd.concat([data[i]['realtime_start'].rename(f"Revision {i}")
for i in range(1, len(data))], axis=1).fillna(0).astype(int)

DataFrame(df.sum(axis=0).rename("Total revisions ('000)"))

Total revisions ('000)
Revision 1 -349
Revision 2 -348
Revision 3 -2095

#df = pd.concat([data[i][series_id].rename(f"Revision {i}")
# for i in range(1, len(data))], axis=1)
#labels = pd.concat([data[i]['realtime_start'].rename(f"Revision {i}")
# for i in range(1, len(data))], axis=1).fillna(0).astype(int)
fig, ax = plt.subplots(figsize=(12, 6))
plot_groupbar(df, labels=labels, ax=ax)
plt.legend()
plt.ylabel(f'Change in {series_id}')
plt.title(f'Revisions and vintage dates of {series_id}')
plt.tight_layout()
plt.show()
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8.3.1 FRED-MD and FRED-QD

FRED-MD (Monthly Database) and FRED-QD (Quarterly Database) are curated datasets that streamline access to
macroeconomic indicators. These datasets mimic the coverage of macroeconomic datasets used in the research liter-
ature and are updated in real-time, relieving users from the task of incorporating data changes and revisions. Historical
monthly snap-shots of the datasets are also available.

8.3.2 Release dates

The timing of data releases is crucial for market participants and policymakers.

md_df, md_transform = fred_md()
end = md_df.index[-1]
out = {}
for i, title in enumerate(md_df.columns):

out[title] = alf(series_id=title,
release=1,
start=end, # within 4 days of monthend
end=end,
realtime=True)

if title.startswith('S&P'): # stock market data available same day close
out[title] = Series({end: end}, name='realtime_start').to_frame()

elif title in alf.splice_: # these series were renamed or spliced
if isinstance(Alfred.splice_[title], str): # if renamed

out[title] = alf(series_id=Alfred.splice_[title],
release=1,
start=end-4, # within 4 days of monthend
end=end,
realtime=True)

else: # if FRED-MD series was spliced
out[title] = pd.concat([alf(series_id=sub,

reglease=1,
start=end-4, # within 4 days of monthend

(continues on next page)
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end=end,
realtime=True)

for sub in Alfred.splice_[title][1:]])

FRED-MD vintage: monthly/current.csv

# date convention of Consumer Sentiment
df = alf('UMCSENT', release=1, realtime=True)
out['UMCSENT'] = df[df['realtime_start'] > end - 4].iloc[:1]

# weekly averages of Claims
df = alf('ICNSA', release=1, realtime=True)
out['CLAIMS'] = df[df['realtime_start'] > end - 4].iloc[:1]

# Plot release dates of series in FRED-MD
release = Series({k: str(min(v['realtime_start'])) if v is not None and len(v)

else None for k,v in out.items()}).sort_values()

fig, ax = plt.subplots(clear=True, num=1, figsize=(13, 5))
ax.plot(pd.to_datetime(release, errors='coerce'))
ax.axvline(release[~release.isnull()].index[-1], c='r')
ax.set_title(f"Current ({end}) FRED-MD series, retrieved {today}")
ax.set_ylabel('First Release Date')
ax.set_xticks(np.arange(len(release)))
ax.set_xticklabels(release.index, rotation=90, fontsize='xx-small')
plt.tight_layout()

# Check if recently released data available to update latest FRED-MD ␣
↪

md_missing = md_df.iloc[-1]
md_missing = md_missing[md_missing.isnull()]
print("Recent values available to update missing in current FRED-MD")
for series_id in md_missing.index:

print(alf.splice(series_id).iloc[-3:])

8.3. Revisions and vintage dates 181



Financial Data Science Python Notebooks

Recent values available to update missing in current FRED-MD
date
20241031 1538666.0
20241130 1544822.0
20241231 1555153.0
Name: CMRMTSPL, dtype: float64
date
20241031 7839
20241130 8156
20241231 7600
Name: HWI, dtype: int64
date
20241130 1.145345
20241231 1.103689
20250131 NaN
Name: HWIURATIO, dtype: float64
date
20241031 248120.0
20241130 248160.0
20241231 248851.0
Name: ACOGNO, dtype: float64
date
20241031 2585582.0
20241130 2588757.0
20241231 2584314.0
Name: BUSINV, dtype: float64
date
20241031 1.37
20241130 1.37
20241231 1.35
Name: ISRATIO, dtype: float64
date
20241031 3736897.53
20241130 3745366.76
20241231 3763355.59
Name: NONREVSL, dtype: float64
date
20241130 149.697308
20241231 149.793644
20250131 NaN
Name: CONSPI, dtype: float64
date
20241231 37.90
20250131 37.66
20250228 37.53
Name: S&P PE ratio, dtype: float64
date
20241031 554951.25
20241130 556075.09
20241231 558854.68
Name: DTCOLNVHFNM, dtype: float64
date
20241031 938525.34
20241130 941204.79
20241231 946489.00
Name: DTCTHFNM, dtype: float64
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# Find any missing series observations, if any, now available to update current FRED-
↪MD

Series(release.values, index=[(s, alf.header(s)) for s in release.index])\
.tail(len(md_missing))

(W875RX1, Real personal income excluding current transfer receipts) ␣
↪ 20250131

(ACOGNO, Manufacturers' New Orders: Consumer Goods) ␣
↪ 20250204

(HWI, Help Wanted Index for United States) ␣
↪ 20250204

(NONREVSL, Nonrevolving Consumer Credit Owned and Securitized) ␣
↪ 20250207

(CONSPI, Nonrevolving consumer credit to Personal Income) ␣
↪ 20250207

(BUSINV, Total Business Inventories) ␣
↪ 20250214

(ISRATIO, Total Business: Inventories to Sales Ratio) ␣
↪ 20250214

(CMRMTSPL, Real Manufacturing and Trade Industries Sales) ␣
↪ 20250228

(DTCOLNVHFNM, Consumer Motor Vehicle Loans Owned by Finance Companies, Level) ␣
↪ 20250228

(DTCTHFNM, Total Consumer Loans and Leases Owned and Securitized by Finance␣
↪Companies, Level) 20250228

(COMPAPFF, 3-Month Commercial Paper Minus FEDFUNDS) ␣
↪ None

dtype: object

8.4 Outliers

1. Interquartile Range (IQR) Approach –Filters data within median ± 10 times the interquartile range to minimize
extreme values.

2. Tukey’s Rule –Proposed by John Tukey, this method classifies data points as “outliers”if they fall beyond
1.5 times the interquartile range (IQR) of the first or third quartile, that is outside of [Q1 - 1.5(Q3-Q1), Q3 +
1.5(Q3-Q1)], and as“far out” if beyond 3 times the IQR.

payems = alf('PAYEMS', freq=freq, realtime=True, diff=1, log=1).dropna().iloc[:,0]
payems

date
19390228 0.005898
19390331 0.005962
19390430 -0.006162
19390531 0.006789
19390630 0.006678

...
20240930 0.001517
20241031 0.000278
20241130 0.001647
20241231 0.001934

(continues on next page)

8.4. Outliers 183



Financial Data Science Python Notebooks

(continued from previous page)

20250131 0.000899
Name: PAYEMS, Length: 1032, dtype: float64

for method in ['tukey', 'farout', 'iq10']:
print(f"Outliers fraction detected by {method}:", np.mean(is_outlier(payems,␣

↪method=method)).round(4))
payems.iloc[is_outlier(payems, method='iq10')]

Outliers fraction detected by tukey: 0.0969
Outliers fraction detected by farout: 0.0329
Outliers fraction detected by iq10: 0.0029

date
19450930 -0.049622
20200430 -0.145794
20200630 0.034217
Name: PAYEMS, dtype: float64

Box-and-whiskers plot
A box plot shows the quartiles of the data while the whiskers extend to show the rest of the distribution, except for points
that are determined to be“outliers”, which are more than some multiple of the inter-quartile range (IQR) beyond the
first and third quartiles.

import seaborn as sns
fig, ax = plt.subplots(figsize=(12, 6))
sns.boxplot(payems, ax=ax, orient='h', whis=3) # whiskers at 3xIQR

<Axes: xlabel='PAYEMS'>

Referenes:
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https://fred.stlouisfed.org/
https://www.stlouisfed.org/research/economists/mccracken/fred-databases
McCracken, M. W., & Ng, S. (2016). FRED-MD: A Monthly Database for Macroeconomic Research. Journal of
Business & Economic Statistics, 34(4), 574–589.
McCracken, M.W., Ng, S., 2020. FRED-QD: A Quarterly Database for Macroeconomic Research, Federal Reserve
Bank of St. Louis Working Paper 2020- 005
Katrina Stierholz, 2018, Economic Data Revisions: What They Are and Where to Find Them https://journals.ala.org/
index.php/dttp/article/view/6383/8404
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CHAPTER

NINE

LINEAR REGRESSION DIAGONOSTICS

In economics, the majority is always wrong - John Kenneth Galbraith
For a linear regression model to produce reliable and interpretable results, it must satisfy certain assumptions. Diagnosing
potential issues such as heteroskedasticity, multicollinearity, omitted variables, and influential data points is important
for model validity. We explore key diagnostic tests for linear regression, including methods for detecting violations of
assumptions, evaluating the impact of outliers, and assessing model fit through residual plots. Additionally, we discuss
techniques for robust standard errors when assumptions are violated, such as heteroskedasticity- and autocorrelation-
consistent (HAC) estimators.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import patsy
import statsmodels.formula.api as smf
from statsmodels.stats.outliers_influence import variance_inflation_factor
from finds.readers import Alfred
from finds.utils import plot_fitted, plot_leverage, plot_scale, plot_qq
from secret import credentials
VERBOSE = 0
# matplotlib qt

alf = Alfred(api_key=credentials['fred']['api_key'])

For this analysis, we retrieve monthly Consumer Price Index (CPI) data as the dependent (endogenous) variable and
Producer Price Index (PPI) data as the independent (exogenous) variable. The model uses the monthly differences of the
logarithms of both series to account for changes over time.

# difference of logs of CPI and PPI monthly series from FRED
series_id, freq, start = 'CPIAUCSL', 'M', 0 #19740101
exog_id = 'WPSFD4131'

data = pd.concat([alf(s, start=start) for s in [series_id, exog_id]], axis=1)
data.index = pd.DatetimeIndex(data.index.astype(str))
data = np.log(data).diff().dropna() # model the changes in logs of the series
DataFrame.from_dict({s: alf.header(s) for s in [series_id, exog_id]},

orient='index', columns=['Description'])
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Description
CPIAUCSL Consumer Price Index for All Urban Consumers: ...
WPSFD4131 Producer Price Index by Commodity: Final Deman...

9.1 Model assumptions

A valid linear regression model must satisfy the following assumptions:
1. Linearity: The expected value of 𝑦𝑖 follows a linear function of the independent variables:

$𝐸[𝑦𝑖] = 𝑏0 + 𝑏1𝑥𝑖1 + ... + 𝑏𝑘𝑥𝑖𝑘$
2. Exogeneity: The explanatory variables {𝑥𝑖1, ..., 𝑥𝑖𝑘} are non-stochastic and not correlated with the error term.
3. Homoscedasticity: The variance of the dependent variable remains constant:

$𝑉 𝑎𝑟(𝑦𝑖) = 𝜎2$
4. Independence: The observations {𝑦𝑖} are independent of each other.
5. Normality: The error terms follow a normal distribution.

When assumptions 1-4 hold, the least squares estimator:
• Provides an unbiased estimate of the regression coefficients:

$𝑏 = (𝑋′𝑋)−1𝑋′𝑦$
• Has a variance-covariance matrix:

$𝑉 𝑎𝑟(𝑏) = 𝜎2(𝑋′𝑋)−1$
• The standard error for each coefficient 𝑏𝑗 is:

$𝑠𝑒(𝑏𝑗) = 𝜎√(𝑋′𝑋)−1
[𝑗+1,𝑗+1]$

When all five assumptions hold, the least squares estimator follows a normal distribution, enabling valid statistical infer-
ence.

# Run Linear Regression (with exog and 2 lags)
dmf = (f'{series_id} ~ {series_id}.shift(1) + {series_id}.shift(2) + {exog_id}.

↪shift(1)')
model = smf.ols(formula=dmf, data=data).fit()
print(model.summary())

OLS Regression Results
==============================================================================
Dep. Variable: CPIAUCSL R-squared: 0.453
Model: OLS Adj. R-squared: 0.451
Method: Least Squares F-statistic: 167.5
Date: Sun, 02 Mar 2025 Prob (F-statistic): 4.43e-79
Time: 22:25:01 Log-Likelihood: 2815.2
No. Observations: 610 AIC: -5622.
Df Residuals: 606 BIC: -5605.
Df Model: 3
Covariance Type: nonrobust
======================================================================================

coef std err t P>|t| [0.025 0.
↪975]

-----------------------------------------------------------------------------------
↪---

(continues on next page)
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Intercept 0.0009 0.000 6.276 0.000 0.001 0.
↪001

CPIAUCSL.shift(1) 0.5821 0.041 14.199 0.000 0.502 0.
↪663

CPIAUCSL.shift(2) -0.0479 0.041 -1.174 0.241 -0.128 0.
↪032

WPSFD4131.shift(1) 0.2011 0.036 5.609 0.000 0.131 0.
↪271

==============================================================================
Omnibus: 116.912 Durbin-Watson: 2.051
Prob(Omnibus): 0.000 Jarque-Bera (JB): 584.706
Skew: -0.752 Prob(JB): 1.08e-127
Kurtosis: 7.555 Cond. No. 522.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣

↪specified.

9.1.1 Heteroskedasity and HAC robust errors

If the variance of residuals is not constant (heteroskedasticity), the usual Ordinary Least Squares (OLS) standard
error formula, 𝜎2(𝑋′𝑋)−1, no longer holds. While OLS coefficient estimates remain consistent, their standard errors
may be misestimated. A more general form of the variance-covariance matrix is:

(𝑋′𝑋)−1(𝑋′Ω𝑋)(𝑋′𝑋)−1

where different choices of Ω provide robust standard error estimators.
• White’s (1980) heteroskedasticity-consistent estimator (also known as the sandwich estimator) uses the diag-

onal of squared residuals.
• Alternative estimators account for leverage effects in the design matrix.

If error terms exhibit serial correlation, standard heteroskedasticity-robust errors may still be misleading. Newey and
West (1987) introduced the Heteroskedasticity and Autocorrelation Consistent (HAC) estimator, which applies a
weighting scheme to correct for autocorrelation. The truncation parameter for lag selection is often chosen as:

𝑚 = 0.75𝑇 1/3

where autocorrelation coefficients are weighted as follows:

1 + 2
𝑚−1
∑
𝑗=1

𝑚 − 𝑗
𝑚 ̂𝜌𝑗

robust = model.get_robustcov_results(cov_type='HAC', use_t=None, maxlags=0)
print(robust.summary())

OLS Regression Results
==============================================================================
Dep. Variable: CPIAUCSL R-squared: 0.453
Model: OLS Adj. R-squared: 0.451
Method: Least Squares F-statistic: 108.8

(continues on next page)
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Date: Sun, 02 Mar 2025 Prob (F-statistic): 2.25e-56
Time: 22:25:01 Log-Likelihood: 2815.2
No. Observations: 610 AIC: -5622.
Df Residuals: 606 BIC: -5605.
Df Model: 3
Covariance Type: HAC
======================================================================================

coef std err t P>|t| [0.025 0.
↪975]

-----------------------------------------------------------------------------------
↪---

Intercept 0.0009 0.000 5.779 0.000 0.001 0.
↪001

CPIAUCSL.shift(1) 0.5821 0.074 7.903 0.000 0.437 0.
↪727

CPIAUCSL.shift(2) -0.0479 0.053 -0.902 0.367 -0.152 0.
↪056

WPSFD4131.shift(1) 0.2011 0.055 3.652 0.000 0.093 0.
↪309

==============================================================================
Omnibus: 116.912 Durbin-Watson: 2.051
Prob(Omnibus): 0.000 Jarque-Bera (JB): 584.706
Skew: -0.752 Prob(JB): 1.08e-127
Kurtosis: 7.555 Cond. No. 522.
==============================================================================

Notes:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using␣

↪0 lags and without small sample correction

9.1.2 Multicollinearity and variance inflation factors

Multicollinearity arises when explanatory variables are highly correlated, leading to unstable coefficient estimates. The
Variance Inflation Factor (VIF) quantifies the degree of multicollinearity by measuring how much a predictor’s variance
is inflated due to correlation with other predictors:

VIFi = 1
1 − 𝑅2

𝑖

where 𝑅2
𝑖 is obtained by regressing 𝑋𝑖 on all other predictors.

A VIF > 5 or 10 suggests that the variable is highly collinear with other explanatory variables, potentially leading to large
standard errors and unreliable estimates.

Y, X = patsy.dmatrices(dmf + ' - 1', data=data) # exclude intercept term
print("Variance Inflation Factors")
Series({X.design_info.column_names[i]: variance_inflation_factor(X, i)

for i in range(X.shape[1])}, name='VIF').to_frame()

Variance Inflation Factors

VIF
CPIAUCSL.shift(1) 3.414717

(continues on next page)
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CPIAUCSL.shift(2) 3.404137
WPSFD4131.shift(1) 2.285974

9.1.3 Omitted variables

Leaving out an important variable from the regression model can lead to biased estimates. The consequences are:
1. Bias in Included Variables: If the omitted variable is correlated with included variables, their regression coeffi-

cients will capture some of its effect, leading to inconsistent estimates.
2. Inflated Residual Variance: The estimated residuals will include both true shocks and the effects of the omitted

variable, reducing model accuracy.
Conversely, including an extraneous (irrelevant) variable does not introduce bias but increases standard errors, making it
harder to detect significant effects.

9.2 Residual diagnostics

Residual plots help evaluate model fit, identify outliers and detect potential specification issues.
An ideal model would have residuals that are not systematically related to any of the included explanatory variables.
Standardized residuals may alternatively be used so that the magnitude of deviation is more apparent.

9.2.1 Residuals vs fitted plot

This plot assesses whether residuals exhibit nonlinear patterns. Ideally, residuals should be randomly scattered around
zero, with no discernible trend. A systematic pattern suggests model misspecification or omitted variables.

# Plot residuals and identify outliers
fig, ax = plt.subplots(clear=True, figsize=(8,7))
z = plot_fitted(fitted=model.fittedvalues,

resid=model.resid,
ax=ax)

print("Residual Outliers")
z.to_frame().T

Residual Outliers

date 2022-07-31 2008-10-31 2008-11-30
outliers -0.009815 -0.011066 -0.015599
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9.2.2 Normal QQ plot

A quantile-quantile (Q-Q) plot compares residuals to a normal distribution. If residuals are normally distributed, data
points should align along a 45-degree reference line. Outliersmay appear as deviations from this line, indicating potential
issues such as a heavy-tailed distribution.

fig, ax = plt.subplots(clear=True, figsize=(8,7))
plot_qq(model.resid, ax=ax)

/home/terence/env3.11/lib/python3.11/site-packages/statsmodels/graphics/gofplots.
↪py:1043: UserWarning: color is redundantly defined by the 'color' keyword␣
↪argument and the fmt string "b" (-> color=(0.0, 0.0, 1.0, 1)). The keyword␣
↪argument will take precedence.
ax.plot(x, y, fmt, **plot_style)

residuals standardized
date
2008-11-30 -0.015599 -6.511279

(continues on next page)
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2008-10-31 -0.011066 -4.619178
2022-07-31 -0.009815 -4.097059
2006-09-30 -0.008903 -3.716483
2005-10-31 -0.007321 -3.056102
2013-03-31 -0.007108 -2.967065
2008-08-31 -0.007003 -2.923170
1980-07-31 -0.006997 -2.920733
2005-09-30 0.009362 3.907884
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9.2.3 Scale-location plot

This plot checks for homoscedasticity (constant variance). Residuals should be evenly spread across predictor values. A
funnel-shaped pattern suggests heteroskedasticity, requiring robust standard errors.

fig, ax = plt.subplots(clear=True, figsize=(8,7))
plot_scale(model.fittedvalues, model.resid, ax=ax)

array([579, 414, 415])
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9.2.4 Leverage and influential points

Certain data points can disproportionately affect regression estimates. The projection matrix from the least squares es-
timator, also called the hat matrix, 𝐻 = 𝑋(𝑋𝑇 𝑋)−1𝑋𝑇 identifies leverage points, where the diagonal element ℎ𝑖𝑖
measures the influence of the 𝑖-th observation.
A point may have high leverage but not necessarily influence the regression results significantly. Cook’s Distance
measures influence based on both residual magnitude and leverage:

𝐷𝑖 = 1
𝑝𝑡2𝑖

ℎ𝑖𝑖
1 − ℎ𝑖𝑖

where:
• 𝑝 is the number of regression parameters.

• 𝑡𝑖 = ̂𝜖𝑖
�̂�(1−ℎ𝑖𝑖) is the studentized residual, which accounts for non-constant variance.

• �̂� = √∑𝑛
𝑗=1 ̂𝜖2

𝑗/𝑛.

D_i > 1 $ suggests an influential point that may need further investigation. TheResiduals vs Leverage plot helps visualize
these influential points.

fig, ax = plt.subplots(clear=True, figsize=(8,7))
plot_leverage(model.resid, model.get_influence().hat_matrix_diag,

model.get_influence().cooks_distance[0],
ddof=len(model.params), ax=ax)

Empty DataFrame
Columns: [influential, cook's D, leverage]
Index: []

9.2. Residual diagnostics 195



Financial Data Science Python Notebooks

References:
White, Halbert (1980). “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Het-
eroskedasticity”. Econometrica. 48 (4): 817–838.
Newey, Whitney K., and Kenneth D. West. 1987. “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocor-
relation Consistent Covariance Matrix.”Econometrica 55: 703–8.
https://library.virginia.edu/data/articles/diagnostic-plots
FRM Part I Exam Book Quantitative Analysis Ch 9

196 Chapter 9. Linear Regression Diagonostics

https://library.virginia.edu/data/articles/diagnostic-plots


CHAPTER

TEN

TIME SERIES ANALYSIS

The only thing we know about the future is that it will be different - Peter Drucker
Time series analysis is a fundamental statistical technique used to analyze data points collected over time. A time series
can exhibit multiple components, such as long-term trends, cyclical fluctuations, seasonal variations, and irregular random
movements. Understanding these components enables analysts to build accurate predictive models. We explore key
concepts in time series analysis, including trend patterns, seasonality, stationarity, autocorrelation, and various statistical
models such as autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) models. We
also examine forecasting methods and statistical tests used to assess time series properties.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.tsa.ar_model import AutoReg, ar_select_order
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf, acf
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.stattools import grangercausalitytests, adfuller
from statsmodels.tsa.api import VAR
import statsmodels.formula.api as smf
from sklearn.metrics import mean_squared_error
from finds.readers import Alfred
from secret import credentials
VERBOSE = 0
# %matplotlib qt

We retrieve the Industrial Production (IP) total index monthly time series from FRED.

series_id, freq, start = 'IPB50001N', 'ME', 0 # not seasonally adjusted
alf = Alfred(api_key=credentials['fred']['api_key'])
df = alf(series_id, log=1, freq=freq, start=start).dropna()
date_title = f" ({df.index[0]//100}-{df.index[-1]//100})"
df.index = pd.to_datetime(df.index, format='%Y%m%d')
df.index.freq = freq # set index to datetime type with 'M frequency
alf.header(series_id)

'Industrial Production: Total Index'
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10.1 Seasonality

A time series can be broken down into three key components:
• Trend –Represents long-term movements in the data.
• Seasonality –Captures predictable and recurring changes within a specific time frame.
• Cyclical –Encompasses longer-term cycles that are influenced by broader economic or structural factors.

If a time series 𝑌𝑡 exhibits seasonality, its mean can differ across periods, repeating every 𝑠 periods (e.g., quarterly with
𝑠 = 4 or monthly with 𝑠 = 12). Deterministic seasonal effects can be effectively modeled using dummy variables.

## Seasonality Decomposition Plot
result = seasonal_decompose(df, model='add')
fig, ax = plt.subplots(nrows=4, ncols=1, clear=True, figsize=(10, 12))
result.observed.plot(ax=ax[0], title=alf.header(result.observed.name) + date_title,

ylabel=result.observed.name, xlabel='', c='b')
result.trend.plot(ax=ax[1], ylabel='Trend', xlabel='', c='r')
result.seasonal.plot(ax=ax[2], ylabel='Seasonal', xlabel='', c='g')
result.resid.plot(ax=ax[3], ls='', ms=3, marker='.', c='m',

ylabel='Residual', xlabel='')
plt.tight_layout()
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10.2 Stationarity

A time series is considered covariance-stationary if it meets three key conditions:
1. The mean remains constant over time, i.e., 𝐸[𝑌𝑡] = 𝑚 for all 𝑡.
2. The variance is finite and does not change over time, i.e., 𝑉 [𝑌𝑡] = 𝛾0 < ∞.
3. The autocovariance depends only on the time lag ℎ and not on 𝑡, i.e., 𝐶𝑜𝑣[𝑌𝑡, 𝑌𝑡−ℎ] = 𝛾ℎ.

Covariance stationarity depends on the first two moments of a time series. Stationarity is crucial for modeling and fore-
casting because stationary series exhibit stable statistical properties. The Augmented Dickey-Fuller (ADF) test helps
determine whether a time series has a unit root, with the null hypothesis stating that a unit root is present. If the p-value
is below a critical threshold, the null hypothesis can be rejected, indicating stationarity.

values = df.diff().dropna().values.squeeze()
adf = adfuller(values)
DataFrame.from_dict({"I(1)": list(adf[:4]) + list(adf[4].values())},

orient='index',
columns=(['Test Statistic', 'p-value', 'Lags Used', 'Obs Used'] +

[f"critical({k})" for k in adf[4].keys()])).round(3)

Test Statistic p-value Lags Used Obs Used critical(1%) \
I(1) -7.266 0.0 23 1248 -3.436

critical(5%) critical(10%)
I(1) -2.864 -2.568

# Histogram Plot and Kernel Density Estimate
fig, axes = plt.subplots(1, 2, clear=True, figsize=(10,5))
sns.histplot(df.dropna(), bins=30, lw=0, kde=True, ax=axes[0])
axes[0].set_title(f"Density Plot of log({series_id})")
sns.histplot(df.diff().dropna().rename(f"diff log {series_id}"),

bins=30, lw=0, kde=True, ax=axes[1]) #line_kws={"color": "r"}
axes[1].set_title(f"Density Plot of diff log({series_id})")
plt.tight_layout()
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10.3 Autocorrelation

Autocorrelation measures the relationship between time series observations at different points in time. The autocorrelation
function (ACF) at lag ℎ is given by:
$𝜌ℎ = 𝛾ℎ

𝛾0
𝑤ℎ𝑒𝑟𝑒 \gamma_h 𝑖𝑠𝑡ℎ𝑒𝑎𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑎𝑡𝑙𝑎𝑔 h , 𝑎𝑛𝑑 \gamma_0 $ is the variance.

The partial autocorrelation function (PACF) isolates the direct relationship between observations separated by lag ℎ,
removing the influence of intermediate lags (i.e., 𝑌𝑡−1, 𝑌𝑡−2, ..., 𝑌𝑡−ℎ+1).

values = df.diff().dropna().values.squeeze()
fig, axes = plt.subplots(1, 2, clear=True, figsize=(10,5))
plot_acf(values, lags=35, ax=axes[0])
plot_pacf(values, lags=35, ax=axes[1], method='ywm')
plt.suptitle(alf.header(result.observed.name) + date_title)
plt.tight_layout()

10.4 Time Series Models

10.4.1 Autoregressive (AR) models

Autoregressive (AR) models describe a time series in terms of its past values. An AR(1) process follows:
$𝑌𝑡 = 𝛿 + 𝜙𝑌𝑡−1 + 𝜖𝑡𝑤ℎ𝑒𝑟𝑒 \delta 𝑖𝑠𝑡ℎ𝑒𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, \phi 𝑖𝑠𝑡ℎ𝑒𝑎𝑢𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑎𝑛𝑑 \epsilon_t $ is white
noise.
For a higher-order AR(p) model:
$𝑌𝑡 = 𝜇 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ... + 𝜙𝑝𝑌𝑡−𝑝 + 𝜖𝑡$

The PACF for an AR process is nonzero only for the first 𝑝 lags, while the ACF gradually decays (𝜌(ℎ) = 𝜙|ℎ|)
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10.4.2 Moving average (MA) models**

A moving average model expresses 𝑌𝑡 as a function of past shocks:
$𝑌𝑡 = 𝜇+𝜃1𝜖𝑡−1 +𝜖𝑡𝐴𝑛𝑀𝐴(𝑞)𝑚𝑜𝑑𝑒𝑙𝑒𝑥𝑡𝑒𝑛𝑑𝑠𝑡ℎ𝑖𝑠𝑡𝑜𝑖𝑛𝑐𝑙𝑢𝑑𝑒 q 𝑙𝑎𝑔𝑠𝑜𝑓 \epsilon ∶𝑌𝑡 = 𝜇+𝜖𝑡 +𝜃1𝜖𝑡−1 +...+𝜃𝑞𝜖𝑡−𝑞$
The ACF of an MA process is zero for lags greater than 𝑞, while the PACF has a more complex structure.

10.4.3 ARMA models

An ARMA(p, q) model combines AR and MA components. For example, a simple ARMA(1,1) evolves according to:
$𝑌𝑡 = 𝜇 + 𝜙𝑌𝑡−1 + 𝜃𝜖𝑡−1 + 𝜖𝑡$

• The mean of this process is 𝜇 = 𝛿/(1 − 𝜙)
• The variance is 𝛾0 = 𝜎2(1 + 2𝜙𝜃 + 𝜃2)/(1 − 𝜙2)

An ARMA(1,1) process is covariance-stationary if |𝜙| <> 1. The MA coefficient plays no role in determining whether
the process is covariance-stationary, because any MA is covariance-stationary as the MA component only affects a single
lag of the shock. The AR component, however, affects all lagged shocks and so if 𝜙1 is too large, then the time series is
not covariance-stationary.

10.4.4 Lag lengths

Determining the appropriate lag lengths for the AR and MA components (i.e., p and q, respectively) is a key challenge
when building an ARMA model. The first step in model building is to inspect the sample autocorrelation and sample
PACFs.
The Box-Pierce test statistic is the sum of the squared autocorrelations scaled by the sample size T: $𝑄𝐵𝑃 =
𝑇 ∑ℎ

𝑖=1(
𝑇 + 1
𝑇 − 1) ̂𝜌2

𝑖 $

When the null is true, 𝑄𝐵𝑃 is asymptotically distributed as a 𝜒2
ℎ variable.

The Ljung-Box statistic is a modified version of the Box-Pierce statistic that works better in smaller samples, and is
defined as: $𝑄𝐿𝐵 = 𝑇 ∑ℎ

𝑖=1(
𝑇 + 2
𝑇 − 𝑖 ) ̂𝜌2

𝑖 $

10.4.5 Seasonal component

Seasonal components can be added to the short-term components of an ARMA(p,q) model, by using lags only at the
seasonal frequency. A seasonal ARMA combines these two components into a single specification:

𝐴𝑅𝑀𝐴(𝑝, 𝑞) × (𝑝𝑠, 𝑞𝑠)𝑓

where p and q are the orders of the short-run lag polynomials, 𝑝𝑠 and 𝑞𝑠 represent seasonal lag orders, and 𝑓 denotes the
seasonal horizon (e.g., every 3 or 12 months with monthly observations).
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10.4.6 Unit Roots

Random walks are most important source of non-stationarity in economic time series. A simple random walk process
evolves according to:

𝑌𝑡 = 𝑌𝑡−1 + 𝜖𝑡

Unit roots generalize random walks by adding short-run stationary dynamics to the long-run random walk.
Spurious relationships can occur when non-stationary series are regressed against each other; this produces produces a
coefficient estimate that is large and seemingly statistically different from zero when using conventional statistical distri-
butions to obtain the critical values.
Differencing removes unit roots and prevents such misleading results. If 𝑌𝑡 has a unit root (i.e. has integration order
equal to 1), then the difference: Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 does not.

10.4.7 SARIMAX model

The Seasonal AutoRegressive Integrated Moving Average with eXogenous Regressors (SARIMAX) model is de-
noted:
$(𝑝, 𝑑, 𝑞) × (𝑃 , 𝐷, 𝑄)𝑠$
where:

• (𝑝, 𝑑, 𝑞) are the orders of AR, differencing, and MA components.
• (𝑃 , 𝐷, 𝑄, 𝑠) are the seasonal counterparts and periodicity.

split_date = df.index[-12] # train/test split date
# df_train = df.loc[:split_date].dropna()

# Fit a SARIMA(1,1,3) with seasonal order (0, 0, 0, 12)
pdq = (1, 1, 1) #(12, 1, 0)
seasonal_pdqs = (0, 0, 0, 12)
arima = SARIMAX(df, order=pdq, seasonal_order=seasonal_pdqs, trend='c').fit()
fig = arima.plot_diagnostics(figsize=(10, 6), lags=36)
plt.tight_layout()
arima.summary()

RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16
N = 4 M = 10

At X0 0 variables are exactly at the bounds

At iterate 0 f= -2.09476D+00 |proj g|= 3.46166D-01

At iterate 5 f= -2.09484D+00 |proj g|= 2.67321D-02

At iterate 10 f= -2.09486D+00 |proj g|= 1.29274D-01

* * *

(continues on next page)
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Tit = total number of iterations
Tnf = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip = number of BFGS updates skipped
Nact = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F
4 14 18 1 0 0 8.413D-04 -2.095D+00

F = -2.0948681083990448

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

This problem is unconstrained.

Dep. Variable: IPB50001N No. Observations: 1273
Model: SARIMAX(1, 1, 1) Log Likelihood 2666.767
Date: Mon, 03 Mar 2025 AIC -5325.534
Time: 10:54:09 BIC -5304.941
Sample: 01-31-1919 HQIC -5317.799

- 01-31-2025
Covariance Type: opg

coef std err z P> |z| [0.025 0.975]
intercept 0.0027 0.001 2.396 0.017 0.000 0.005
ar.L1 -0.1167 0.223 -0.524 0.600 -0.553 0.320
ma.L1 0.2195 0.222 0.987 0.323 -0.216 0.655
sigma2 0.0009 2.21e-05 39.946 0.000 0.001 0.001
Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): 563.24
Prob(Q): 0.87 Prob(JB): 0.00
Heteroskedasticity (H): 0.31 Skew: -0.20
Prob(H) (two-sided): 0.00 Kurtosis: 6.23

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
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10.5 Forecasting

series_id, start = 'INDPRO', 0
df_all = alf(series_id, log=1, diff=1, start=start).dropna()
df_all.index = pd.to_datetime(df_all.index, format='%Y%m%d')
df_all.index.freq = freq
df_train = df_all[df_all.index <= split_date]
df_test = df_all[df_all.index > split_date]

10.5.1 AR lag order selection

The most natural measure of fit is the sample variance of the estimated residuals, also known as the Mean Squared Error
(MSE) of the model. Unfortunately, choosing a model to minimize MSE also selects a specification that is far too large.
The solution to this overfitting problem is to add a penalty to the MSE that increases each time a new parameter is added,
employing criteria like Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).

• AIC is calculated by 𝑇 ln �̂�2 + 2𝑘, where T is the sample size and k is the number of parameters.
• BIC alters the penalty and is computed by 𝑇 ln �̂�22 + 𝑘 ln 𝑇

Unlike the AIC, the BIC has a cost per parameter that slowly increases with T. Hence BIC always selects a model that is
no larger than the model selected by the AIC (assuming ln 𝑇 > 2), and is a consistent model selection criterion (i.e., the
true model is selected as 𝑇 → ∞).

lags = ar_select_order(df_train, maxlag=36, ic='bic', old_names=False).ar_lags
print('(BIC) lags= ', len(lags), ':', lags)
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(BIC) lags= 1 : [1]

# Train final model on train split
model = AutoReg(df_train, lags=lags, old_names=False).fit()
print(model.summary())

AutoReg Model Results
==============================================================================
Dep. Variable: INDPRO No. Observations: 1261
Model: AutoReg(1) Log Likelihood 3366.312
Method: Conditional MLE S.D. of innovations 0.017
Date: Mon, 03 Mar 2025 AIC -6726.625
Time: 10:54:10 BIC -6711.208
Sample: 03-31-1919 HQIC -6720.831

- 02-29-2024
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
const 0.0013 0.000 2.705 0.007 0.000 0.002
INDPRO.L1 0.4859 0.025 19.794 0.000 0.438 0.534

Roots
=============================================================================

Real Imaginary Modulus Frequency
-----------------------------------------------------------------------------
AR.1 2.0581 +0.0000j 2.0581 0.0000
-----------------------------------------------------------------------------

10.5.2 One-step forecast

One-step forecast predicts 𝑌𝑇+1 using all available data up to time 𝑇 , including the entire prior history of Y
(𝑌𝑇 , 𝑌𝑇−1, ...), as well as all values of any other variables that occurred at time T or earlier.

# Observations to predict are from the oos test split
test = AutoReg(df_all, lags=lags, old_names=False)

# Use model params from train split, start predictions from last train row
df_pred = test.predict(model.params, start=df_test.index[0])
mse = mean_squared_error(df_test, df_pred)
#var = np.mean(np.square(df_test - df_train.mean()))
print(f"ST Forecast({len(df_pred)}): rmse={np.sqrt(mse)}")

ST Forecast(11): rmse=0.006247508053669628

fig, ax = plt.subplots(clear=True, num=1, figsize=(10, 6))
df_pred.plot(ax=ax, c='C1', ls='-', marker='o', label='Predicted')
df_test.plot(ax=ax, c='C0', ls=':', marker='*', label='Actual')
ax.legend()
ax.set_title(series_id + " (one-step forecasts)")
ax.set_xlabel('')
plt.tight_layout()
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10.5.3 Multi-step forecast

Multi-step forecasts recursively predict values at future horizons, starting with
𝐸𝑇 [𝑌𝑇+1].𝑇ℎ𝑒𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑎𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛ℎ𝑑𝑒𝑝𝑒𝑛𝑑𝑠𝑜𝑛𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑓𝑟𝑜𝑚𝑒𝑎𝑟𝑙𝑖𝑒𝑟𝑠𝑡𝑒𝑝𝑠(E_T[Y_{T+ 1}], ⋯, E_T [Y_{T+ h
- 1}]). When these quantities appear in the forecast for period 𝑇 + ℎ, they are replaced by the forecasts computed for
horizons 1, 2, ..., ℎ − 1.

# set dynamic=True for multi-step ahead predictions
df_pred = test.predict(model.params, dynamic=True,

start=df_test.index[0], end=df_test.index[-1])
mse = mean_squared_error(df_test, df_pred)
#var = np.mean(np.square(df_test - df_train.mean()))
print(f"Long-term Forecasts: rmse={np.sqrt(mse):.6f}")
fig, ax = plt.subplots(clear=True, num=2, figsize=(10, 6))
df_pred.plot(ax=ax, c='C1', ls='-', marker='o', label='Predicted')
df_test.plot(ax=ax, c='C0', ls=':', marker='*', label='Actual')
ax.legend()
ax.set_title(series_id + " (multi-step forecasts)")
ax.set_xlabel('')
plt.tight_layout()

Long-term Forecasts: rmse=0.006085
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10.5.4 Granger causality

Granger causality tests whether past values of one time series help predict another.

# Granger Causality: INDPRO vs CPI
variables = ['INDPRO', 'CPIAUCSL']
start = 19620101
for series_id, exog_id in zip(variables, list(reversed(variables))):

df = pd.concat([alf(s, start=start, log=1)
for s in [series_id, exog_id]], axis=1)

df.index = pd.DatetimeIndex(df.index.astype(str))
df.index.freq = freq
data = df.diff().dropna()

print(f"Null Hypothesis: {exog_id} granger-causes {series_id}")
res = grangercausalitytests(data, maxlag=3)
print()

dmf = (f'{series_id} ~ {series_id}.shift(1) '
f' + {exog_id}.shift(1) '
f' + {exog_id}.shift(2) '
f' + {exog_id}.shift(3) ')

model = smf.ols(formula=dmf, data=data).fit()
robust = model.get_robustcov_results(cov_type='HAC', use_t=None, maxlags=0)
print(robust.summary())

Null Hypothesis: CPIAUCSL granger-causes INDPRO

Granger Causality
number of lags (no zero) 1

(continues on next page)
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ssr based F test: F=0.4754 , p=0.4907 , df_denom=752, df_num=1
ssr based chi2 test: chi2=0.4773 , p=0.4896 , df=1
likelihood ratio test: chi2=0.4772 , p=0.4897 , df=1
parameter F test: F=0.4754 , p=0.4907 , df_denom=752, df_num=1

Granger Causality
number of lags (no zero) 2
ssr based F test: F=7.1786 , p=0.0008 , df_denom=749, df_num=2
ssr based chi2 test: chi2=14.4530 , p=0.0007 , df=2
likelihood ratio test: chi2=14.3162 , p=0.0008 , df=2
parameter F test: F=7.1786 , p=0.0008 , df_denom=749, df_num=2

Granger Causality
number of lags (no zero) 3
ssr based F test: F=5.4544 , p=0.0010 , df_denom=746, df_num=3
ssr based chi2 test: chi2=16.5167 , p=0.0009 , df=3
likelihood ratio test: chi2=16.3381 , p=0.0010 , df=3
parameter F test: F=5.4544 , p=0.0010 , df_denom=746, df_num=3

OLS Regression Results
==============================================================================
Dep. Variable: INDPRO R-squared: 0.090
Model: OLS Adj. R-squared: 0.085
Method: Least Squares F-statistic: 2.729
Date: Mon, 03 Mar 2025 Prob (F-statistic): 0.0283
Time: 10:54:12 Log-Likelihood: 2472.9
No. Observations: 753 AIC: -4936.
Df Residuals: 748 BIC: -4913.
Df Model: 4
Covariance Type: HAC
=====================================================================================

coef std err t P>|t| [0.025 0.
↪975]

-----------------------------------------------------------------------------------
↪--

Intercept 0.0019 0.001 1.993 0.047 2.94e-05 0.
↪004

INDPRO.shift(1) 0.2553 0.141 1.817 0.070 -0.020 0.
↪531

CPIAUCSL.shift(1) 0.4106 0.208 1.973 0.049 0.002 0.
↪819

CPIAUCSL.shift(2) -0.4210 0.193 -2.178 0.030 -0.800 -0.
↪042

CPIAUCSL.shift(3) -0.1652 0.134 -1.228 0.220 -0.429 0.
↪099

==============================================================================
Omnibus: 721.664 Durbin-Watson: 1.981
Prob(Omnibus): 0.000 Jarque-Bera (JB): 120296.612
Skew: -3.763 Prob(JB): 0.00
Kurtosis: 64.462 Cond. No. 565.
==============================================================================

Notes:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using␣

↪0 lags and without small sample correction
Null Hypothesis: INDPRO granger-causes CPIAUCSL

(continues on next page)
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Granger Causality
number of lags (no zero) 1
ssr based F test: F=0.0450 , p=0.8321 , df_denom=752, df_num=1
ssr based chi2 test: chi2=0.0452 , p=0.8317 , df=1
likelihood ratio test: chi2=0.0452 , p=0.8317 , df=1
parameter F test: F=0.0450 , p=0.8321 , df_denom=752, df_num=1

Granger Causality
number of lags (no zero) 2
ssr based F test: F=0.0150 , p=0.9851 , df_denom=749, df_num=2
ssr based chi2 test: chi2=0.0301 , p=0.9850 , df=2
likelihood ratio test: chi2=0.0301 , p=0.9850 , df=2
parameter F test: F=0.0150 , p=0.9851 , df_denom=749, df_num=2

Granger Causality
number of lags (no zero) 3
ssr based F test: F=0.0926 , p=0.9641 , df_denom=746, df_num=3
ssr based chi2 test: chi2=0.2804 , p=0.9637 , df=3
likelihood ratio test: chi2=0.2803 , p=0.9637 , df=3
parameter F test: F=0.0926 , p=0.9641 , df_denom=746, df_num=3

OLS Regression Results
==============================================================================
Dep. Variable: CPIAUCSL R-squared: 0.386
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 51.93
Date: Mon, 03 Mar 2025 Prob (F-statistic): 1.28e-38
Time: 10:54:12 Log-Likelihood: 3452.5
No. Observations: 753 AIC: -6895.
Df Residuals: 748 BIC: -6872.
Df Model: 4
Covariance Type: HAC
=====================================================================================

coef std err t P>|t| [0.025 0.
↪975]

-----------------------------------------------------------------------------------
↪--

Intercept 0.0012 0.000 6.847 0.000 0.001 0.
↪002

CPIAUCSL.shift(1) 0.6210 0.046 13.623 0.000 0.532 0.
↪711

INDPRO.shift(1) -0.0021 0.014 -0.147 0.883 -0.030 0.
↪025

INDPRO.shift(2) 0.0005 0.017 0.032 0.975 -0.032 0.
↪033

INDPRO.shift(3) 0.0061 0.009 0.676 0.499 -0.012 0.
↪024

==============================================================================
Omnibus: 88.983 Durbin-Watson: 2.119
Prob(Omnibus): 0.000 Jarque-Bera (JB): 750.324
Skew: 0.030 Prob(JB): 1.17e-163
Kurtosis: 7.890 Cond. No. 319.
==============================================================================

Notes:

(continues on next page)
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[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using␣
↪0 lags and without small sample correction

10.5.5 Impulse response function

Impulse response functions (IRF) analyze how shocks propagate through a system, often in Vector Autoregression
(VAR) models.

# Vector Autoregression: Impulse Response Function
model = VAR(data)
results = model.fit(maxlags=3)
print(results.summary())
irf = results.irf(12)
#irf.plot(orth=False)
irf.plot_cum_effects(orth=False, figsize=(10, 6))

Summary of Regression Results
==================================
Model: VAR
Method: OLS
Date: Mon, 03, Mar, 2025
Time: 10:54:12
--------------------------------------------------------------------
No. of Equations: 2.00000 BIC: -21.3411
Nobs: 753.000 HQIC: -21.3939
Log likelihood: 5944.36 FPE: 4.94710e-10
AIC: -21.4270 Det(Omega_mle): 4.85639e-10
--------------------------------------------------------------------
Results for equation CPIAUCSL
==============================================================================

coefficient std. error t-stat prob
------------------------------------------------------------------------------
const 0.000909 0.000139 6.528 0.000
L1.CPIAUCSL 0.544275 0.036383 14.960 0.000
L1.INDPRO 0.004382 0.009861 0.444 0.657
L2.CPIAUCSL 0.016181 0.041512 0.390 0.697
L2.INDPRO -0.001898 0.010116 -0.188 0.851
L3.CPIAUCSL 0.147062 0.036710 4.006 0.000
L3.INDPRO 0.002953 0.009745 0.303 0.762
==============================================================================

Results for equation INDPRO
==============================================================================

coefficient std. error t-stat prob
------------------------------------------------------------------------------
const 0.001899 0.000517 3.673 0.000
L1.CPIAUCSL 0.404130 0.135092 2.992 0.003
L1.INDPRO 0.270682 0.036614 7.393 0.000
L2.CPIAUCSL -0.402895 0.154135 -2.614 0.009
L2.INDPRO -0.066262 0.037563 -1.764 0.078
L3.CPIAUCSL -0.182529 0.136306 -1.339 0.181
L3.INDPRO 0.083606 0.036182 2.311 0.021
==============================================================================

(continues on next page)
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Correlation matrix of residuals
CPIAUCSL INDPRO

CPIAUCSL 1.000000 0.101927
INDPRO 0.101927 1.000000
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CHAPTER

ELEVEN

APPROXIMATE FACTOR MODELS

It is better to be vaguely right than precisely wrong - Carveth Read
Approximate factor models provide a simplified yet effective way to represent time series data by identifying common
factors that explain variation across observed variables. A critical step in time series analysis is ensuring stationarity,
typically assessed using tests like the Augmented Dickey-Fuller (ADF) test. Transformations such as differencing and
logarithmic scaling are often applied to remove non-stationary components. Principal Component Analysis (PCA) is
commonly used for factor extraction, and the optimal number of components can be selected using criteria like the
Bayesian Information Criterion (BIC). To handle missing data, imputation methods such as the Expectation-Maximization
(EM) algorithm are used.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from finds.readers import Alfred, fred_md, fred_qd
from finds.recipes import (approximate_factors, mrsq, select_baing, integration_order,

remove_outliers, is_outlier)
from secret import credentials
VERBOSE = 0
#%matplotlib qt

alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)

## Retrieve recession periods from FRED
vspans = alf.date_spans('USREC')
DataFrame(vspans, columns=['Start', 'End'])

Start End
0 1854-12-31 1854-12-31
1 1857-06-30 1858-12-31
2 1860-10-31 1861-06-30
3 1865-04-30 1867-12-31
4 1869-06-30 1870-12-31
5 1873-10-31 1879-03-31
6 1882-03-31 1885-05-31
7 1887-03-31 1888-04-30
8 1890-07-31 1891-05-31
9 1893-01-31 1894-06-30

(continues on next page)
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10 1895-12-31 1897-06-30
11 1899-06-30 1900-12-31
12 1902-09-30 1904-08-31
13 1907-05-31 1908-06-30
14 1910-01-31 1912-01-31
15 1913-01-31 1914-12-31
16 1918-08-31 1919-03-31
17 1920-01-31 1921-07-31
18 1923-05-31 1924-07-31
19 1926-10-31 1927-11-30
20 1929-08-31 1933-03-31
21 1937-05-31 1938-06-30
22 1945-02-28 1945-10-31
23 1948-11-30 1949-10-31
24 1953-07-31 1954-05-31
25 1957-08-31 1958-04-30
26 1960-04-30 1961-02-28
27 1969-12-31 1970-11-30
28 1973-11-30 1975-03-31
29 1980-01-31 1980-07-31
30 1981-07-31 1982-11-30
31 1990-07-31 1991-03-31
32 2001-03-31 2001-11-30
33 2007-12-31 2009-06-30
34 2020-02-29 2020-04-30

11.1 Integration order

11.1.1 Augmented Dickey-Fuller test

The Augmented Dickey-Fuller (ADF) test is one of the most widely used methods for detecting unit roots in a time
series. It operates by performing an ordinary least squares (OLS) regression, where the first difference of the series is
regressed on its lagged level, along with deterministic components and lagged differences. The general form of the ADF
regression is:

Δ𝑌𝑡 = 𝛾𝑌𝑡−1 + (𝛿0 + 𝛿1𝑡) + 𝜆1Δ𝑌𝑡−1 + ... + 𝜆𝑝Δ𝑌𝑡−𝑝

If 𝛾 = 0, then 𝑌𝑡 follows a random walk and is non-stationary, implying the presence of a unit root. The alternative
hypothesis, 𝛾 < 0, suggests that 𝑌𝑡 is covariance-stationary. This is a one-sided test, as positive values of 𝛾 would
indicate an autoregressive coefficient greater than one, leading to instability.
When the test fails to reject the null hypothesis of a unit root, differencing is required to transform the series into a
stationary form. Best practice involves repeatedly applying the ADF test to the differenced data until stationarity is
achieved.

qd_df, qd_codes = fred_qd() # 202004
md_df, md_codes = fred_md() # 201505
qd_date = max(qd_df.index)
md_date = max(md_df.index)

FRED-QD vintage: quarterly/current.csv
FRED-MD vintage: monthly/current.csv
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11.1.2 Transformations

The FRED-MD and FRED-QD datasets include transformation codes that indicate appropriate preprocessing steps, such
as applying logarithmic transformations or differencing, to ensure stationarity. The number of differences required de-
pends on the presence of unit roots.

print(f"Number of series by suggested tcode transformations ({md_date}):")
tcodes = DataFrame.from_dict({i: alf.tcode[i] for i in range(1, 8)},

orient='index')\
.join(qd_codes['transform'].value_counts().rename('fred-qd'))\
.join(md_codes['transform'].value_counts().rename('fred-md'))\
.fillna(0)\
.astype(int)\
.rename_axis(index='tcode')

tcodes

Number of series by suggested tcode transformations (20250131):

diff log pct_change fred-qd fred-md
tcode
1 0 0 0 22 11
2 1 0 0 32 19
3 2 0 0 0 0
4 0 1 0 0 10
5 1 1 0 140 52
6 2 1 0 49 33
7 1 0 1 1 1

# For each series, compare fitted integration order with tcode
out = {}
stationary_out = {}
for label, df, transforms in [['md', md_df, md_codes['transform']],

['qd', qd_df, qd_codes['transform']]]:
stationary = dict()
for series_id, tcode in transforms.items():

# apply transformation if series tcode is valid
if tcode in range(1, 8):

# take logs of series if specified by tcode
s = np.log(df[series_id]) if tcode in [4, 5, 6] else df[series_id]

# estimate integration order
order = integration_order(s.dropna(), pvalue=0.05)

# expected order specified by tcode
expected_order = 2 if tcode == 7 else ((tcode - 1) % 3)

# accumulate results for this series
stationary[series_id] = {'tcode': tcode,

'I(p)': order,
'different': order - expected_order,
'title': alf.header(series_id)}

# print(series_id, tcode, expected_order, order)

# collect results for display
stationary = DataFrame.from_dict(stationary, orient='index')

(continues on next page)
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stationary = stationary.sort_values(stationary.columns.to_list())
c = stationary.groupby(['tcode','I(p)'])['title'].count().reset_index()
out[label] = c.pivot(index='tcode', columns='I(p)', values='title')\

.fillna(0).astype(int)
out[label].columns=[f"I({p})" for p in out[label].columns]
stationary_out[label] = stationary[stationary['different'] > 0]

print('Series by tcode, transformations and estimated order of integration:')
results = pd.concat([tcodes.drop(columns='fred-md'),

out['qd'],
tcodes['fred-md'],
out['md']], axis=1).fillna(0).astype(int)

print('Integration order by transformation')
results

Series by tcode, transformations and estimated order of integration:
Integration order by transformation

diff log pct_change fred-qd I(0) I(1) I(2) fred-md I(0) I(1) \
tcode
1 0 0 0 22 17 5 0 11 11 0
2 1 0 0 32 11 19 2 19 4 15
3 2 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 10 7 3
5 1 1 0 140 30 107 3 52 14 38
6 2 1 0 49 0 29 20 33 0 30
7 1 0 1 1 0 1 0 1 0 1

I(2)
tcode
1 0
2 0
3 0
4 0
5 0
6 3
7 0

print('FRED-MD Series with unit root after transformation')
stationary_out['md']

FRED-MD Series with unit root after transformation

tcode I(p) different \
PERMITMW 4 1 1
HOUSTMW 4 1 1
HOUSTNE 4 1 1

title
PERMITMW New Privately-Owned Housing Units Authorized i...
HOUSTMW New Privately-Owned Housing Units Started: Tot...
HOUSTNE New Privately-Owned Housing Units Started: Tot...
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print('FRED-QD Series with unit root after transformation')
stationary_out['qd']

FRED-QD Series with unit root after transformation

tcode I(p) different \
GS1TB3M 1 1 1
NWPI 1 1 1
TLBSNNBBDI 1 1 1
TLBSNNCBBDI 1 1 1
HWI 1 1 1
GFDEBTN 2 2 1
S&P div yield 2 2 1
CES2000000008 5 2 1
TLBSHNO 5 2 1
OPHMFG 5 2 1

title
GS1TB3M *** GS1TB3M ***
NWPI *** NWPI ***
TLBSNNBBDI *** TLBSNNBBDI ***
TLBSNNCBBDI *** TLBSNNCBBDI ***
HWI Help Wanted Index for United States
GFDEBTN Federal Debt: Total Public Debt
S&P div yield S&P's Composite Common Stock: Dividend Yield
CES2000000008 Average Hourly Earnings of Production and Nons...
TLBSHNO Households and Nonprofit Organizations; Total ...
OPHMFG Manufacturing Sector: Labor Productivity (Outp...

11.2 Factor selection

Bai and Ng (2002) provide a systematic approach for extracting and determining the optimal number of factors in an
approximate factor model of time series, and imputing missing or outlier observations in the dataset.

11.2.1 Principal component analysis (PCA)

Principal component analysis finds a low-dimensional representation of a data set that contains as much as possible of
the variation of its 𝑝 features. Each principal component is a linear combination of the original features, capturing the
most significant patterns in the data.
The first principal component is the normalized linear combination of features:

𝑍1 = 𝜙11𝑋1 + 𝜙21𝑋2 + ... + 𝜙𝑝1𝑋𝑝

which maximizes variance. Subsequent principal components, such as 𝑍2 and 𝑍3, are determined iteratively, ensuring
that each is uncorrelated with the previously computed components while explaining the next highest level of variance.
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11.2.2 BIC criterion

Determining the appropriate number of factors is a crucial step in approximate factor modeling. The Bayesian Infor-
mation Criterion (BIC) selects the optimal number of components by balancing model fit and complexity. Lower BIC
values indicate a better trade-off between variance explanation and model parsimony.

11.2.3 Data imputation

When dealing with missing data in time series, the Expectation-Maximization (EM) algorithm can be employed to
estimate missing values from factors iteratively. After each imputation iteration, factors are recovered as projections from
PCA, ensuring that the underlying structure of the data is captured.

# Verify BaiNg implemention on original FRED-MD and FRED-QD
qd_df, qd_codes = fred_qd('assets/FRED-QD_2020m04.csv', url='')
md_df, md_codes = fred_md('assets/FRED-MD_2015m5.csv', url='')
for freq, df, transforms in [['monthly', md_df, md_codes['transform']],

['quarterly', qd_df, qd_codes['transform']]]:
# Apply tcode transformations
transformed = []
for col in df.columns:

transformed.append(alf.transform(df[col],
tcode=transforms[col],
freq=freq[0]))

data = pd.concat(transformed, axis=1).iloc[2:]
cols = list(data.columns)
sample = data.index[((np.count_nonzero(np.isnan(data), axis=1)==0)

| (data.index <= 20141231))
& (data.index >= 19600301)]

# set missing and outliers to NaN
x = data.loc[sample]
x = remove_outliers(x) # default fence 'iq10' is 10 times IQ

# compute factors EM and auto select number of components, r
Z = approximate_factors(x, p=2, verbose=VERBOSE)
r = select_baing(Z, p=2)

# show marginal R2's of series to each component
mR2 = mrsq(Z, r).to_numpy()
print(f"FRED-{freq[0].upper()}D {freq} series:")
print(DataFrame({'selected': r,

'variance explained': np.sum(np.mean(mR2[:, :r], axis=0)),
'start': min(sample),
'end': max(sample),
'obs': Z.shape[0],
'series': Z.shape[1]},

index=[f'factors']))

for k in range(r):
args = np.argsort(-mR2[:, k])
print(f"Factor:{1+k} Variance Explained={np.mean(mR2[:,k]):.4f}")
print(DataFrame.from_dict({mR2[arg, k].round(4):

{'series': cols[arg],
'description': alf.header(cols[arg])}

for arg in args[:10]},
orient='index'))
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FRED-QD vintage: assets/FRED-QD_2020m04.csv
FRED-MD vintage: assets/FRED-MD_2015m5.csv
FRED-MD monthly series:

selected variance explained start end obs series
factors 8 0.485832 19600331 20141231 658 134
Factor:1 Variance Explained=0.1613

series description
0.7424 USGOOD All Employees, Goods-Producing
0.7235 PAYEMS All Employees, Total Nonfarm
0.7002 MANEMP All Employees, Manufacturing
0.6565 NAPM *** NAPM ***
0.6540 IPMANSICS Industrial Production: Manufacturing (SIC)
0.6513 DMANEMP All Employees, Durable Goods
0.6314 INDPRO Industrial Production: Total Index
0.6037 NAPMNOI *** NAPMNOI ***
0.6026 NAPMPI *** NAPMPI ***
0.5601 CUMFNS Capacity Utilization: Manufacturing (SIC)
Factor:2 Variance Explained=0.0703

series description
0.6259 T10YFFM 10-Year Treasury Constant Maturity Minus Feder...
0.6164 AAAFFM Moody's Seasoned Aaa Corporate Bond Minus Fede...
0.5856 BAAFFM Moody's Seasoned Baa Corporate Bond Minus Fede...
0.5832 T5YFFM 5-Year Treasury Constant Maturity Minus Federa...
0.4785 TB6SMFFM 6-Month Treasury Bill Minus Federal Funds Rate
0.4779 TB3SMFFM 3-Month Treasury Bill Minus Federal Funds Rate
0.4322 T1YFFM 1-Year Treasury Constant Maturity Minus Federa...
0.2367 COMPAPFF 3-Month Commercial Paper Minus FEDFUNDS
0.2258 BUSINV Total Business Inventories
0.1896 NAPMPRI *** NAPMPRI ***
Factor:3 Variance Explained=0.0652

series description
0.7192 CUSR0000SAC Consumer Price Index for All Urban Consumers: ...
0.7066 DNDGRG3M086SBEA Personal consumption expenditures: Nondurable ...
0.6700 CPIAUCSL Consumer Price Index for All Urban Consumers: ...
0.6392 CUSR0000SA0L5 Consumer Price Index for All Urban Consumers: ...
0.6115 CUUR0000SA0L2 Consumer Price Index for All Urban Consumers: ...
0.5923 PCEPI Personal Consumption Expenditures: Chain-type ...
0.5907 CPITRNSL Consumer Price Index for All Urban Consumers: ...
0.5482 CPIULFSL Consumer Price Index for All Urban Consumers: ...
0.4863 PPIFCG Producer Price Index by Commodity for Finished...
0.4779 PPIITM Producer Price Index by Commodity Intermediate...
Factor:4 Variance Explained=0.0547

series description
0.4294 GS1 Market Yield on U.S. Treasury Securities at 1-...
0.4228 GS5 Market Yield on U.S. Treasury Securities at 5-...
0.4123 AAA Moody's Seasoned Aaa Corporate Bond Yield
0.3995 TB6MS 6-Month Treasury Bill Secondary Market Rate, D...
0.3893 GS10 Market Yield on U.S. Treasury Securities at 10...
0.3621 BAA Moody's Seasoned Baa Corporate Bond Yield
0.3179 TB3MS 3-Month Treasury Bill Secondary Market Rate, D...
0.3139 CP3M 3-Month AA Financial Commercial Paper Rates
0.2681 HOUST New Privately-Owned Housing Units Started: Tot...
0.2562 HOUSTW New Privately-Owned Housing Units Started: Tot...
Factor:5 Variance Explained=0.0425

series description
0.2481 PERMITW New Privately-Owned Housing Units Authorized i...
0.2374 PERMIT New Privately-Owned Housing Units Authorized i...

(continues on next page)
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0.2316 HOUSTW New Privately-Owned Housing Units Started: Tot...
0.2225 GS5 Market Yield on U.S. Treasury Securities at 5-...
0.2221 GS1 Market Yield on U.S. Treasury Securities at 1-...
0.2146 HOUST New Privately-Owned Housing Units Started: Tot...
0.2028 GS10 Market Yield on U.S. Treasury Securities at 10...
0.1951 PERMITMW New Privately-Owned Housing Units Authorized i...
0.1949 T1YFFM 1-Year Treasury Constant Maturity Minus Federa...
0.1932 TB6MS 6-Month Treasury Bill Secondary Market Rate, D...
Factor:6 Variance Explained=0.0365

series description
0.2186 IPCONGD Industrial Production: Consumer Goods
0.1793 ISRATIO Total Business: Inventories to Sales Ratio
0.1736 NAPMEI *** NAPMEI ***
0.1628 IPDCONGD Industrial Production: Durable Consumer Goods:...
0.1577 IPFINAL Industrial Production: Final Products
0.1545 TB6SMFFM 6-Month Treasury Bill Minus Federal Funds Rate
0.1425 NAPM *** NAPM ***
0.1416 NAPMII *** NAPMII ***
0.1414 ACOGNO Manufacturers' New Orders: Consumer Goods
0.1373 IPFPNSS Industrial Production: Final Products and Noni...
Factor:7 Variance Explained=0.0292

series description
0.5165 S&P 500 S&P's Common Stock Price Index: Composite
0.5159 S&P: indust S&P's Common Stock Price Index: Industrials
0.4002 S&P div yield S&P's Composite Common Stock: Dividend Yield
0.2764 S&P PE ratio S&P's Composite Common Stock: Price-Earnings R...
0.2564 UMCSENT University of Michigan: Consumer Sentiment
0.1030 IPCONGD Industrial Production: Consumer Goods
0.1019 EXCAUS Canadian Dollars to U.S. Dollar Spot Exchange ...
0.0728 IPFINAL Industrial Production: Final Products
0.0644 IPDCONGD Industrial Production: Durable Consumer Goods:...
0.0565 IPFPNSS Industrial Production: Final Products and Noni...
Factor:8 Variance Explained=0.0262

series description
0.5375 TWEXMMTH Nominal Major Currencies U.S. Dollar Index (Go...
0.2309 EXSZUS Swiss Francs to U.S. Dollar Spot Exchange Rate
0.2111 EXUSUK U.S. Dollars to U.K. Pound Sterling Spot Excha...
0.1497 EXJPUS Japanese Yen to U.S. Dollar Spot Exchange Rate
0.1332 SRVPRD All Employees, Service-Providing
0.1199 CES0600000008 Average Hourly Earnings of Production and Nons...
0.1156 ACOGNO Manufacturers' New Orders: Consumer Goods
0.1128 CES3000000008 Average Hourly Earnings of Production and Nons...
0.1104 USGOVT All Employees, Government
0.1010 USTRADE All Employees, Retail Trade
FRED-QD quarterly series:

selected variance explained start end obs series
factors 7 0.4981 19600331 20191231 240 248
Factor:1 Variance Explained=0.2014

series description
0.8382 USPRIV All Employees, Total Private
0.8184 USGOOD All Employees, Goods-Producing
0.8165 OUTMS Manufacturing Sector: Real Sectoral Output for...
0.8124 IPMANSICS Industrial Production: Manufacturing (SIC)
0.8120 PAYEMS All Employees, Total Nonfarm
0.8057 INDPRO Industrial Production: Total Index
0.7758 MANEMP All Employees, Manufacturing

(continues on next page)
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0.7717 HOANBS Nonfarm Business Sector: Hours Worked for All ...
0.7667 DMANEMP All Employees, Durable Goods
0.7651 UNRATE Unemployment Rate
Factor:2 Variance Explained=0.0824

series description
0.4995 AAAFFM Moody's Seasoned Aaa Corporate Bond Minus Fede...
0.4761 T5YFFM 5-Year Treasury Constant Maturity Minus Federa...
0.4622 PERMIT New Privately-Owned Housing Units Authorized i...
0.4404 BUSINV Total Business Inventories
0.4231 HOUST New Privately-Owned Housing Units Started: Tot...
0.4055 PERMITS New Privately-Owned Housing Units Authorized i...
0.3925 S&P div yield S&P's Composite Common Stock: Dividend Yield
0.3849 TCU Capacity Utilization: Total Index
0.3674 CPF3MTB3M 3-Month Commercial Paper Minus 3-Month Treasur...
0.3633 GS10TB3M *** GS10TB3M ***
Factor:3 Variance Explained=0.0727

series description
0.7569 CUSR0000SA0L2 Consumer Price Index for All Urban Consumers: ...
0.7405 CUSR0000SAC Consumer Price Index for All Urban Consumers: ...
0.7368 DGDSRG3Q086SBEA Personal consumption expenditures: Goods (chai...
0.7212 PCECTPI Personal Consumption Expenditures: Chain-type ...
0.7065 CPITRNSL Consumer Price Index for All Urban Consumers: ...
0.6963 DNDGRG3Q086SBEA Personal consumption expenditures: Nondurable ...
0.6798 CUSR0000SA0L5 Consumer Price Index for All Urban Consumers: ...
0.6712 CPIAUCSL Consumer Price Index for All Urban Consumers: ...
0.6472 WPSID61 Producer Price Index by Commodity: Intermediat...
0.6352 CPIULFSL Consumer Price Index for All Urban Consumers: ...
Factor:4 Variance Explained=0.0467

series description
0.4044 IMFSL Institutional Money Market Funds (DISCONTINUED)
0.3457 CES9093000001 All Employees, Local Government
0.3259 CES9092000001 All Employees, State Government
0.2484 EXUSEU U.S. Dollars to Euro Spot Exchange Rate
0.2482 USGOVT All Employees, Government
0.2364 GFDEBTN Federal Debt: Total Public Debt
0.2251 REVOLSL Revolving Consumer Credit Owned and Securitized
0.2202 USSERV All Employees, Other Services
0.2128 COMPRMS Manufacturing Sector: Real Hourly Compensation...
0.2126 NWPI *** NWPI ***
Factor:5 Variance Explained=0.0375

series description
0.3664 OPHMFG Manufacturing Sector: Labor Productivity (Outp...
0.3093 HWI Help Wanted Index for United States
0.2989 NWPI *** NWPI ***
0.2961 AWHMAN Average Weekly Hours of Production and Nonsupe...
0.2703 OPHPBS Business Sector: Labor Productivity (Output pe...
0.2358 OPHNFB Nonfarm Business Sector: Labor Productivity (O...
0.2307 UNRATELT *** UNRATELT ***
0.2189 UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payment...
0.2131 ULCMFG Manufacturing Sector: Unit Labor Costs for All...
0.1989 TLBSNNCBBDI *** TLBSNNCBBDI ***
Factor:6 Variance Explained=0.0303

series description
0.2669 CONSPI Nonrevolving consumer credit to Personal Income
0.2388 ULCBS Business Sector: Unit Labor Costs for All Workers
0.2379 ULCNFB Nonfarm Business Sector: Unit Labor Costs for ...

(continues on next page)
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0.2173 CONSUMER Consumer Loans, All Commercial Banks
0.2016 EXUSEU U.S. Dollars to Euro Spot Exchange Rate
0.1979 AHETPI Average Hourly Earnings of Production and Nons...
0.1865 NONREVSL Nonrevolving Consumer Credit Owned and Securit...
0.1613 TOTALSL Total Consumer Credit Owned and Securitized
0.1453 B020RE1Q156NBEA Shares of gross domestic product: Exports of g...
0.1361 UMCSENT University of Michigan: Consumer Sentiment
Factor:7 Variance Explained=0.0270

series description
0.2663 USEPUINDXM Economic Policy Uncertainty Index for United S...
0.1954 TNWBSHNO Households and Nonprofit Organizations; Net Wo...
0.1889 TABSHNO Households and Nonprofit Organizations; Total ...
0.1872 S&P 500 S&P's Common Stock Price Index: Composite
0.1856 S&P: indust S&P's Common Stock Price Index: Industrials
0.1808 TFAABSHNO Households and Nonprofit Organizations; Total ...
0.1756 NASDAQCOM NASDAQ Composite Index
0.1623 GS10TB3M *** GS10TB3M ***
0.1394 OPHPBS Business Sector: Labor Productivity (Output pe...

# Compute approximate factors from current FRED-MD
data, t = fred_md() # fetch dataframe of current fred-md and transform codes
data.index = pd.to_datetime(data.index, format='%Y%m%d')
transforms = t['transform']
data = pd.concat([alf.transform(data[col], tcode=transforms[col], freq='m')

for col in data.columns], axis=1)

# remove outliers and impute using Bai-Ng approach
r = 8 # fix number of factors = 8
X = remove_outliers(data, method='farout')
X = approximate_factors(X, kmax=r, p=0, verbose=VERBOSE)

FRED-MD vintage: monthly/current.csv

Recover factors as the projections from PCA

# Extract factors from PCA projections on imputed data
y = StandardScaler().fit_transform(X)
pca = PCA(n_components=r).fit(y)
factors = DataFrame(pca.transform(y), index=data.index, columns=range(1, 1+r))

# Plot extracted factors
fig, axes = plt.subplots(nrows=4, ncols=2, figsize=(10, 12), sharex=True, sharey=True)
axes = axes.flatten()
for col, ax in zip(factors.columns, axes):

flip = -np.sign(max(factors[col]) + min(factors[col])) # try match sign
(flip*factors[col]).plot(ax=ax, color=f"C{col}")
for a,b in vspans:

if b >= min(factors.index):
ax.axvspan(max(a, min(factors.index)),

min(b, max(factors.index)),
alpha=0.4,
color='grey')

ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)

(continues on next page)
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ax.legend([f"Factor {col} Estimate", 'NBER Recession'])
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.suptitle(f"Factor Estimates {factors.index[0]:%b-%Y}:"

f"{factors.index[-1]:%b-%Y}", fontsize='x-large')
plt.show()

References:
Bai, Jushan and Ng, Serena, 2002, Determining the Number of Factors in Approximate Factor Models, Econometrica
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of Business & Economic Statistics, 34(4), 574-589.
Michael W. McCracken, Serena Ng, 2020, FRED-QD: A Quarterly Database for Macroeconomic Research.
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CHAPTER

TWELVE

STATE SPACE MODELS

If you want to understand today, you have to search yesterday - Pearl Buck
State space models provide a powerful framework for modeling time series data, particularly when the observed data are
generated by an underlying system of hidden states.
A fundamental example of a state space model is the Hidden Markov Model (HMM), which represents a system
where an unobserved sequence of states follows a Markov process, and each state emits observations according to some
probability distribution.
The Gaussian Mixture Model (GMM) is a probabilistic method that represents data as a combination of multiple
Gaussian distributions, allowing for the estimation of the likelihood of an unknown state.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import seaborn as sns
from hmmlearn import hmm
from sklearn.preprocessing import StandardScaler
from sklearn.mixture import GaussianMixture
from finds.readers import fred_qd, fred_md, Alfred
from finds.recipes import approximate_factors, remove_outliers
from secret import paths, credentials
VERBOSE = 0
# %matplotlib qt

# Load and pre-process time series from FRED
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
vspans = alf.date_spans('USREC') # to indicate recession periods in the plots

# FRED-MD
freq = 'M'
df, t = fred_md() if freq == 'M' else fred_qd()
transforms = t['transform']
data = pd.concat([alf.transform(df[col], tcode=transforms[col], freq=freq)

for col in df.columns],
axis=1)\

.iloc[1:] # apply transforms and drop first row
cols = list(data.columns)

# remove outliers and impute using Bai-Ng approach
r = 8 # fix number of factors = 8

(continues on next page)
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data = remove_outliers(data)
data = approximate_factors(data, kmax=r, p=0, verbose=VERBOSE)

FRED-MD vintage: monthly/current.csv

# standardize inputs
X = StandardScaler().fit_transform(data.values)

12.1 Hidden Markov Model

A Hidden Markov Model (HMM) is a type of multivariate time series model where the system is governed by a set of
unobserved (hidden) states that follow a Markov process. The model is characterized by three key components:

1. Transition probabilities: The likelihood of moving from one state to another (or remaining in the same state),
represented by a transition matrix 𝐴.

2. Emission probabilities: The probability of observing a certain value given a hidden state, denoted as 𝜃.
3. Initial state distribution: A probability vector 𝜋 that defines the starting state of the system.

Thus, an HMM is fully specified by the parameter set 𝜆 = (𝐴, 𝜃, 𝜋). The observed sequence 𝑋 is generated by an
unobserved state sequence 𝑍, making inference about 𝑍 a central problem in HMM applications.
To work with HMMs in Python, we use the hmmlearn package, which provides efficient algorithms for solving the three
fundamental HMM tasks:

• Evaluation: Computing the likelihood of an observation sequence given the model, 𝑃(𝑋|𝜆). This is solved using
the Forward-Backward algorithm, implemented via the .score() method.

• Decoding: Determining the most probable sequence of hidden states 𝑍 given the observations 𝑋. This is accom-
plished using the Viterbi algorithm, accessed through the .predict() method.

• Training: Estimating the model parameters 𝜆 = (𝐴, 𝜃, 𝜋) by maximizing the likelihood of the observed data. This
is done using the Baum-Welch algorithm, a specific case of the Expectation-Maximization (EM) algorithm,
via the .fit() method.

The GaussianHMMmodel in hmmlearn assumes aGaussian distribution for emissions. The covariance_type
parameter controls the structure of the covariance matrix, with the following options (ordered by increasing complexity):

• "spherical": A single variance value is used for all features within each state.
• "diag": Each state has a diagonal covariance matrix, allowing feature-specific variances.
• "tied": A single full covariance matrix is shared across all states.
• "full": Each state has its own full covariance matrix, providing the most flexibility.

To select the optimal model, an information criterion such as the Bayesian Information Criterion (BIC) can be used
to balance model complexity and goodness of fit.

def hmm_summary(markov, X, lengths, matrix=False):
"""Helper to return summary statistics from fitting Hidden Markov Model

Args:
markov: Fitted GaussianHMM
X: Input data of shape (nsamples, nfeatures)

(continues on next page)
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lengths: Lengths of the individual sequences in X, sum is nsamples
matrix: Whether to return the transition and stationary matrices

Returns:
Dictionary of results in {'aic', 'bic', 'parameters', 'NLL'}

"""
logL = markov.score(X, lengths)
T = np.sum(lengths) # n_samples
n = markov.n_features # number of features ~ dim of covariance matrix
m = markov.n_components # number of states
k = dict(diag=m*n, # parms in mean and cov matrix

full=m*n*(n-1)/2,
tied=n*(n-1)/2,
spherical=m)[markov.covariance_type] + markov.n_features

p = m**2 + (k * m) - 1 # number of indepedent parameters of the model

results = {'aic': -2 * logL + (2 * p),
'bic': -2 * logL + (p * np.log(T)),
'parameters': p,
'NLL' : -logL}

if matrix: # whether to return the transition and stationary matrix
matrix = DataFrame(markov.transmat_)\

.rename_axis(columns='Transition Matrix:')
matrix['Stationary'] = markov.get_stationary_distribution()
results.update({'matrix': matrix}) # return matrix as DataFrame

return results

# Compare covariance types in Gaussian HMM models
out = []
for covariance_type in ["full", "diag", "tied", "spherical"]:

for n_components in range(1, 8):
if VERBOSE:

print('=============', covariance_type, n_components, "==========")
markov = hmm.GaussianHMM(n_components=n_components,

covariance_type=covariance_type,
verbose=VERBOSE,
tol=1e-6,
random_state=0,
n_iter=500)\

.fit(X, [X.shape[0]])
result = hmm_summary(markov, data, [X.shape[0]])
#print(n_components, Series(results, name=covariance_type).to_frame().T)
result.update({'cov_type': covariance_type,

'n_components': n_components})
out.append(Series(result))

results = pd.concat(out, axis=1).T.convert_dtypes()

Model is not converging. Current: -48374.028067592284 is not greater than -48374.
↪02806594439. Delta is -1.6478952602483332e-06

Model is not converging. Current: -125173.83118863673 is not greater than -125173.
↪83118797389. Delta is -6.628397386521101e-07

Model is not converging. Current: -123662.93419332648 is not greater than -123662.
↪93417683932. Delta is -1.648715988267213e-05
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# Show best bic's
best_bic = []
for covariance_type in ["full", "diag", "tied", "spherical"]:

result = results[results['cov_type'] == covariance_type]
argmin = np.argmin(result['bic'])
best_bic.append(result.iloc[[argmin]])

best_bic = pd.concat(best_bic, axis=0)
best_type = best_bic.iloc[np.argmin(best_bic['bic'])]['cov_type']
print(f"HMM best bic type: {best_type}")
best_bic.round(0)

HMM best bic type: spherical

aic bic parameters NLL cov_type n_components
0 212991056.0 213028448.0 8001 106487527.0 full 1
12 16508012.0 16532906.0 5327 8248679.0 diag 6
14 212991056.0 213028448.0 8001 106487527.0 tied 1
23 14544672.0 14546518.0 395 7271941.0 spherical 3

# fit model with best_bic
n_components = best_bic[best_bic['cov_type'] == best_type]['n_components']
n_components = int(n_components.iloc[0])
markov = hmm.GaussianHMM(n_components=n_components, covariance_type=best_type,

verbose=False, tol=1e-6, random_state=0, n_iter=100)\
.fit(X, [X.shape[0]])

pred_markov = Series(markov.predict(X),
name='state',
index=pd.to_datetime(data.index, format="%Y%m%d"))

matrix = hmm_summary(markov, X, [X.shape[0]], matrix=True)['matrix']

# Compute average change in INDPRO by state
df = alf('INDPRO', freq=freq, log=1, diff=1)
df.index = pd.DatetimeIndex(df.index.astype(str), freq='infer')
indpro = pd.concat([df, pred_markov], join='inner', axis=1).groupby('state').mean(

↪'INDPRO')

# and HMM transition and stationary probabilities
print("HMM transition and stationary probabilities, and average INDPRO value by state

↪")
matrix.join(indpro).round(4)

HMM transition and stationary probabilities, and average INDPRO value by state

0 1 2 Stationary INDPRO
0 0.6485 0.1775 0.1740 0.1720 -0.0020
1 0.0677 0.8595 0.0728 0.4482 0.0053
2 0.0793 0.0854 0.8352 0.3798 -0.0002

Plot predicted states

def plot_states(modelname, labels, num=1, series_id='INDPRO', freq='M'):
"""helper to plot predicted states 'IPMANSICS'"""

(continues on next page)
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# n_components markers
n_components = len(np.unique(labels))
markers = ["o", "s", "d", "X", "P", "8", "H", "*", "x", "+"][:n_components]

fig, (bx, ax) = plt.subplots(nrows=2, ncols=1, figsize=(10, 6))

# plot series, with states colored
df = alf(series_id, freq=freq)
df.index = pd.DatetimeIndex(df.index.astype(str), freq='infer')
df = df[(df.index >= min(labels.index)) & (df.index <= max(labels.index))]
for i, marker in zip(range(n_components), markers):

df.loc[labels == i].plot(ax=ax, style=marker, markersize=2, color=f"C{i}",␣
↪rot=0)

ax.set_xlabel(f"{series_id}: {alf.header(series_id)}")
ax.set_xlim(left=min(df.index), right=max(df.index))
for a,b in vspans: # shade economic recession periods

if (b > min(df.index)) & (a < max(df.index)):
ax.axvspan(max(a, min(df.index)), min(b, max(df.index)),

alpha=0.3, color='grey')
ax.legend([f"state {i}" for i in range(n_components)], fontsize=8)
ax.set_yscale('log')

s = np.zeros((n_components, len(labels)))
for i, j in enumerate(labels.values.flatten()):

s[j][i] = j + 1
sns.heatmap(s, vmin=0, vmax=n_components, ax=bx, cbar=False, xticklabels=False,

cmap=["lightgrey"] + [f"C{i}" for i in range(n_components)])
bx.set_xlabel('predicted state')
date_str = f" ({str(df.index[0])[:7]} to {str(df.index[-1])[:7]})"
fig.suptitle(f"{modelname.upper()} Predicted States" + date_str)

plt.tight_layout()

plot_states('HMM', pred_markov, num=1, freq=freq)
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12.1.1 Markov Chains

Markov Chains are a fundamental class of state space models where the future state of a system depends only on the
current state and not on past states. Key concepts in Markov Chains include:

• Geometric Runs: The probability distribution of the time until a particular state recurs, which often follows a
geometric distribution.

• Irreducibility: A property of a Markov Chain where it is possible to reach any state from any other state, ensuring
long-run stability in the system.

The Graphviz python package can be used to visualize the states and transition probabilities of a Hidden Markov Model
(HMM), providing a representation of how states evolve over time.

# Visualize HMM transitions and states
from sklearn.preprocessing import minmax_scale
colors = minmax_scale(indpro).flatten()

import graphviz
def fillcolor(r, g, b):

def scale(x):
return int((1 - x) * 256 * .5 + 64)

return f"#{scale(r):02x}{scale(g):02x}{scale(b):02x}"

dot = graphviz.Digraph(engine='circo', graph_attr={'splines': 'true'})
dot.graph_attr['size'] = '10,10'
dot.graph_attr['ratio'] = 'expand'
for i in range(len(matrix)): # Add nodes

dot.node(name=str(i), label=f"{matrix.iloc[i, i]:.03f}",
style='filled', fillcolor=fillcolor(0, colors[i], colors[i]))

for i in range(len(matrix)): # Add edges

(continues on next page)
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for j in range(len(matrix)):
if i != j:

dot.edge(tail_name=str(i), head_name=str(j),
label=f"{matrix.iloc[i, j]:.03f}", color='red')

matrix

Transition Matrix: 0 1 2 Stationary
0 0.648460 0.177506 0.174035 0.171962
1 0.067656 0.859514 0.072830 0.448240
2 0.079320 0.085432 0.835248 0.379799

dot
# dot.format = 'png'
# dot.view(filename='digraph') # Visualize the graph

<graphviz.graphs.Digraph at 0x7f3131652c10>

12.2 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a probabilistic model that assumes that the data is generated from a mixture of
multiple Gaussian distributions. Each component in the mixture represents a different subpopulation within the data. The
following are tje parameters that need to be estimated:

1. Mixing Coefficients (Weights) 𝜋𝑘 –These represent the proportion of each Gaussian component in the overall
mixture and must sum to 1.

2. Mean Vectors 𝜇𝑘 –The center of each Gaussian component in the feature space, indicating where each cluster is
located.

3. Covariance Matrices Σ𝑘 –These define the shape and spread of each Gaussian distribution, determining how data
points are dispersed around the mean.

These parameters are typically estimated using the Expectation-Maximization (EM) algorithm, by iteratively opti-
mizing the likelihood of the observed data.

gmm = GaussianMixture(n_components=n_components,
random_state=0,
covariance_type=best_type).fit(X)

pred_gmm = Series(gmm.predict(X),
name='state',
index=pd.to_datetime(data.index, format="%Y%m%d"))

plot_states('GMM', pred_gmm, num=2, freq=freq)
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12.2.1 Persistance

Persistence in an HMM refers to the likelihood that the system remains in the same hidden state over time rather than
transitioning to a different state. It is determined by the self-transition probabilities on the diagonal of the transition
matrix.
In GMMs, persistence refers to the likelihood of a data point belonging to the same Gaussian component across different
observations. Since GMMs do not model temporal dependencies like HMMs, persistence is inferred from the posterior
probability of a point belonging a particular cluster.

# Compare persistance of HMM and GMM
dist = DataFrame({

'Hidden Markov': ([np.mean(pred_markov[:-1].values == pred_markov[1:].values)]
+ matrix.iloc[:,-1].tolist()),

'Gaussian Mixture': ([np.mean(pred_gmm[:-1].values == pred_gmm[1:].values)]
+ (pred_gmm.value_counts().sort_index()/len(pred_gmm)).

↪tolist())},
index=(['Average persistance of states']

+ [f'Stationary prob of state {s}' for s in range(n_
↪components)]))

print("Compare HMM with GMM:")
dist

Compare HMM with GMM:

Hidden Markov Gaussian Mixture
Average persistance of states 0.820253 0.732911
Stationary prob of state 0 0.171962 0.152971
Stationary prob of state 1 0.448240 0.424779
Stationary prob of state 2 0.379799 0.422250
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THIRTEEN

TERM STRUCTURE OF INTEREST RATES

The best thing about the future is that it comes one day at a time - Abraham Lincoln
The term structure of interest rates describes how interest rates and bond yields vary across different maturities, typically
illustrated using a yield curve. We examine basic concepts such as spot rates, forward rates, par rates, and yield-to-
maturity, along with techniques for modeling the term structure, including yield curve construction, splines, and boot-
strapping. To gain intuitive insights into the dynamics of interest rate movements, we also apply low-rank approximation
methods such as Principal Component Analysis (PCA) and Singular Value Decomposition (SVD).

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import re
from typing import List, Dict
from datetime import datetime
import numpy as np
import numpy.linalg as la
from scipy.interpolate import CubicSpline
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from finds.readers import Alfred
from secret import credentials, paths
VERBOSE = 0
# %matplotlib qt

alf = Alfred(api_key=credentials['fred']['api_key'], convert_date=0, verbose=VERBOSE)

13.1 Interest Rates

The frequency at which interest is compounded determines how an interest rate is measured. For example, an annual
compounding rate assumes interest is compounded once per year, while a semi-annual compounding rate assumes two
compounding periods per year.
The Annualized Percentage Yield (APY) or effective annual yield accounts for the effects of compounding. The
conversion formula is:

𝐴𝑃𝑌 = (1 + 𝑅𝑚
𝑚 )

𝑚
− 1

where 𝑚 represents the number of compounding periods per year.
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To convert an interest rate 𝑅𝑚 with compounding frequency 𝑚 to an equivalent continuously compounded rate 𝑟, we
use the formula:

𝑒𝑟𝑡 = (1 + 𝑅𝑚
𝑚 )

𝑚𝑡

The spot rate for a given maturity is the zero-coupon rate applicable to that period. It is directly related to the discount
factor:

Discount factor = (1 + 𝑅𝑚
𝑚 )

−𝑡

The forward rate is the implied future interest rate derived from observed spot rates. Longer-term spot rates can be
determined by compounding forward rates.
A bond’s yield to maturity (YTM) is the single discount rate that equates the bond’s present value of cash flows to
its market price.
The par rate is the coupon rate at which a bond is issued at par value. A bond priced at par has a yield to maturity equal
to its coupon rate.
The term structure of interest rates represents the relationship between yields and maturities. When plotted, it forms a
yield curve. An upward-sloping curve indicates that forward rates are higher than spot and par rates, while a downward-
sloping curve suggests the opposite.
Swap rates represent fixed interest rates exchanged for floating rates in an interest rate swap and are considered par rates.

# retrieve Constant Maturity Treasuries, excluding inflation-indexed and discontinued
cat = alf.get_category(115) # Fed H.15 Selected Interest Rates
print('Retrieved category:', cat['id'], cat['name'])

Retrieved category: 115 Treasury Constant Maturity

treas = DataFrame.from_dict(
{s['id']: [s['observation_start'], s['frequency'], s['title'].split(',')[0][44:]]
for s in cat['series'] if 'Inflation' not in s['title'] and
'DISCONT' not in s['title'] and s['frequency'] in ['Daily', 'Monthly']},
columns = ['start', 'freq', 'title'],
orient='index').sort_values(['freq', 'start'])

print("Constant Maturity Treasuries in FRED")
pd.set_option('display.max_colwidth', None)
treas

Constant Maturity Treasuries in FRED

start freq title
DGS1 1962-01-02 Daily 1-Year Constant Maturity
DGS10 1962-01-02 Daily 10-Year Constant Maturity
DGS20 1962-01-02 Daily 20-Year Constant Maturity
DGS3 1962-01-02 Daily 3-Year Constant Maturity
DGS5 1962-01-02 Daily 5-Year Constant Maturity
DGS7 1969-07-01 Daily 7-Year Constant Maturity
DGS2 1976-06-01 Daily 2-Year Constant Maturity
DGS30 1977-02-15 Daily 30-Year Constant Maturity
DGS3MO 1981-09-01 Daily 3-Month Constant Maturity
DGS6MO 1981-09-01 Daily 6-Month Constant Maturity

(continues on next page)
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DGS1MO 2001-07-31 Daily 1-Month Constant Maturity
GS1 1953-04-01 Monthly 1-Year Constant Maturity
GS10 1953-04-01 Monthly 10-Year Constant Maturity
GS20 1953-04-01 Monthly 20-Year Constant Maturity
GS3 1953-04-01 Monthly 3-Year Constant Maturity
GS5 1953-04-01 Monthly 5-Year Constant Maturity
GS7 1969-07-01 Monthly 7-Year Constant Maturity
GS2 1976-06-01 Monthly 2-Year Constant Maturity
GS30 1977-02-01 Monthly 30-Year Constant Maturity
GS3M 1981-09-01 Monthly 3-Month Constant Maturity
GS6M 1981-09-01 Monthly 6-Month Constant Maturity
GS1M 2001-07-01 Monthly 1-Month Constant Maturity

# infer maturity from label
daily = pd.concat([alf(s, freq='D')

for s in treas.index if treas.loc[s, 'freq']=='Daily'],
axis=1, join='outer')

daily.columns = [int(re.sub('\D', '', col)) * (1 if col[-1].isalpha() else 12) # MO␣
↪or M

for col in daily.columns] # infer maturity in months from label
daily = daily.rename_axis(columns='maturity').sort_index(axis=1)
daily

maturity 1 3 6 12 24 36 60 84 120 240 360
date
1962-01-02 NaN NaN NaN 3.22 NaN 3.70 3.88 NaN 4.06 4.07 NaN
1962-01-03 NaN NaN NaN 3.24 NaN 3.70 3.87 NaN 4.03 4.07 NaN
1962-01-04 NaN NaN NaN 3.24 NaN 3.69 3.86 NaN 3.99 4.06 NaN
1962-01-05 NaN NaN NaN 3.26 NaN 3.71 3.89 NaN 4.02 4.07 NaN
1962-01-08 NaN NaN NaN 3.31 NaN 3.71 3.91 NaN 4.03 4.08 NaN
... ... ... ... ... ... ... ... ... ... ... ...
2025-02-21 4.36 4.32 4.30 4.15 4.19 4.19 4.26 4.35 4.42 4.69 4.67
2025-02-24 4.36 4.31 4.30 4.15 4.13 4.17 4.23 4.32 4.40 4.69 4.66
2025-02-25 4.34 4.30 4.28 4.12 4.07 4.08 4.12 4.21 4.30 4.59 4.55
2025-02-26 4.35 4.31 4.28 4.12 4.05 4.04 4.06 4.16 4.25 4.55 4.51
2025-02-27 4.38 4.32 4.28 4.13 4.07 4.05 4.09 4.19 4.29 4.59 4.56

[15774 rows x 11 columns]

monthly = pd.concat([alf(s, freq='M')
for s in treas.index if treas.loc[s, 'freq']=='Monthly'],

axis=1, join='outer')
monthly.columns = [int(re.sub('\D', '', col)) * (1 if col[-1].isalpha() else 12) #␣

↪MO or M
for col in monthly.columns] # infer maturity in months from label

monthly = monthly.rename_axis(columns='maturity').sort_index(axis=1)
monthly

maturity 1 3 6 12 24 36 60 84 120 240 360
date
1953-04-30 NaN NaN NaN 2.36 NaN 2.51 2.62 NaN 2.83 3.08 NaN
1953-05-31 NaN NaN NaN 2.48 NaN 2.72 2.87 NaN 3.05 3.18 NaN
1953-06-30 NaN NaN NaN 2.45 NaN 2.74 2.94 NaN 3.11 3.21 NaN

(continues on next page)
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1953-07-31 NaN NaN NaN 2.38 NaN 2.62 2.75 NaN 2.93 3.12 NaN
1953-08-31 NaN NaN NaN 2.28 NaN 2.58 2.80 NaN 2.95 3.10 NaN
... ... ... ... ... ... ... ... ... ... ... ...
2024-09-30 5.06 4.92 4.55 4.03 3.62 3.51 3.50 3.60 3.72 4.10 4.04
2024-10-31 4.92 4.72 4.44 4.20 3.97 3.90 3.91 3.99 4.10 4.44 4.38
2024-11-30 4.71 4.62 4.43 4.33 4.26 4.21 4.23 4.29 4.36 4.63 4.54
2024-12-31 4.50 4.39 4.32 4.23 4.23 4.22 4.25 4.32 4.39 4.66 4.58
2025-01-31 4.42 4.34 4.26 4.18 4.27 4.33 4.43 4.53 4.63 4.92 4.85

[862 rows x 11 columns]

# mapper to display maturity months as labels
mapper = lambda month: f"{month}-Month" if month < 12 else f"{int(month/12)}-Year"

cols = [3, 24, 120, 360]
fig, ax = plt.subplots(figsize=(10, 6))
daily[cols].rename(columns=mapper).plot(ax=ax, rot=0)
plt.title('Daily Constant Maturity Treasury Rates')
plt.ylabel('par yield')
plt.tight_layout()

cols = [12, 60, 120, 240]
fig, ax = plt.subplots(figsize=(10, 6))
monthly[cols].rename(columns=mapper).plot(ax=ax, rot=0)
plt.title('Monthly Constant Maturity Treasury Rates')
plt.ylabel('par yield')
plt.tight_layout()
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13.2 Yield Curve

The U.S. Treasury’s official yield curve is a par yield curve constructed using a monotone convex method. This curve is
based on indicative bid-side price quotations collected by the Federal Reserve Bank of New York at approximately 3:30
PM each trading day.
Historically, the Treasury used a quasi-cubic Hermite spline (HS) method to construct the yield curve. This approach
interpolated yields directly from observed market data under the assumption that the resulting curve was a par yield
curve. However, since December 6, 2021, the monotone convex method has been the standard.
Constant Maturity Treasury (CMT) yields are derived from the Treasury’s par yield curve and represent bond-
equivalent yields for semiannual interest-paying securities. These yields are expressed on a simple annualized basis rather
than an effective annual yield (APY) basis, which incorporates compounding effects. To convert a CMT yield to APY,
use:

𝐴𝑃𝑌 = (1 + 𝑦
2)

2
− 1

13.2.1 Splines

Spline interpolation is used to estimate yields at maturities not directly observed in the market. A piecewise cubic
polynomial ensures smooth transitions between maturities and maintains twice continuous differentiability.

yield_curve = dict()
curve_dates = sorted(daily.dropna().index[-1:0:-(5*252)])
for date in curve_dates:

yield_curve[date] = CubicSpline(
x=daily.columns.to_list(), y=daily.loc[date].values, bc_type='clamped')
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# Plot historical yield curves
fig, ax = plt.subplots(figsize=(10, 6))
X = list(range(1, 361))
for col, (date, curve) in enumerate(yield_curve.items()):

ax.plot(X, curve(X), label=date.strftime('%Y-%m-%d'), color=f"C{col}")
plt.legend()
for col, (date, curve) in enumerate(yield_curve.items()):

daily.loc[date].plot(ax=ax, marker='o', ls='', color=f"C{col}", label=None)
plt.title('Interpolated Treasury Yield Curves')
plt.xlabel('Maturity (months)')
plt.tight_layout()

13.2.2 Bootstrap Method

Bootstrapping is a process used to derive spot rates by progressively solving for zero-coupon rates using available bond
data. This iterative approach fits spot rates to increasingly longer maturities.

# To bootstrap 6-month spot rates from 6-month par yields
m = 2 # compounding periods per year

# list of 6-monthly maturities
maturities = list(range(int(12/m), daily.columns[-1]+1, int(12/m)))

# Helper to bootstrap spot rates from par yield curve
def bootstrap_spot(coupon: float, spots: List[float], m: int, price: float=1) ->␣

↪float:
"""Compute spot rate to maturity of par bond from yield and sequence of spots

(continues on next page)
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Args:
coupon : Annual coupon rate
spots : Simple annual spot rates each period (excluding last period before␣

↪maturity
m : Number of compounding periods per year
price: Present value of bond

Returns:
Simple spot interest rate till maturity

"""
if not spots: # trivial one-period bond

return coupon / price
n = len(spots) + 1 # number of coupons through maturity

# discount factors from given spot rates
discount = [(1 + spot/m)**(-(1+t)) for t, spot in enumerate(spots)]

# nominal amount of last payment
last_payment = 1 + coupon/m

# infer present value of last coupon and principal
last_pv = price - np.sum(discount) * coupon/m

# compute discount factor and annualize the effective rate
spot = ((last_payment/last_pv)**(1/n) - 1) * m
return spot

# select most recent yield curve
curve_date = curve_dates[-1]
yields = [yield_curve[curve_date](t) / 100 for t in maturities]
spots = []
for coupon in yields:

spots.append(bootstrap_spot(coupon=coupon, spots=spots, m=m))
DataFrame({curve_date.strftime('%Y-%m%d'): spots}, index=maturities).head()

2025-0227
6 0.042800
12 0.041285
18 0.040591
24 0.040684
30 0.040639

Helper to compute bond prices

def bond_price(coupon: float, n: int, m: int, yields: float | List[float],
par: float = 1) -> float:

"""Compute present value of bond given spot rates or yield-to-maturity

Args:
coupon : Annual coupon rate
n : Number of remaining coupons
m : Number of compounding periods per year
yields : Simple annual yield-to-maturity or spot rates each period
par : face or par value of bond

(continues on next page)
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Returns:
Present value of bond

"""
if not pd.api.types.is_list_like(yields):

yields = [yields] * n # same yield-to-maturity is spot rate every␣
↪period

assert len(yields) == n, "Number of yields must equal number of couponds"
pv = [(1 + yields[t-1]/m)**(-t) * (coupon/m + (par if t == n else 0))

for t in range(1, n+1)] # discount every period's payment, plus last face
return np.sum(pv)

# Sanity-check par bond price given spots
for t in range(len(yields)):

price = bond_price(coupon=yields[t], n=t+1, m=2, yields=spots[:(t+1)])
assert np.allclose(price, 1.0) # discounted payments at spot rates must equal␣

↪price

# Compute forward rates from spot rates
def forwards_from_spots(spots: List[float], m: int, skip: int=0) -> List[float]:

"""Compute forward rates given spot rates

Args:
spots : Sequence of simple annual spot rates
m : Number of compounding periods per year
skip: Number of initial periods skipped

Returns:
List of forward rates, excluding first period of spot rates input

"""
result = []
assert len(spots) >= 2, "Require at least two spot rates as input"
for t in range(1, len(spots)):

n = skip + t
numerator = (1 + spots[n]/m)**n # discounted value of period n
denominator = (1 + spots[n-1]/m)**(n-1) # discounter value of period n-1
result.append(((numerator / denominator) - 1) * m)

return result

forwards = [spots[0]] + forwards_from_spots(spots=spots, m=m)

Plot current yield curve

fig, ax = plt.subplots(figsize=(10, 6))
(daily.loc[curve_date] / 100).plot(marker='*', ls='', color="C0")
X = range(1, maturities[-1]+1)
ax.plot(X, [yield_curve[curve_date](t) / 100 for t in X], marker='', ls='-', color="C0

↪")
ax.plot(maturities, spots, marker='', ls='-', color="C1")
ax.plot(maturities, forwards, marker='', ls='-', color="C2")
plt.legend(['CMT Constant Maturity Yields', 'Cubic Spline Interpolation',

'Spot Rates (computed 6-monthly)', 'Forward Rates (computed 6-monthly)'])
plt.title(f"Yield Curve on {curve_date.strftime('%Y%m%d')}")
plt.xlabel('Maturity (months')

(continues on next page)
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plt.tight_layout()

There are more sophisticated methods for fitting yield curves to treasuries prices, such as this model by Liu and Wu (2021)

# Download reconstructed yield curve data by Liu and Wu (2021)
# file_id from https://sites.google.com/view/jingcynthiawu/yield-data
file_id = '1-wmStGZHLx55dSYi3gQK2vb3F8dMw_Nb' # monthly
#file_id = '11HsxLl_u2tBNt3FyN5iXGsIKLwxvVz7t' # daily
src = "https://drive.google.com/uc?export=download&id={}".format(file_id) # to load␣

↪from gdrive
df = pd.ExcelFile(src).parse()
dates = np.where(df.iloc[:, 0].astype(str).str[0].str.isdigit())[0] # locate first␣

↪date cell

liuwu = DataFrame(np.exp(df.iloc[dates,1:361].astype(float).values/100) - 1,
index=(pd.to_datetime(df.iloc[dates, 0], format="%Y%m")

+ pd.offsets.MonthEnd(1)),
columns=np.arange(1, 361))

# Plot historical reconstructed rates as 3D surface
from mpl_toolkits.mplot3d import Axes3D
r = liuwu.dropna()
X, Y = np.meshgrid(r.index.map(lambda x: float(str(x)[:4]) + float(str(x)[5:7])/12),

r.columns.astype(float)/12)
#X, Y = np.meshgrid((r.index//10000) + ((((r.index//100)%100)-1)/12),
# r.columns.astype(float)/12)
Z = r.T.to_numpy()*100
fig = plt.figure(num=1, clear=True, figsize=(10, 8))
ax = plt.axes(projection='3d')

(continues on next page)
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f = ax.plot_surface(X, Y, Z, cmap='coolwarm', linewidth=0, antialiased=True)
ax.set_title('Reconstructed Treasury Interest Rates [Liu and Wu (2020)]')
ax.set_xlabel('date')
ax.set_ylabel('maturity (years)')
ax.set_zlabel('annual yield (%)')
fig.colorbar(f, shrink=0.5, aspect=5)
plt.tight_layout()

# Plot historical Yield Curves
curve_dates = sorted(liuwu.index[-1:0:-(7*12)])[-4:]
for date in curve_dates:

yield_curve[date] = CubicSpline(
x=monthly.columns.to_list(), y=monthly.loc[date].values, bc_type='clamped')

fig, axes = plt.subplots(2,2, figsize=(12, 8), sharey=True, sharex=True)
axes = axes.flatten()
for num, (curve_date, ax) in enumerate(zip(curve_dates, axes)):

# fit yields
yields = [yield_curve[curve_date](t) / 100 for t in maturities]

(continues on next page)
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# compute spots
spots = []
for coupon in yields:

spots.append(bootstrap_spot(coupon=coupon, spots=spots, m=m))

# compute forwards
forwards = [spots[0]] + forwards_from_spots(spots=spots, m=m)

# plot
(monthly.loc[curve_date] / 100).plot(marker='*', ls='', color="C0", ax=ax) # CMT␣

↪yield
X = range(1, maturities[-1]+1)
ax.plot(X, [yield_curve[curve_date](t) / 100 for t in X], marker='', ls='-',␣

↪color="C0")
ax.plot(maturities, spots, marker='', ls='-', color="C1")
ax.plot(maturities, forwards, marker='', ls='-', color="C2")
liuwu.loc[curve_date].plot(ax=ax, marker='', ls=':', color="C3") # Liu and Wu
ax.set_title(f"{curve_date.strftime('%Y-%m-%d')}")
ax.set_xlabel('Maturity (months)')
if not num:

ax.legend(['CMT Constant Maturity Yields', 'Cubic Spline Interpolation',
'Spot Rates (computed 6-monthly)', 'Forward Rates (computed 6-

↪monthly)',
'Reconstructed Yield Curve: Liu and Wu(2021)'])

plt.tight_layout()
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13.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA), also referred to as eigendecomposition, involves rotating the data space so that
each axis captures the maximum variance. We apply PCA to identify the key factors influencing daily interest rate in
Constant Maturity Treasury (CMT) rates.
The number of factors in PCA equals the number of interest rate maturities analyzed. The first principal component
accounts for 84% of daily yield variance, while the first two components explain almost 99%. The first three components
together account for approximately 99.9%, meaning most of the uncertainty in yield changes can be attributed to these
factors.

X = daily.dropna()
Y = StandardScaler().fit_transform(X)
pca = PCA().fit(Y)
DataFrame({'Cumulative Variance Explained': pca.explained_variance_ratio_.cumsum()},

index=[f"PC {c+1}" for c in range(pca.n_components_)])

Cumulative Variance Explained
PC 1 0.841980
PC 2 0.986916
PC 3 0.997595
PC 4 0.998925
PC 5 0.999401
PC 6 0.999727
PC 7 0.999866
PC 8 0.999929
PC 9 0.999965
PC 10 0.999986
PC 11 1.000000

# Scree plot
scree = Series(pca.explained_variance_ratio_,

index=np.arange(1, Y.shape[1] + 1))
fig, ax = plt.subplots(figsize=(10, 6))
scree[:10].plot(kind='bar', rot=0, width=.8, ax=ax)
ax.set_title('Scree Plot: PCA of Daily Treasury Yields')
ax.set_ylabel("Percent Variance Explained")
ax.set_xlabel("Principal Component")
plt.tight_layout()
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# Factor Loadings
Z = pca.components_[:3, :].T * pca.singular_values_[:3].reshape(1, 3)
loadings = DataFrame(Z, columns=[f"Factor {n+1}" for n in range(3)], index=X.columns/

↪12)
fig, ax = plt.subplots(figsize=(10, 6))
loadings.plot(ax=ax)
ax.set_title(f"Most Important Factors Driving Treasury Yields"

f" ({str(X.index[0])[:7]} to {str(X.index[-1])[:7]})")
ax.set_xlabel('Maturity (years)')
ax.set_ylabel('Factor Loading')

Text(0, 0.5, 'Factor Loading')
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Key Factors Affecting Treasury Yields
1. Level Factor –Represents a parallel shift in yields across all maturities.
2. Slope Factor –Indicates changes in the steepness of the yield curve, where short-term and long-term rates move

in opposite directions.
3. Twist Factor –Describes changes in the curvature of the yield curve, where intermediate rates move differently

from short- and long-term rates.

13.4 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a factorization method that decomposes a matrix into three components:

𝐴 = 𝑈𝑆𝑉 𝑇

where:
• 𝑈 and 𝑉 are orthogonal matrices representing rotations.
• 𝑆 is a diagonal matrix containing singular values (scaling factors).

SVD generalizes eigenvalue decomposition:

𝐴𝑇 𝐴 = 𝑉 Λ𝑉 𝑇

where Λ contains the eigenvalues.
A goal of both PCA and SVD is to approximate the original data matrix with a lower-dimensional presentation, with the
most important eigen- and singular vectors associated with the largest eigenvalues and singular values respectively.

• Eigenvalues (𝜆) in PCA correspond to squared singular values in SVD.
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• Principal components (columns of 𝑉 ) are the eigenvectors or right singular vectors.
• Loadings are obtained by multiplying each principal component by its corresponding singular value.
• Projections (scores) are computed by projecting data onto the principal components.

# A is num_samples (N) by num_features (K) data matrix, standardized by column
A = daily.dropna().values
A = (A - A.mean(axis=0)) / A.std(axis=0) # subtract mean, divide by std
N, K = A.shape
A.shape

(5896, 11)

# svd x is related to pca of x'x
u, s, vT = np.linalg.svd(A, full_matrices=False)
v = vT.T # transposed right singular vector was returned

The eigenvalues (𝜆) of PCA
• can be retrieved as (N-1) times pca.explained_variance_
• are equal to the squares of the singular values (𝑠 from SVD)

# s**2 = lambda = N * explained_variance
assert np.allclose((N-1) * pca.explained_variance_, s**2), 'eigenvalues values'
assert np.allclose(pca.singular_values_, s), "singular values"

The components (columns of 𝑉 ) of an eigendecomposition
• are also called the eigenvectors, or right singular vectors from the SVD
• can be retrieved from the rows of pca.components_, or
• are the rows of 𝑉 𝑇 (identically, the columns of 𝑉 from SVD)

Relatedly:
• loadings are computed by multiplying each component by its corresponding singular value 𝑣 ⋅ 𝑠

# components and right singular vectors are identical up to sign flip
for pc in range(K):

assert (np.allclose(vT[pc, :], pca.components_[pc, :]) or
np.allclose(vT[pc, :], -pca.components_[pc, :]))

# square of loadings is same as square of data matrix, i.e. the covariance matrix
loadings = np.diag(pca.singular_values_) @ pca.components_
assert np.allclose(A.T @ A, loadings.T @ loadings), 'square matrix'

The projections of PCA
• are also known as the scores or co-ordinates
• are computed by projecting the data matrix on the components 𝐴 ⋅ 𝑉
• or by scaling each left singular vector by its corresponding singular value 𝑢 ⋅ 𝑠
• can be retrieved by calling pca.transform() on the data matrix
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# assert: x @ v == transform(x) (aka projection on components)
y = pca.transform(A)
for pc in range(K):

assert np.allclose((A@v)[:,pc], -y[:,pc]) or np.allclose((A@v)[:,pc], y[:,pc])
assert np.allclose(u[:,pc]*s[pc], -y[:,pc]) or np.allclose(u[:,pc]*s[pc], y[:,pc])

13.5 Low-Rank Approximations

PCA and SVD allow approximating the original data matrix with a lower-dimensional representation. A rank-k approx-
imation is a technique find a matrix 𝐴𝑘 with lower rank 𝑘 that is as close as possible to the original matrix 𝐴 in terms of
some measure, typically the Frobenius norm. This approximation reduces the complexity of the data while retaining its
most important features.

13.5.1 Low-rank approximation by PCA

𝐴 ≈ 𝐴′
𝑘𝐴𝑘 = 𝑉[∶𝑘]𝐷[∶𝑘]𝑉 ′

[∶𝑘]

ATA = A.T.dot(A)
eigval, eigvec = (N-1)*pca.explained_variance_, pca.components_.T
assert np.allclose(eigvec.dot(np.diag(eigval)).dot(eigvec.T), ATA), "pca error"

print('rank-K PCA approximation:')
DataFrame.from_dict({k: (la.norm(

eigvec[:, :k].dot(np.diag(eigval[:k])).dot(eigvec[:, :k].T) - ATA)/la.norm(ATA))
for k in range(1, 5)}, orient='index', columns=['Frobenius Norm'])\
.rename_axis(index='K')

rank-K PCA approximation:

Frobenius Norm
K
1 0.170097
2 0.012614
3 0.001707
4 0.000700

13.5.2 Low-rank approximation by SVD

𝐴 ≈ 𝐴𝑘 = 𝑈[∶𝑘]𝑆[∶𝑘]𝑉 ′
[∶𝑘]

assert np.allclose(u.dot(np.diag(s)).dot(v.T), A), "svd error"

print('rank-K SVD approximation:')
DataFrame.from_dict({k: la.norm(

u[:, :k].dot(np.diag(s[:k])).dot(v[:, :k].T) - A) / la.norm(A)
for k in range(1, 5)}, orient='index', columns=['Frobenius Norm'])\
.rename_axis(index='K')

250 Chapter 13. Term Structure of Interest Rates



Financial Data Science Python Notebooks

rank-K SVD approximation:

Frobenius Norm
K
1 0.397517
2 0.114383
3 0.049039
4 0.032781

References:
FRM Part 1 Exam Book Valuation and Risk Models, Chapter 12-13
Yan Liu and Jing Cynthia Wu “Reconstructing the Yield Curve”, Journal of Financial Economics, 2021, 142 (3),
1395-1425.
https://home.treasury.gov/policy-issues/financing-the-government/interest-rate-statistics/
treasury-yield-curve-methodology
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CHAPTER

FOURTEEN

INTEREST RATE RISK

The essence of investment management is the management of risks, not the management of returns - Benjamin Graham
Changes in interest rates directly affect the value of bonds and fixed-income portfolios. Various measures of interest rate
sensitivity, such as duration, convexity, DV01, and key rate shifts help quantify how bond prices respond to fluctations in
the yield curve. Additionally, we explore the statistical approach to identifying key risk factors that explain interest rate
movements.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from typing import List
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
import statsmodels.formula.api as smf
from finds.readers import Alfred
from finds.recipes import bond_price
from secret import credentials
# %matplotlib qt
VERBOSE = 0

14.1 Interest rate sensitivity

14.1.1 Duration

Duration, or Macaulay Duration, measures how a bond’s price 𝑃 changes in response to an instantaneous change in
its yield 𝑦.
Consider a bond with price 𝑃 and yield 𝑦. To simplify the duration formula, we first express the yield using continuous
compounding. The bond’s price is given by:

𝑃 =
𝑛

∑
𝑡=1

𝑐𝑡𝑒−𝑦𝑡

Differentiating this equation, we obtain:

Δ𝑃 = −
𝑛

∑
𝑡=1

𝑐𝑡𝑡𝑒−𝑦𝑡Δ𝑦
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Yield-based duration is defined as the proportional change in bond price for a small change in yield:

𝐷 = Δ𝑃
𝑃Δ𝑦 =

𝑛
∑
𝑡=1

𝑡 𝑐𝑡𝑒−𝑦𝑡

𝑃

This formulation provides an alternative interpretation of duration: it represents the weighted average time at which cash
flows are received, with each time weighted by the proportion of the bond’s total value received at that time. This
explains why the term “duration”is used to describe sensitivity to yield changes—duration effectively measures how
long an investor must wait to receive the bond’s cash flows.
Modified duration accounts for different compounding conventions. If yields are measured with semi-annual com-
pounding instead of continuous compounding, Macaulay duration must be adjusted by dividing by (1 + 𝑦2/2) (or
1 + 𝑦𝑚/𝑚 for 𝑚-thly compounding).
Effective duration, on the other hand, measures the percentage change in the price of a bond with embedded options
due to a small shift in all interest rates.

14.1.2 DV01

DV01 (Dollar Value of a 01) quantifies the impact of a one-basis-point change in interest rates on a bond or portfolio’s
value. It is given by:

𝐷𝑉 01 = −Δ𝑃
Δ𝑟

where Δ𝑟 represents a small parallel shift in the interest rate term structure (expressed in basis points).

14.1.3 Convexity

Duration and convexity appear as the first two terms in a Taylor expansion of a bond’s price with respect to interest rates.
While duration provides a linear estimate of price sensitivity, convexity measures the curvature of the bond price-yield
relationship, refining estimates for larger rate movements.
Convexity accounts for the fact that bond price changes are not perfectly linear with respect to interest rate movements.
Yield-based convexity, when yields are expressed with continuous compounding, is given by:

𝐶 = 1
𝑃

1
(1 + 𝑟/𝑚)2

𝑇
∑
𝑡=1

(𝑡/2𝑚 + (𝑡/𝑚)2) 𝐶𝑡
(1 + 𝑟/𝑚)𝑡

This formula represents a weighted average of the squared time to maturity. When yields are expressed with semi-annual
compounding, these expressions must be divided by (1 + 𝑦2/2)2 (or (1 + 𝑦𝑚/𝑚)2 for 𝑚-thly compounding), and the
result is known as modified convexity.
Effective convexity measures how duration itself changes in response to interest rate shifts and is calculated as:

𝐶 = 1
𝑃 [𝑃

+ + 𝑃− − 2𝑃
(Δ𝑟)2 ]

# Helpers to calculate duration and convexity
def macaulay_duration(coupon: float, n: int, m: int, price: float,

yields: float | List[float], par: float = 1, **kwargs) -> float:
"""Compute macaulay duration of a bond given spot rates or yield-to-maturity

Args:
coupon : Annual coupon rate

(continues on next page)
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(continued from previous page)

n : Number of remaining coupons
m : Number of compounding periods per year
price : current market price of bond
yields : Simple annual yield-to-maturity or spot rates each period
par : face or par value of bond

Returns:
Macaulay duration

"""
if not pd.api.types.is_list_like(yields):

yields = [yields] * n # same spot rate every period
assert len(yields) == n, "Number of spot rates must equal number of couponds"
pv = [(1 + yields[t-1]/m)**(-t) * (t/m) * (coupon/m + par*(t == n))

for t in range(1, n+1)] # discount every period's time-weighted payment
return np.sum(pv) / price

def modified_duration(coupon: float, n: int, m: int, price: float,
yields: float | List[float], par: float = 1, **kwargs) -> float:

"""Compute modified duration of a bond given spot rates or yield-to-maturity

Args:
coupon : Annual coupon rate
n : Number of remaining coupons
m : Number of compounding periods per year
price : current market price of bond
yields : Simple annual yield-to-maturity or spot rates each period
par : face or par value of bond

Returns:
Modified duration

"""
assert not pd.api.types.is_list_like(yields), "Not Implemented"
ytm = yields
return (macaulay_duration(coupon=coupon, n=n, m=m, price=price, yields=yields,␣

↪par=par)
/ (1 + ytm/2))

def modified_convexity(coupon: float, n: int, m: int, price: float,
yields: float | List[float], par: float = 1, **kwargs) ->␣

↪float:
"""Compute mocified convexity of a bond given spot rates or yield-to-maturity

Args:
coupon : Annual coupon rate
n : Number of remaining coupons
m : Number of compounding periods per year
price : current market price of bond
yields : Simple annual yield-to-maturity or spot rates each period
par : face or par value of bond

Returns:
Modified convexity

"""
assert not pd.api.types.is_list_like(yields), "Not Implemented"
ytm = yields

(continues on next page)
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if not pd.api.types.is_list_like(yields):
yields = [yields] * n # same spot rate every period

assert len(yields) == n, "Number of spot rates must equal number of coupons"
pv = [(1 + yields[t-1]/m)**(-t) * ((t/m)**2 + t/(2*m)) * (coupon/m + par*(t == n))

for t in range(1, n+1)] # discount every period's time-weighted payment
return np.sum(pv) / (price * (1 + ytm/m)**2)

14.1.4 Barbells and bullets

Positive convexity benefits bondholders when there is a parallel shift in interest rates. Consider two fixed-income strate-
gies:

• A barbell strategy, which consists of holding short- and long-maturity bonds
• A bullet strategy, which focuses on medium-term bonds

Both strategies may have the same yield (4%) and duration (8.1758), but the barbell strategy typically outperforms when
interest rates shift in parallel. This creates an arbitrage opportunity:

1. Invest a given USD amount in the barbell strategy
2. Short the same USD amount in the bullet strategy

If term structure shifts were always parallel, this approach would be consistently profitable.

# Compute prices, duration and convexity for 3 bonds (FRM Valuation and Risk Models␣
↪12.7)

bond5Y = dict(coupon=2, m=2, n=2*5, par=100, yields=0.04)
bond10Y = dict(coupon=4, m=2, n=2*10, par=100, yields=0.04)
bond20Y = dict(coupon=6, m=2, n=2*20, par=100, yields=0.04)
for bond in [bond5Y, bond10Y, bond20Y]:

bond |= dict(price=bond_price(**bond))
bond |= dict(duration=modified_duration(**bond))
bond |= dict(convexity=modified_convexity(**bond))

bonds = DataFrame.from_dict(
{f"{b['n']/b['m']:.0f}-year, {b['coupon']}% coupon": [

b['price'], b['duration'], b['convexity']]
for b in [bond5Y, bond10Y, bond20Y]},
orient='index',
columns=['Value', 'Effective Duration', 'Effective Convexity'])

print("Table 12.4 Effective Durations and Convexities of Three Bonds")
bonds.round(4)

Table 12.4 Effective Durations and Convexities of Three Bonds

Value Effective Duration Effective Convexity
5-year, 2% coupon 91.0174 4.6764 24.8208
10-year, 4% coupon 100.0000 8.1757 78.8979
20-year, 6% coupon 127.3555 12.6233 212.4587

# Compute 5Y and 20Y weights of barbell portfolio, with same duration as bullet 10Y
barbell = ((bond10Y['duration'] - bond20Y['duration']) /

(continues on next page)

256 Chapter 14. Interest Rate Risk



Financial Data Science Python Notebooks

(continued from previous page)

(bond5Y['duration'] - bond20Y['duration']))
print(f"Barbell: weight in 5Y = {barbell:.4f}, weight in 20Y = {1-barbell:.4f}")

Barbell: weight in 5Y = 0.5597, weight in 20Y = 0.4403

# Compare durations and convexities
DataFrame.from_dict(dict(Bullet=np.array([0,1,0]).dot(bonds),

Barbell=np.array([barbell, 0, 1-barbell]).dot(bonds)),
orient='index', columns=bonds.columns)\
[['Effective Duration', 'Effective Convexity']]

Effective Duration Effective Convexity
Bullet 8.175717 78.897925
Barbell 8.175717 107.444902

14.1.5 Key rate shifts

Consider three key spot rates: the two-year, five-year, and ten-year rates. Each influences rates in its surrounding maturity
range, and together, their combined movements contribute to an overall one-basis-point shift in the yield curve.
These shifts, known as key rate shifts, allow for a more detailed decomposition of DV01. The impact of these shifts is
captured by partial 01s or key rate 01s (KR01s), defined as follows:

• KR01₁: The reduction in portfolio value from a one-basis-point increase in the two-year spot rate
• KR01₂: The reduction in portfolio value from a one-basis-point increase in the five-year spot rate
• KR01₃: The reduction in portfolio value from a one-basis-point increase in the ten-year spot rate

Since these shifts sum to the overall DV01, we have:

𝐷𝑉 01 = 𝐾𝑅011 + 𝐾𝑅012 + 𝐾𝑅013

By analyzing these key rate sensitivities, investors can better estimate portfolio values under various term structure move-
ments and hedge against specific interest rate risks.

KR = [2, 5, 10]
DV01 = dict()
for maturity in np.arange(0, 15, 0.5):

if maturity <= KR[0]:
changes = [1, 0, 0]

elif maturity >= KR[2]:
changes = [0, 0, 1]

elif maturity < KR[1]:
diff = (maturity - KR[0])/(KR[1] - KR[0])
changes = [1 - diff, diff, 0]

else:
diff = (KR[2] - maturity)/(KR[2] - KR[1])
changes = [0, diff, 1-diff]

DV01[maturity] = changes
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fig, ax = plt.subplots(figsize=(10, 6))
DataFrame.from_dict(DV01, orient='index', columns=[f"{y}Y-rate" for y in KR])\

.plot(ax=ax)
ax.legend()
ax.set_title('Changes in all rates when key rate is increased by one basis point')
ax.set_ylabel('Rate increase (bp)')
ax.set_xlabel('Maturity (years)')
ax.set_ylim(top=2)
plt.tight_layout()

14.2 Risk factors

We examine the risk factors which drive the daily returns of the Merrill Lynch Total Bond Indexes.

alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)

# get Merrill Lynch bond indexes
freq = 'D' # periodicity 'M' or 'D'
cat = alf.get_category(32413)
print(cat['id'], cat['name'])

32413 BofA Merrill Lynch Total Bond Return Index Values

# get bond index returns
bonds = [] # to accumulate bond returns
for s in cat['series']:

(continues on next page)
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bonds.append(alf(s['id'], start=19961231, freq=freq) )
bonds_df = pd.concat(bonds, axis=1).sort_index()

# show blocks of data availability
counts = bonds_df.notna().sum(axis=1).rename('count')
counts = pd.concat([counts, (counts != counts.shift()).cumsum().rename('notna')],␣

↪axis=1)
counts = counts.reset_index().groupby(['notna', 'count'])['date'].agg(['first','last

↪'])
counts

first last
notna count
1 15 19961231 19971230
2 16 19971231 19981230
3 33 19981231 20031230
4 48 20031231 20181108
5 46 20181109 20181109
6 48 20181112 20250228

Choose start date with good data availability

start_date = 19981231
rets = bonds_df.loc[bonds_df.index >= start_date,

bonds_df.loc[start_date].notna().values].iloc[:-1]
rets = pd.concat([alf.transform(rets[col], log=1, diff=1)

for col in rets.columns], axis=1).dropna()
date_str = f" ({rets.index[0]}-{rets.index[-1]})"
rets

BAMLCC0A0CMTRIV BAMLCC0A1AAATRIV BAMLCC0A2AATRIV BAMLCC0A3ATRIV \
date
19990104 -0.001053 -0.001421 -0.000660 -0.001166
19990105 -0.003846 -0.004194 -0.003500 -0.003857
19990106 0.002388 0.002099 0.002102 0.002495
19990107 -0.002694 -0.002813 -0.002413 -0.002573
19990108 -0.002583 -0.002941 -0.002419 -0.002658
... ... ... ... ...
20250221 0.004058 0.005418 0.004519 0.004090
20250224 0.001879 0.002273 0.001855 0.001842
20250225 0.005450 0.007181 0.006098 0.005468
20250226 0.002036 0.002643 0.002200 0.002056
20250227 -0.002092 -0.003094 -0.002047 -0.002056

BAMLCC0A4BBBTRIV BAMLCC1A013YTRIV BAMLCC2A035YTRIV \
date
19990104 -0.000995 0.000076 0.000473
19990105 -0.003952 -0.000844 -0.002452
19990106 0.002419 0.000466 0.000901
19990107 -0.002996 0.000101 -0.000853
19990108 -0.002504 -0.000920 -0.002006
... ... ... ...
20250221 0.003918 0.001278 0.002482
20250224 0.001917 0.000683 0.001165

(continues on next page)
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20250225 0.005274 0.001025 0.002846
20250226 0.001964 0.000422 0.001190
20250227 -0.002106 0.000216 -0.000200

BAMLCC3A057YTRIV BAMLCC4A0710YTRIV BAMLCC7A01015YTRIV ... \
date ...
19990104 0.000534 -0.000519 -0.001209 ...
19990105 -0.003343 -0.004276 -0.004990 ...
19990106 0.001695 0.001967 0.002537 ...
19990107 -0.001561 -0.002662 -0.003371 ...
19990108 -0.003309 -0.003773 -0.004368 ...
... ... ... ... ...
20250221 0.003648 0.004107 0.005264 ...
20250224 0.001481 0.001797 0.002408 ...
20250225 0.004326 0.005516 0.007383 ...
20250226 0.001797 0.002089 0.002762 ...
20250227 -0.000742 -0.001944 -0.002688 ...

BAMLEMPTPRVICRPITRIV BAMLEMRACRPIASIATRIV BAMLEMRECRPIEMEATRIV \
date
19990104 0.001599 -0.000700 -0.005616
19990105 0.002692 0.000400 0.008113
19990106 0.007144 0.003395 0.009135
19990107 -0.001484 -0.003095 0.007386
19990108 -0.000594 0.001998 0.000392
... ... ... ...
20250221 0.001815 0.002360 0.001548
20250224 0.001124 0.001355 0.001095
20250225 0.002267 0.003170 0.002267
20250226 0.001417 0.001305 0.001557
20250227 -0.000023 0.000111 0.000705

BAMLEMRLCRPILATRIV BAMLEMUBCRPIUSTRIV BAMLHE00EHYITRIV \
date
19990104 0.002297 0.001099 0.000195
19990105 0.002392 0.002394 0.012287
19990106 0.006251 0.006060 0.000577
19990107 0.000198 -0.000694 0.003932
19990108 -0.002079 -0.000892 0.000000
... ... ... ...
20250221 0.001954 0.002056 0.000502
20250224 0.000737 0.001161 0.000422
20250225 0.002544 0.002939 0.000026
20250226 0.002419 0.001755 0.000659
20250227 -0.000991 -0.000062 0.000527

BAMLHYH0A0HYM2TRIV BAMLHYH0A1BBTRIV BAMLHYH0A2BTRIV \
date
19990104 0.001490 0.000250 0.001999
19990105 0.000674 -0.000834 0.000781
19990106 0.001487 0.001583 0.001041
19990107 -0.000112 -0.001250 0.000520
19990108 0.001737 -0.000918 0.002509
... ... ... ...
20250221 -0.000726 -0.000524 -0.001033
20250224 0.001040 0.001016 0.001033
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20250225 0.001028 0.001456 0.000758
20250226 0.001984 0.001797 0.001809
20250227 -0.000006 -0.000065 0.000063

BAMLHYH0A3CMTRIV
date
19990104 0.003234
19990105 0.005428
19990106 0.003480
19990107 0.001005
19990108 0.007643
... ...
20250221 -0.000715
20250224 0.001213
20250225 -0.000062
20250226 0.003319
20250227 0.000046

[6830 rows x 33 columns]

Select these bond return indexes

pd.set_option('display.max_colwidth', None)
print("Bond Index Total Returns")
Series(alf.header(rets.columns), index=rets.columns, name='title')\

.to_frame().rename_axis('series')

Bond Index Total Returns

␣
↪ title

series
BAMLCC0A0CMTRIV ICE BofA US␣

↪Corporate Index Total Return Index Value
BAMLCC0A1AAATRIV ICE BofA AAA US␣

↪Corporate Index Total Return Index Value
BAMLCC0A2AATRIV ICE BofA AA US␣

↪Corporate Index Total Return Index Value
BAMLCC0A3ATRIV ICE BofA Single-A US␣

↪Corporate Index Total Return Index Value
BAMLCC0A4BBBTRIV ICE BofA BBB US␣

↪Corporate Index Total Return Index Value
BAMLCC1A013YTRIV ICE BofA 1-3 Year US␣

↪Corporate Index Total Return Index Value
BAMLCC2A035YTRIV ICE BofA 3-5 Year US␣

↪Corporate Index Total Return Index Value
BAMLCC3A057YTRIV ICE BofA 5-7 Year US␣

↪Corporate Index Total Return Index Value
BAMLCC4A0710YTRIV ICE BofA 7-10 Year US␣

↪Corporate Index Total Return Index Value
BAMLCC7A01015YTRIV ICE BofA 10-15 Year US␣

↪Corporate Index Total Return Index Value
BAMLCC8A015PYTRIV ICE BofA 15+ Year US␣

↪Corporate Index Total Return Index Value

(continues on next page)
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BAMLEM1BRRAAA2ACRPITRIV ICE BofA AAA-A Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEM2BRRBBBCRPITRIV ICE BofA BBB Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEM3BRRBBCRPITRIV ICE BofA BB Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEM4BRRBLCRPITRIV ICE BofA B & Lower Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEM5BCOCRPITRIV ICE BofA Crossover Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMCBPITRIV ICE BofA Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMEBCRPIETRIV ICE BofA Euro Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMFSFCRPITRIV ICE BofA Private Sector Financial Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMHBHYCRPITRIV ICE BofA High Yield Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMIBHGCRPITRIV ICE BofA High Grade Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMNSNFCRPITRIV ICE BofA Non-Financial Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMPBPUBSICRPITRIV ICE BofA Public Sector Issuers Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMPTPRVICRPITRIV ICE BofA Private Sector Issuers Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMRACRPIASIATRIV ICE BofA Asia Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMRECRPIEMEATRIV ICE BofA EMEA Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMRLCRPILATRIV ICE BofA Latin America Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLEMUBCRPIUSTRIV ICE BofA US Emerging Markets␣
↪Corporate Plus Index Total Return Index Value

BAMLHE00EHYITRIV ICE BofA Euro␣
↪High Yield Index Total Return Index Value

BAMLHYH0A0HYM2TRIV ICE BofA US␣
↪High Yield Index Total Return Index Value

BAMLHYH0A1BBTRIV ICE BofA BB US␣
↪High Yield Index Total Return Index Value

BAMLHYH0A2BTRIV ICE BofA Single-B US␣
↪High Yield Index Total Return Index Value

BAMLHYH0A3CMTRIV ICE BofA CCC & Lower US␣
↪High Yield Index Total Return Index Value

14.2.1 Statistical risk factors

Extract principal components of bond index returns

pipe = Pipeline([('scaler', StandardScaler()), ('pca', PCA())])
pipe.fit(rets)
print(pipe.named_steps['pca'].explained_variance_ratio_) # sanity check
scree = Series(pipe.named_steps['pca'].explained_variance_ratio_,

index=np.arange(1, rets.shape[1]+1))
DataFrame(scree.cumsum().rename('Cumulative Variance Ratio Explained')).iloc[:10]
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[5.93480704e-01 1.83414224e-01 7.60999397e-02 2.29460554e-02
2.08374926e-02 1.73252063e-02 1.58102554e-02 1.11222261e-02
1.07270153e-02 9.46337690e-03 7.12268856e-03 5.78660305e-03
5.08617829e-03 4.56329291e-03 3.87130739e-03 2.53236096e-03
2.40159698e-03 2.17255450e-03 1.28094767e-03 9.31393646e-04
7.70330791e-04 6.01123712e-04 3.93600105e-04 3.60165273e-04
3.03684121e-04 2.70804862e-04 9.27216331e-05 8.30786301e-05
5.32780919e-05 3.92254907e-05 3.55714421e-05 1.53907425e-05
5.60549950e-06]

Cumulative Variance Ratio Explained
1 0.593481
2 0.776895
3 0.852995
4 0.875941
5 0.896778
6 0.914104
7 0.929914
8 0.941036
9 0.951763
10 0.961226

# Scree plot
fig, ax = plt.subplots(num=1, clear=True, figsize=(10, 6))
scree.plot(kind='bar', rot=0, width=.8, ax=ax)
ax.set_title('Scree Plot: PCA of FRED BofA Bond Return Indexes' + date_str,␣

↪fontsize=16)
ax.xaxis.set_tick_params(labelsize=12)
ax.set_ylabel("Percent Variance Explained", fontsize=14)
ax.set_xlabel("Principal Component", fontsize=14)
plt.tight_layout()
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14.2.2 Explainability of statistical risk factors

# Extract factor returns from bond indexes with PCA projection
K = 4
factors = DataFrame(pipe.transform(rets)[:, :K],

columns=[f"PC{c+1}" for c in range(K)],
index=pd.DatetimeIndex(rets.index.astype(str), freq='infer'))

Construct interest rate spreads to compare with the statistical factors:
• Level: The average of the two-year and ten-year Treasury rates
• Slope: The difference between the ten-year and two-year Treasury rates
• Twist: The difference between (ten-year minus five-year) and (five-year minus two-year) rates
• Credit Spread: The difference between BAA corporate bond yields and ten-year Treasury rates

# Construct interest rate spread changes
spreads = pd.concat([alf(s, freq=freq) for s in ['BAA10Y', 'DGS10', 'DGS5', 'DGS2']],

axis=1)\
.sort_index()

spreads.index = pd.DatetimeIndex(spreads.index.astype(str), freq='infer')
spreads['level'] = 0.5 * (spreads['DGS2'] + spreads['DGS10'])
spreads['credit'] = spreads['BAA10Y']
spreads['slope'] = spreads['DGS10'] - spreads['DGS2']
spreads['twist'] = ((spreads['DGS10'] - spreads['DGS5']) -

(spreads['DGS5'] - spreads['DGS2']))
spreads = spreads.drop(columns=['BAA10Y', 'DGS10', 'DGS5', 'DGS2'])\

.ffill()\

.diff()\

.dropna()
spreads

level credit slope twist
date
1986-01-03 0.010 -0.04 1.776357e-15 1.776357e-15
1986-01-06 0.015 -0.01 1.000000e-02 -1.000000e-02
1986-01-07 -0.100 0.06 -6.000000e-02 -8.881784e-16
1986-01-08 0.155 -0.14 7.000000e-02 3.000000e-02
1986-01-09 0.160 -0.05 -4.000000e-02 -8.000000e-02
... ... ... ... ...
2025-02-24 -0.040 -0.01 4.000000e-02 -2.000000e-02
2025-02-25 -0.080 0.02 -4.000000e-02 6.000000e-02
2025-02-26 -0.035 0.01 -3.000000e-02 5.000000e-02
2025-02-27 0.030 0.01 2.000000e-02 0.000000e+00
2025-02-28 -0.065 0.05 3.000000e-02 -1.000000e-02

[9795 rows x 4 columns]

# Show correlations between bond factor returns and spread changes
data = pd.concat([spreads, factors], axis=1, join='inner')
corr = data.corr()
#plt.imshow(corr**2, vmin=0, vmax=1, cmap='Purples')
plt.imshow(corr, vmin=-1, vmax=1, cmap='seismic')
plt.xticks(range(len(corr)), corr.index)
plt.yticks(range(len(corr)), corr.index)

(continues on next page)
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plt.colorbar()
plt.title('Correlation of bond factors and interest rate spread changes')

Text(0.5, 1.0, 'Correlation of bond factors and interest rate spread changes')

# Show regression fits
for pc in range(K):

print(smf.ols(f"PC{pc+1} ~ credit + level + slope + twist", data=data)\
.fit(cov_type='HAC', cov_kwds={'maxlags': 63})\
.summary())

OLS Regression Results
==============================================================================
Dep. Variable: PC1 R-squared: 0.547
Model: OLS Adj. R-squared: 0.546
Method: Least Squares F-statistic: 449.8
Date: Mon, 03 Mar 2025 Prob (F-statistic): 0.00
Time: 17:15:31 Log-Likelihood: -16545.
No. Observations: 6533 AIC: 3.310e+04
Df Residuals: 6528 BIC: 3.313e+04
Df Model: 4
Covariance Type: HAC
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------

(continues on next page)

14.2. Risk factors 265



Financial Data Science Python Notebooks

(continued from previous page)

Intercept 0.0260 0.089 0.293 0.770 -0.148 0.200
credit 67.2252 10.644 6.316 0.000 46.363 88.087
level 67.5805 3.099 21.810 0.000 61.507 73.654
slope 9.3162 2.473 3.767 0.000 4.469 14.164
twist -13.9266 2.182 -6.384 0.000 -18.202 -9.651
==============================================================================
Omnibus: 4287.230 Durbin-Watson: 1.169
Prob(Omnibus): 0.000 Jarque-Bera (JB): 232868.764
Skew: 2.485 Prob(JB): 0.00
Kurtosis: 31.823 Cond. No. 40.8
==============================================================================

Notes:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using␣

↪63 lags and without small sample correction
OLS Regression Results

==============================================================================
Dep. Variable: PC2 R-squared: 0.486
Model: OLS Adj. R-squared: 0.486
Method: Least Squares F-statistic: 276.0
Date: Mon, 03 Mar 2025 Prob (F-statistic): 1.62e-219
Time: 17:15:31 Log-Likelihood: -13117.
No. Observations: 6533 AIC: 2.624e+04
Df Residuals: 6528 BIC: 2.628e+04
Df Model: 4
Covariance Type: HAC
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.0026 0.048 0.055 0.956 -0.092 0.097
credit 8.5003 3.413 2.491 0.013 1.811 15.190
level -27.6696 1.648 -16.794 0.000 -30.899 -24.440
slope -14.4220 1.193 -12.090 0.000 -16.760 -12.084
twist 0.0005 1.291 0.000 1.000 -2.530 2.531
==============================================================================
Omnibus: 4199.401 Durbin-Watson: 1.263
Prob(Omnibus): 0.000 Jarque-Bera (JB): 212780.844
Skew: 2.428 Prob(JB): 0.00
Kurtosis: 30.534 Cond. No. 40.8
==============================================================================

Notes:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using␣

↪63 lags and without small sample correction
OLS Regression Results

==============================================================================
Dep. Variable: PC3 R-squared: 0.048
Model: OLS Adj. R-squared: 0.048
Method: Least Squares F-statistic: 9.825
Date: Mon, 03 Mar 2025 Prob (F-statistic): 6.37e-08
Time: 17:15:32 Log-Likelihood: -12252.
No. Observations: 6533 AIC: 2.451e+04
Df Residuals: 6528 BIC: 2.455e+04
Df Model: 4
Covariance Type: HAC
==============================================================================

(continues on next page)
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coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -0.0047 0.025 -0.189 0.850 -0.053 0.044
credit -12.9602 2.326 -5.571 0.000 -17.519 -8.401
level -2.1745 1.302 -1.671 0.095 -4.726 0.377
slope 1.7327 1.218 1.422 0.155 -0.655 4.120
twist 0.4779 1.097 0.436 0.663 -1.671 2.627
==============================================================================
Omnibus: 3598.010 Durbin-Watson: 1.563
Prob(Omnibus): 0.000 Jarque-Bera (JB): 548862.079
Skew: 1.601 Prob(JB): 0.00
Kurtosis: 47.789 Cond. No. 40.8
==============================================================================

Notes:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using␣

↪63 lags and without small sample correction
OLS Regression Results

==============================================================================
Dep. Variable: PC4 R-squared: 0.024
Model: OLS Adj. R-squared: 0.024
Method: Least Squares F-statistic: 13.23
Date: Mon, 03 Mar 2025 Prob (F-statistic): 9.77e-11
Time: 17:15:32 Log-Likelihood: -8402.4
No. Observations: 6533 AIC: 1.681e+04
Df Residuals: 6528 BIC: 1.685e+04
Df Model: 4
Covariance Type: HAC
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -0.0016 0.013 -0.125 0.901 -0.027 0.024
credit 2.5655 1.691 1.517 0.129 -0.748 5.879
level 0.5677 0.753 0.753 0.451 -0.909 2.044
slope 2.7974 0.428 6.532 0.000 1.958 3.637
twist 1.6629 0.452 3.679 0.000 0.777 2.549
==============================================================================
Omnibus: 2769.335 Durbin-Watson: 1.940
Prob(Omnibus): 0.000 Jarque-Bera (JB): 176343.662
Skew: 1.201 Prob(JB): 0.00
Kurtosis: 28.339 Cond. No. 40.8
==============================================================================

Notes:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using␣

↪63 lags and without small sample correction

References:
FRM Part I Exam Book Valuation and Risk Models Ch12-13
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CHAPTER

FIFTEEN

OPTIONS PRICING

Derivatives are financial weapons of mass destruction - Warren Buffett
We explore the basics of options, common strategies, and the foundational pricing models used in the financial markets.
The price of an option is influenced by various factors, including the underlying asset’s price, the time remaining until
expiration, the volatility of the asset, interest rates, and the strike price. The valuation of options can be approached
through techniques like binomial tree pricing and Monte Carlo simulations, or models like the Black-Scholes-Merton
model.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from pandas import DataFrame, Series
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from tqdm import tqdm
import time
from finds.utils import row_formatted
from finds.readers import Alfred
from secret import credentials
VERBOSE = 0
#%matplotlib qt

15.1 Options

An European call or put option grants the buyer the right to buy or sell an asset at a specified price on a given expiration
date. An American call or put option, on the other hand, allows the buyer to exercise the option at any time before or on
the expiration date. The specified date is known as the expiration (or maturity) date, while the price at which the asset
can be traded is referred to as the strike (or exercise) price.
Options can be categorized based on their moneyness, meaning the relationship between the option’s strike price and
the current price of the underlying asset. An option is considered in-the-money if it would result in a positive payoff
if exercised immediately, out-of-the-money if it would lead to a negative payoff, and at-the-money if the strike price
equals the current market price.
The value of an option depends on several factors, including:

• The price of the underlying asset (S)
• The strike price (K)
• The risk-free rate (r)
• The volatility of the asset’s price (𝜎)
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• The time to maturity (T)
• Any dividends to be paid during the life of the option (q)

Put-call parity defines the relationship between the prices of European call and put options with identical strike prices and
expiration dates: 𝑆 − 𝐶 = 𝑃𝑉 (𝐾) − 𝑃 .

15.1.1 Option strategies

Various trading strategies involve entering positions in multiple options simultaneously, and sometimes incorporating the
underlying asset.

• A protective put strategy involves buying a put option while holding the underlying asset. This combined position
offers a payoff similar to that of a call option, along with the amount of cash equivalent to the present value of the
strike price.

• A covered call strategy entails owning an asset and selling a call option on it. Typically, the call option is out-
of-the-money, and the strategy generates income from the option premium while sacrificing potential upside gains
beyond the strike price.

• A bull spread is employed by an investor expecting an increase in the asset’s price. The strategy involves buying
a European call with a lower strike price (K1) and selling a European call with a higher strike price (K2).

• A bear spread involves buying a European put option with a higher strike price (K2) and selling a European put
option with a lower strike price (K1).

• A box spread is a portfolio consisting of a bull spread (using call options) and a bear spread (using put options).
Both spreads use the same strike prices and expiration dates.

• A butterfly spread involves a combination of three options, created using either calls or puts. A common version
involves one long call with a lower strike price (K1), one long call with a higher strike price (K3), and two short
calls at a strike price (K2), where 𝐾2 = (𝐾1 + 𝐾3)/2.

• A calendar spread strategy consists of buying a long call option with an expiration date at time T* and selling a
short call option with an earlier expiration date, both at the same strike price (K).

• A straddle is created by holding both a long call and a long put with the same strike price and expiration date.
• A strangle is similar to a straddle but reduces the cost by selecting a call option with a higher strike price than the

put option.

# define call and put payoffs at maturity
def call_payoff(K):

return lambda s: s - K if s > K else 0

def put_payoff(K):
return lambda s: K - s if s < K else 0

# helpers to plot final payoff of option strategy
def plot_payoff(payoff, S=np.linspace(70, 130, 60), ax=None, label=''):

"""helper to plot final payoff over range of stock price S"""
ax = ax or plt.gca()
df = DataFrame([payoff(s) for s in S], index=S)
zeros = (df == 0).all(axis=0)
df = df.drop(columns=df.columns[zeros])
df = df + np.sign(df.sum(axis=0))*0.4 # jigger so can display separate
y = df.sum(axis=1).rename(label)
y.plot(ax=ax, lw=3)

(continues on next page)
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df.plot(marker='.', ls='', ms=4, ax=ax)
ax.legend([label] + list(df.columns))

def _ls(n):
"""helper to label as long or short position"""
return 'long' if n >=0 else 'short'

# Define and plot the options strategies
fig, ax = plt.subplots(nrows=4, ncols=2, figsize=(10,12))
ax = ax.flatten()

def options_strategy(K, calls=0, puts=0, stocks=0):
return lambda s: {f"{_ls(calls)} call {K}": calls*call_payoff(K)(s),

f"{_ls(puts)} put {K}": puts*put_payoff(K)(s),
"stock": stocks*s}

plot_payoff(options_strategy(K=100, puts=1, stocks=1), ax=ax[0], label='Protective Put
↪')

plot_payoff(options_strategy(K=100, calls=-1, stocks=1), ax=ax[1], label='Covered Call
↪')

def bull_spread(K1, K2):
assert K2 > K1, "K2 must be greater than K1"
return lambda s: {f"long call {K1}": call_payoff(K1)(s),

f"short call {K2}": -call_payoff(K2)(s)}

plot_payoff(bull_spread(K1=95, K2=105), ax=ax[2], label='Bull Spread')

def bear_spread(K1, K2):
assert K2 > K1, "K2 must be greater than K1"
return lambda s: {f"short put {K1}": -put_payoff(K1)(s),

f"long put {K2}": put_payoff(K2)(s)}

plot_payoff(bear_spread(K1=95, K2=105), ax=ax[3], label='Bear Spread')

def box_spread(K1, K2):
assert K2 > K1, "K2 must be greater than K1"
return lambda s: {f"short put {K1}": -put_payoff(K1)(s),

f"long call {K1}": call_payoff(K1)(s),
f"long put {K2}": put_payoff(K2)(s),
f"short call {K2}": -call_payoff(K2)(s)}

plot_payoff(box_spread(K1=95, K2=105), ax=ax[4], label='Box Spread')

def butterfly_spread(K1, K3):
assert K3 > K1, "K3 must be greater than K1"
K2 = (K1 + K3) / 2
return lambda s: {f"long call {K1}": call_payoff(K1)(s),

f"short calls {K2:g}": -2*call_payoff(K2)(s),
f"long call {K3}": call_payoff(K3)(s)}

plot_payoff(butterfly_spread(K1=90, K3=110), ax=ax[5], label='Butterfly Spread')

def straddle(K):
return lambda s: {f"long put {K}": put_payoff(K)(s),

(continues on next page)
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f"long call {K}": call_payoff(K)(s)}
plot_payoff(straddle(K=100), ax=ax[6], label='Straddle')

def strangle(K1, K2):
assert K2 > K1, "K2 must be greater than K1"
return lambda s: {f"long put {K1}": put_payoff(K1)(s),

f"long call {K2}": call_payoff(K2)(s)}
plot_payoff(strangle(K1=95, K2=105), ax=ax[7], label='Strangle')

plt.suptitle('Options Strategies Payoffs')
plt.tight_layout()
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15.1.2 Exotic options

In addition to standard European and American options (which are termed plain vanilla options), there are exotic options
(or simply exotics) which have more complex structures and non-standard features.

• A Bermudan option is one where the exercise of the option is restricted to certain predetermined dates.
• A forward start option is an option that starts at a future date and is usually at-the-money at the time it begins.
• A gap option is a European option where the price triggering a payoff is different from the price used to calculate

the payoff.
• A cliquet option is a series of forward start options, each with its own rules for determining strike prices.
• Binary options (also called digital options) pay a fixed amount or asset if the option’s price exceeds (or falls

below) the strike price, otherwise, they pay nothing.
• Asian options provide payoffs based on the arithmetic average of the asset’s price during the option’s life.
• A lookback option’s payoff depends on the maximum or minimum price reached by the asset during its lifetime.

A floating lookback option gives a payoff based on the difference between the final asset price and the minimum (or
maximum) price reached, while a fixed lookback option bases the payoff on the difference between the maximum
(or minimum) price and the strike price.

• Barrier options have payoffs that depend on whether the price of the asset reaches a specific level, with various
types like down-and-out, down-and-in, up-and-out, and up-and-in.

• A compound option is an option on another option, which results in two strike prices and two expiration dates.
• An asset-exchange option allows the holder to exchange one asset for another.
• A volatility swap is a forward contract based on the realized volatility of an asset during a specified period. Traders

exchange the realized volatility at the end of the period for a pre-specified volatility rate.
• The exercise of a Bermudan option is restricted to certain dates.
• A forward start option is an option that will begin at a future time. It is usually stated that the option will be

at-the-money at the time it starts.
• A gap option is a European call or put option where the price triggering a payoff is different from the price used in

calculating the payoff.
• A cliquet option is a series of forward start options with certain rules for determining the strike prices.
• Binary call (put) options may a fixed amount of cash or an asset when its price is above (below) the strike price,

or nothing otherwise. Cash-or-nothing optinos are sometimes referred to as digital options.
• Asian options provide a payoff dependent on an arithmetic aver-age of the underlying asset price during the life of

the option.
• The payoff from a lookback option depends on the maximum or minimum asset price reached during the life of the

option. A floating lookback call (put) gives a payoff equal difference between the final asset price and minimum
(maximum) price. The payoff of a fixed lookback call (put) is based on the difference betwen the maximum
(minimum) price and the strike price.

• Barrier options come into existence or ceases to exist depending on whether the asset price reaches a particular
barrier. There are down-and-out, down-and-in, up-and-out and up-and-in variants.

• A compound option is an option on another option. Thus, there are two strike prices and two maturity dates.
• In an asset-exchange option, the holder has the right to exchange one asset for another.
• A volatility swap is a forward contract on the realized volatility of an asset during a certain period. A trader agrees

to exchange a pre-specified volatility for the realized volatility at the end of the period.
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15.2 Binomial option pricing

The binomial option pricing model, proposed by Cox, Ross, and Rubinstein (1979), is widely used to value American-
style options and other derivatives.

15.2.1 No-arbitrage

The no-arbitrage principle assumes there are no opportunities for riskless profit in the market. The law of one price
stipulates that if two portfolios produce the same cash flows at the same times, they should have the same price. Binomial
trees use this no-arbitrage principle to model option pricing.
For example, assuming a non-dividend-paying stock with price 𝑆, the stock can either increase to 𝑆𝑢 or decrease to 𝑆𝑑
within time T. The portfolio is structured with:

• A short position in the derivative, and

• A position in the stock which we set equal to Δ = 𝑓𝑢 − 𝑓𝑑
𝑆𝑢 − 𝑆𝑑

The value of the portfolio at time T is
• 𝑆𝑢Δ − 𝑓𝑢 if the stock price increases, and
• 𝑆𝑑Δ − 𝑓𝑑 if the stock price decreases.

The value of the portfolio today is 𝑆Δ − 𝑓 , where f is the value of the derivative today. Suppose r is the risk-free rate
for maturity T. For no arbitrage, we must have

𝑆Δ − 𝑓 = 𝑓𝑢𝑑 − 𝑓𝑑𝑢
𝑢 − 𝑑 𝑒−𝑟𝑇

Substituting for Δ, gives:

𝑓 = 𝑒−𝑟𝑇 [𝑝𝑓𝑢 + (1 − 𝑝)𝑓𝑑]

where 𝑝 = 𝑒𝑟𝑇 − 𝑑
𝑢 − 𝑑

15.2.2 Risk neutral pricing

Suppose we choose to interpret the variable p as the probability of an upward movement (with 1 - p being the probability
of a downward movement), then the expected stock price grows at the risk-free rate. It also means that 𝑝 is the probability
of an upward movement in a risk-neutral world.
The risk-neutral valuation approach applies a probability 𝑝 for upward movements and values the option by its expected
payoff, discounted at the risk-free rate. Risk-neutral pricing assumes that all assets earn the risk-free rate of return in the
market. Put another way, a risk-neutral world is one where all tradable assets have an expected return equal to the risk-free
interest rate. The probabilities of different outcomes in a risk-neutral world are therefore based on this assumption, and
a risk-neutral investor has no preference between assets with different risks. This methodology simplifies the valuation
process by treating all market participants as indifferent to risk.
It should be emphasized that the risk-neutral valuation is nothing more than an artificial way of valuing derivatives. We
are not assuming that the world is actually risk-neutral. We are instead arguing that the price of a derivative is the same
in the real world as it would be in the risk-neutral world
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15.2.3 Binomial tree

In practice, the binomial model is extended to multi-step trees, where each step reflects changes in the asset’s price over
time. Parameters like Δ𝑡 (time between steps), and 𝑢, 𝑑 (upward and downward movements) are chosen based on the
asset’s volatility:

• the length of a tree step as Δ𝑡
• the parameters u and d should be chosen to reflect the volatility of the stock price. If we denote the volatility per

year by 𝜎, then appropriate values for the parameters are

– 𝑢 = 𝑒𝜎
√

Δ𝑡

– 𝑢 = 𝑒−𝜎
√

Δ𝑡

where Δ𝑡 is measured in years.
• hence $𝑓 = 𝑒−𝑟Δ𝑡[𝑝𝑓𝑢 + (1 − 𝑝)𝑓𝑑]𝑤ℎ𝑒𝑟𝑒p = \dfrac{e^{r \Delta t} - d}{u - d}$

• the delta, or position taken in the stock to hedge a short posion in the derivative, is Δ = 𝑓𝑢 − 𝑓𝑑
𝑆𝑢 − 𝑆𝑑

Dividends: For assets paying dividends, the probability 𝑝 is adjusted to account for the dividend yield 𝑞:

𝑝 = 𝑒(𝑟−𝑞)Δ𝑡 − 𝑑
𝑢 − 𝑑

Currency Options: A currency can be considered as an asset providing a yield at the foreign risk-free rate. Therefore,
the analysis we presented for a stock paying a continuous dividend yield applies, with q equal to the foreign risk-free rate.
Futures: Because it costs nothing to enter into a futures contract, the return on a futures contract in a risk-neutral world
must be zero. This means we can treat a futures contract like a stock, paying a continuous dividend yield equal to the risk
free rate.

def binomial_tree(S, sigma, r, T, steps, payoff=None, q=0, american=False,
verbose=True):

delta_t = T / steps
u = np.exp(sigma * np.sqrt(delta_t))
d = np.exp(-sigma * np.sqrt(delta_t))
p = (np.exp((r - q) * delta_t) - d) / (u - d)
result = dict(value=None, u=u, d=d, p=p, delta_t=delta_t)
if payoff is not None:

label = "STEP {:<5d}".format # to label output of each step

# initialize price vectors at last step
prices = DataFrame(0.0, index=np.arange(steps+1),

columns=['stock', 'option', 'delta'])
for downs in range(steps+1):

s = d**downs * u**(steps-downs) * S # price after number of downs
prices.loc[downs, 'stock'] = s
prices.loc[downs, 'option'] = payoff(s) # option value at expiry

print(row_formatted(prices.T.rename_axis(columns=label(steps)),
default="{:.4f}"))

# roll back one time step at a time
for step in range(steps - 1, -1, -1):

# update all scenarios in this time step
for downs in range(step+1):

# stock price after this number of downs

(continues on next page)
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s = d**downs * u**(step - downs) * S
prices.loc[downs, 'stock'] = s

# value of option is max of roll back or exercise (if American)
exercise = payoff(s) if american else 0 # if exercise American
f_u = prices.loc[downs, 'option'] # option value after up
f_d = prices.loc[downs + 1, 'option'] # option value after down
f = np.exp(-r * delta_t) * (p * f_u + (1 - p) * f_d)
prices.loc[downs, 'option'] = max(f, exercise)
prices.loc[downs, 'delta'] = (f_u - f_d) / (S*u - S*d)

# Display this time step
prices = prices.iloc[:-1]
print()
print(row_formatted(prices.T.rename_axis(columns=label(step)),

default="{:.4f}"))
result['value'] = prices.loc[0, 'option']

return DataFrame(result, index=[steps]).rename_axis(columns='STEPS').round(4)

European call option in 2 steps

# Figure 14.3 of FRM Part I Exam Book "Valuation and Risk Models"
binomial_tree(S=29, sigma=0.25, r=0.03, T=1, steps=2,

payoff=call_payoff(K=30))

STEP 2 0 1 2
stock 41.2995 29.0000 20.3635
option 11.2995 0.0000 0.0000
delta 0.0000 0.0000 0.0000

STEP 1 0 1
stock 34.6076 24.3010
option 5.5483 0.0000
delta 1.0963 0.0000

STEP 0 0
stock 29.0000
option 2.7243
delta 0.5383

STEPS value u d p delta_t
2 2.7243 1.1934 0.838 0.4984 0.5

European put option in 2 steps

# Figure 14.4 of FRM Part I Exam Book "Valuation and Risk Models"
binomial_tree(S=29, sigma=0.25, r=0.03, T=1, steps=2,

payoff=put_payoff(K=30))

STEP 2 0 1 2
stock 41.2995 29.0000 20.3635
option 0.0000 1.0000 9.6365
delta 0.0000 0.0000 0.0000

(continues on next page)
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STEP 1 0 1
stock 34.6076 24.3010
option 0.4941 5.2523
delta -0.0970 -0.8380

STEP 0 0
stock 29.0000
option 2.8377
delta -0.4617

STEPS value u d p delta_t
2 2.8377 1.1934 0.838 0.4984 0.5

American put option in 4 steps

# Figure 14.5 of FRM Part I Exam Book "Valuation and Risk Models"
binomial_tree(S=29, sigma=0.25, r=0.03, T=1, steps=2,

payoff=put_payoff(K=30), american=True)

STEP 2 0 1 2
stock 41.2995 29.0000 20.3635
option 0.0000 1.0000 9.6365
delta 0.0000 0.0000 0.0000

STEP 1 0 1
stock 34.6076 24.3010
option 0.4941 5.6990
delta -0.0970 -0.8380

STEP 0 0
stock 29.0000
option 3.0584
delta -0.5050

STEPS value u d p delta_t
2 3.0584 1.1934 0.838 0.4984 0.5

American put option in 4 steps

# Figure 14.6 of FRM Part I Exam Book "Valuation and Risk Models"
binomial_tree(S=29, sigma=0.25, r=0.03, T=1, steps=4,

payoff=put_payoff(K=30), american=True)

STEP 4 0 1 2 3 4
stock 47.8129 37.2367 29.0000 22.5852 17.5894
option 0.0000 0.0000 1.0000 7.4148 12.4106
delta 0.0000 0.0000 0.0000 0.0000 0.0000

STEP 3 0 1 2 3
stock 42.1948 32.8613 25.5924 19.9314
option 0.0000 0.4974 4.4076 10.0686
delta 0.0000 -0.1376 -0.8825 -0.6873

(continues on next page)
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STEP 2 0 1 2
stock 37.2367 29.0000 22.5852
option 0.2474 2.4387 7.4148
delta -0.0684 -0.5379 -0.7788

STEP 1 0 1
stock 32.8613 25.5924
option 1.3356 4.8958
delta -0.3015 -0.6846

STEP 0 0
stock 29.0000
option 3.0966
delta -0.4898

STEPS value u d p delta_t
4 3.0966 1.1331 0.8825 0.4988 0.25

European call on index with dividend yield

# Figure 14.7 of FRM Part I Exam Book "Valuation and Risk Models"
binomial_tree(S=2500, sigma=0.15, r=0.03, q=0.02, T=0.5, steps=3,

payoff=call_payoff(K=2500))

STEP 3 0 1 2 3
stock 3004.1734 2657.8778 2351.5002 2080.4391
option 504.1734 157.8778 0.0000 0.0000
delta 0.0000 0.0000 0.0000 0.0000

STEP 2 0 1 2
stock 2825.7257 2500.0000 2211.8212
option 328.7911 78.2792 0.0000
delta 1.1303 0.5153 0.0000

STEP 1 0 1
stock 2657.8778 2351.5002
option 202.0979 38.8125
delta 0.8177 0.2555

STEP 0 0
stock 2500.0000
option 119.5793
delta 0.5330

STEPS value u d p delta_t
3 119.5793 1.0632 0.9406 0.4983 0.1667

American call option on foreign currency

# Figure 14.8 of FRM Part I Exam Book "Valuation and Risk Models"
binomial_tree(S=0.78, sigma=0.12, r=0.02, q=0.06, T=1, steps=4,

payoff=call_payoff(K=0.8))
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STEP 4 0 1 2 3 4
stock 0.9916 0.8794 0.7800 0.6918 0.6136
option 0.1916 0.0794 0.0000 0.0000 0.0000
delta 0.0000 0.0000 0.0000 0.0000 0.0000

STEP 3 0 1 2 3
stock 0.9338 0.8282 0.7346 0.6515
option 0.1239 0.0318 0.0000 0.0000
delta 1.1972 0.8483 0.0000 0.0000

STEP 2 0 1 2
stock 0.8794 0.7800 0.6918
option 0.0685 0.0127 0.0000
delta 0.9837 0.3394 0.0000

STEP 1 0 1
stock 0.8282 0.7346
option 0.0350 0.0051
delta 0.5955 0.1358

STEP 0 0
stock 0.7800
option 0.0170
delta 0.3191

STEPS value u d p delta_t
4 0.017 1.0618 0.9418 0.4021 0.25

American put option on futures contract

# Figure 14.9 of FRM Part I Exam Book "Valuation and Risk Models"
binomial_tree(S=38, sigma=0.2, r=0.04, q=0.04, T=9/12, steps=3,

payoff=put_payoff(K=40), american=True)

STEP 3 0 1 2 3
stock 51.2946 41.9965 34.3838 28.1511
option 0.0000 0.0000 5.6162 11.8489
delta 0.0000 0.0000 0.0000 0.0000

STEP 2 0 1 2
stock 46.4133 38.0000 31.1118
option 0.0000 2.9190 8.8882
delta 0.0000 -0.7377 -0.8187

STEP 1 0 1
stock 41.9965 34.3838
option 1.5172 5.9925
delta -0.3834 -0.7841

STEP 0 0
stock 38.0000
option 3.8282
delta -0.5879
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STEPS value u d p delta_t
3 3.8282 1.1052 0.9048 0.475 0.25

15.3 Black-Scholes-Merton model

The Black-Scholes-Merton model, introduced in two papers in 1973, revolutionized options pricing and remains one of
the most widely used models for pricing European options. Based on assumptions like lognormal stock price distributions,
continuous trading, and no-arbitrage conditions, the model provides a formula for calculating the price of call and put
options. In one of the papers, Black and Scholes used the capital asset pricing model (CAPM) to derive the relationship
between the return from a stock and the return from an option on the stock. In the other, Merton used no-arbitrage
arguments similar to those of the binomial tree approach. Both derived that the price evolution of derivatives satisfies the
same partial differential equation:

𝜕𝑉
𝜕𝑡 + 1

2𝜎2𝑆2 𝜕2𝑆
𝜕𝑆2 + 𝑟𝑆 𝜕𝑉

𝜕𝑆 − 𝑟𝑉 = 0

To value an option, we simply apply boundary conditions. For a European call option with time to maturity T and strike
price K, the boundary condition is that the value of the option is max(S - K, 0) at time T. For a European put, this boundary
condition is max(K - S, 0). Other derivatives give rise to other boundary conditions.
The solutions for the prices of a European call and put are the Black-Scholes-Merton formulas:

𝐶 = 𝑆𝑒−𝑞𝑇 Φ(𝑑1) − 𝐾𝑒−𝑟𝑇 Φ(𝑑2)

𝑝 = 𝐾𝑒−𝑟𝑇 Φ(−𝑑2) − 𝑆𝑒−𝑞𝑇 Φ(−𝑑1)
where:

• 𝑑1 = ln(𝑆0/𝐾) + (𝑟 − 𝑞 + 𝜎2/2)𝑇
𝜎
√

𝑇

• 𝑑2 = ln(𝑆0/𝐾) + (𝑟 − 𝑞 − 𝜎2/2)𝑇
𝜎
√

𝑇
= 𝑑1 − 𝜎

√
𝑇

• 𝑆 is the current stock price,
• K is the strike price,
• T is the time to maturity in years,
• r is the risk-free rate per year (continuously compounded),
• q is the dividend yield (or foreign risk-free rate for currency options)
• 𝜎 is an estimated volatility per year over the next T years,
• Φ is the cumulative normal distribution function

Suppose discreate dividends are expected bo be paid with ex-dates during the life of the option. The option can be valued
by replacing stock price S with S - PV(D), the present value of those dividends.
Since American call options on a non-dividend paying stock should never be exercised early, the pricing formula for
American call options on non-dividend paying stocks as well as for European call options are the same. But it may be
optimal to exercise early when there are discrete dividends, but only immediately before an ex-dividend date. American
put options on stocks and all American options on stock indices, currencies, and futures should not be valued as European
options. Binomial trees can be used in these cases.
Black-Scholes-Merton option pricing formulas
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def _d1(S, K, sigma, r, T, q):
"""helper to compute d1 term in Black-Scholes-Merton formula"""
return (np.log(S/K) + (r - q + sigma**2/2) * T) / (sigma * np.sqrt(T))

def call(S, K, sigma, r, T, q=0.):
"""Black-Scholes-Merton call option value"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
d2 = d1 - sigma * np.sqrt(T)
return S*np.exp(-q*T)*stats.norm.cdf(d1) - K*np.exp(-r*T)*stats.norm.cdf(d2)

def put(S, K, sigma, r, T, q=0.):
"""Black-Scholes-Merton put option value"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
d2 = d1 - sigma * np.sqrt(T)
return K*np.exp(-r*T)*stats.norm.cdf(-d2) - S*np.exp(-q*T)*stats.norm.cdf(-d1)

print(call(S=56, K=60, r=0.05, sigma=0.3, T=18/12)) # 8.3069
print(put(S=56, K=60, r=0.05, sigma=0.3, T=18/12)) # 7.9715

8.306909593824336
7.971518773537515

15.3.1 Implied volatility

Implied volatility is the volatility figure derived from an option’s market price and used to infer expectations about
future price movements.
The Chicago Board Options Exchange has developed indices that track volatilities. The most popular of these is the SPX
VIX index, which tracks the volatilities of 30-day options on the S&P 500. Traders monitor implied volatilities carefully
and often use them to communicate prices.

alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE, convert_date=0)
vix = alf('VIXCLS')
sp500_sq = alf('SP500', log=1, diff=1).rename('SP500 squared returns')
sp500 = alf('SP500')
df = pd.concat([100*np.sqrt(252*sp500_sq**2), vix], axis=1, join='inner').dropna()

fig, ax = plt.subplots(figsize=(10, 6))
df.plot(ax=ax, lw=.5)
ax.set_ylabel('Volatility')
bx = ax.twinx()
sp500.plot(ax=bx, lw=1, color="C2")
bx.set_ylabel('SP500 Price Level')
plt.title('Daily SP500 and VIX')
plt.legend()
plt.tight_layout()
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15.3.2 Volatility smile

If the assumptions underlying the Black-Scholes-Merton model held exactly, all options on an asset would have the same
implied volatility at all times. In practice, implied volatility varies with the strike price and time to maturity. The volatility
smile refers to this observed pattern, where options with extreme strike prices (both high and low) tend to have higher
implied volatilities. Because of put-call parity, the implied volatility of a European call option is the same as that of a
European put option when they have the same strike price and time to maturity.
In equity options, the volatility smile generally slopes downward. This means that out-of-the-money puts and in-the-
money calls tend to have higher implied volatilities, while out-of-the-money calls and in-the-money puts have lower
implied volatilities. This phenomenon is often referred to as a volatility skew. There is a negative correlation between
equity prices and volatility, which means that as stock prices fall, volatility increases, and as stock prices rise, volatility
decreases.
For foreign currency options, the volatility smile takes a U-shape. Both out-of-the-money and in-the-money options tend
to have higher implied volatilities compared to at-the-money options. The volatility of exchange rates is not constant and
can be subject to sudden jumps, often driven by central bank actions. These nonconstant volatilities and jumps make
extreme price movements more likely.
Traders also often use a volatility term structure, where the implied volatility of an option depends on its time to maturity.
When volatility smiles and term structures are combined, they form a volatility surface. This surface shows implied
volatility as a function of both the strike price and the time to maturity. When quoting option prices, traders interpolate
between known implied volatilities to estimate the implied volatility for the option in question. This estimated volatility
is then plugged into the Black-Scholes-Merton model to calculate the option price. This approach helps address the fact
that the market does not always price options in line with the assumptions of the Black-Scholes-Merton model.
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15.3.3 The“Greeks”

The Greek letters, or Greeks as they are often called, are metrics used to measure the sensitivity of option prices to
different factors such as changes in the price of the underlying asset, volatility, time decay, and interest rates.

• Delta measures the sensitivity to changes in the price of the underlying asset:
Δ𝑐 = 𝑒−𝑞𝑡Φ(𝑑1)
Δ𝑝 = 𝑒−𝑞𝑡[Φ(𝑑1) − 1]

• Gamma measures the sensitivity of a portfolio’s delta to changes in the price of the underlying asset:

Γ = 𝑒−𝑞𝑡

𝑆𝜎
√

𝑡𝜙(𝑑1)

• Theta measures the sensitity to time to expiration

Θ𝑐 = −𝑆𝜎𝑒−𝑞𝑡

2
√

𝑡 𝜙(𝑑1) − 𝑟𝐾𝑒−𝑟𝑡Φ(𝑑2) + 𝑞𝑆𝑒−𝑞𝑡Φ(𝑑1)

Θ𝑝 = −𝑆𝜎𝑒−𝑞𝑡

2
√

𝑡 𝜙(𝑑1) + 𝑟𝐾𝑒−𝑟𝑡Φ(−𝑑2) − 𝑞𝑆𝑒−𝑞𝑡Φ(−𝑑1)

• Vega measures the sensitivity to the implied volatility
𝑉 = 𝑆𝑒−𝑞𝑡√𝑡𝜙(𝑑1)

• Rho measures the sensitivity to changes in the level of interest rate
𝜌𝑐 = 𝐾𝑡𝑒−𝑟𝑡Φ(𝑑2)
𝜌𝑝 = 𝐾𝑡𝑒−𝑟𝑡Φ(−𝑑2)
Any of the Greek letters for a portfolio of derivatives dependent on the same asset can be calculated as the weighted sum
of the Greek letters for each portfolio component.

The Black-Scholes-Merton analysis can be used to show that $Θ + (𝑟 − 𝑞)𝑆Δ + 1
2𝜎2𝑆2Γ = (𝑟 − 𝑞)𝐶$

# Helper to plot a greek over range of stock price S"""
def plot_greek(K, sigma, r, T, greek, S=np.linspace(50, 200, 100),

ax=None, label='', q=0., c="C0"):
"""helper to plot a greek over range of stock price S"""
y = [greek(S=s, K=K, sigma=sigma, r=r, T=T, q=q) for s in S]
ax = ax or plt.gca()
ax.plot(S, y, color=c)
#ax.set_xlabel('Stock Price')
ax.legend([label])

Define and plot options sensitivities

# Plot options sensitivities
fig, ax = plt.subplots(nrows=4, ncols=2, figsize=(10,12))
ax = ax.flatten()

# call option parameters
opt = dict(K=105, r=0.04, sigma=0.25, T=1)

def delta_call(S, K, sigma, r, T, q=0.):
"""Black-Scholes-Merton call option delta"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)

(continues on next page)
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return np.exp(-q*T) * stats.norm.cdf(d1)
def delta_put(S, K, sigma, r, T, q=0.):

"""Black-Scholes-Merton put option delta"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
return -np.exp(-q*T) * stats.norm.cdf(-d1)

print(delta_call(S=100, **opt)) # 0.5358

plot_greek(greek=delta_call, label='Call Delta', ax=ax[0], c="C0", **opt)
plot_greek(greek=delta_put, label='Put Delta', ax=ax[1], c="C1", **opt)

def vega(S, K, sigma, r, T, q=0.):
"""Black-Scholes-Merton call or put option delta"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
return S * np.exp(-q*T) * np.sqrt(T) * stats.norm.pdf(d1)

print(vega(S=100, **opt)) # 39.73

plot_greek(greek=vega, label='Vega', ax=ax[2], c="C2", **opt)

def gamma(S, K, sigma, r, T, q=0.):
"""Black-Scholes-Merton call or put option gamma"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
return np.exp(-q*T) * stats.norm.pdf(d1) / (S * sigma * np.sqrt(T))

print(gamma(S=100, **opt)) # 0.0159

plot_greek(greek=gamma, label='Gamma', ax=ax[3], c="C3", **opt)

def theta_call(S, K, sigma, r, T, q=0.):
"""Black-Scholes-Merton call option theta"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
d2 = d1 - sigma * np.sqrt(T)
return ((-S * np.exp(-q*T) * stats.norm.pdf(d1) * sigma / (2 * np.sqrt(T)))

- (r * K * np.exp(-r*T) * stats.norm.cdf(d2)) +
+ (q * S * np.exp(-q*T) * stats.norm.cdf(d1)))

def theta_put(S, K, sigma, r, T, q=0.):
"""Black-Scholes-Merton put option theta"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
d2 = d1 - sigma * np.sqrt(T)
return ((-S * np.exp(-q*T) * stats.norm.pdf(d1) * sigma / (2 * np.sqrt(T)))

+ (r * K * np.exp(-r*T) * stats.norm.cdf(-d2)) +
- (q * S * np.exp(-q*T) * stats.norm.cdf(-d1)))

print(theta_call(S=100, **opt)) # 6.73

plot_greek(greek=theta_call, label='Call Theta', ax=ax[4], c="C4", **opt)

plot_greek(greek=theta_put, label='Put Theta', ax=ax[5], c="C5", **opt)

def rho_call(S, K, sigma, r, T, q=0.):
"""Black-Scholes-Merton call option rho"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
d2 = d1 - sigma * np.sqrt(T)
return K * T * np.exp(-r * T) * stats.norm.cdf(d2)

def rho_put(S, K, sigma, r, T, q=0.):
"""Black-Scholes-Merton put option rho"""
d1 = _d1(S=S, K=K, sigma=sigma, r=r, T=T, q=q)
d2 = d1 - sigma * np.sqrt(T)
return -K * T * np.exp(-r * T) * stats.norm.cdf(-d2)

(continues on next page)
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print(rho_call(S=100, **opt)) # 44

plot_greek(greek=rho_call, label='Call Rho', ax=ax[6], c="C6", **opt)

plot_greek(greek=rho_put, label='Put Rho', ax=ax[7], c="C7", **opt)

plt.suptitle('Sensitivity of Options Prices (the "Greeks")')
plt.tight_layout()

0.5357925584332519
39.73355715246575
0.0158934228609863
-6.727614629584682
44.02299963816157
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# Check that: theta + r S delta + 1/2 sigma^2 S^2 gamma = r call
S = 100
print(theta_call(S=S, **opt) + opt['r'] * S * delta_call(100, **opt) +

0.5 * opt['sigma']**2 * S**2 * gamma(S=S, **opt),
opt['r'] * call(S=S, **opt))
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0.3822502482065442 0.38225024820654485

15.4 Monte Carlo simulation

Simulation is an effective way to estimate expectations that are difficult or impossible to compute analytically. Consider a
random variable 𝑋 that can be simulated (for example, from a normal distribution), and a function 𝑔 that can be evaluated
at realizations of 𝑋. To estimate the expected value of 𝑔(𝑋), we take multiple simulated draws. Since these draws are
independent and identically distributed (iid), the expectation can be approximated as:

̂𝐸[𝑔(𝑋)] = 1
𝑏

𝑏
∑
𝑖=1

𝑔(𝑋𝑖)

where 𝑏 is the number of simulated samples. By the Law of Large Numbers (LLN), the approximation improves as 𝑏
increases:

lim
𝑏→∞

̂𝐸[𝑔(𝑋)] = 𝐸[𝑔(𝑋)]

Additionally, the Central Limit Theorem (CLT) implies that the distribution of the simulated estimate approaches a
normal distribution as the number of simulations grows. The variance of the simulated estimate can be approximated by:

𝑉 [ ̂𝐸[𝑔(𝑋)]] = 𝜎2
𝑏
𝑏

where 𝜎2
𝑏 is the sample variance. This variance can be estimated as:

𝜎2
𝑔 = 1

𝑏
𝑏

∑
𝑖=1

(𝑔(𝑋𝑖) − 𝐸[𝑔(𝑋𝑖)])2

which is the standard variance estimator for iid samples. The standard error of the estimate, 𝜎𝑔√
𝑏 , indicates the accuracy

of the approximation. This allows us to adjust 𝑏 to achieve any desired level of precision.

15.4.1 Antithetic Variates

Antithetic variates are a technique to improve the accuracy of simulation by generating a second set of random variables
that are negatively correlated with the original set of random variables. These pairs of variables are created using a single
uniform random number. Each uniform variable 𝑈𝑖 generates its counterpart 1 − 𝑈𝑖, both of which are then mapped
through the inverse cumulative distribution function (CDF) to generate correlated random variables.
Using antithetic variates reduces the simulation error, but only if the function 𝑔(𝑋) is monotonic, which ensures that the
negative correlation between the paired variables results in reduced error. The benefit of this approach comes from the
negative correlation, which decreases the standard error and thus increases the accuracy of the simulation.

15.4.2 Control Variates

Control variates are another technique to enhance simulation accuracy. A control variate is a derived random variable
ℎ(𝑋𝑖), which is correlated with the primary variable 𝑔(𝑋𝑖) but has a known mean, typically zero. To be effective, a good
control variate must satisfy two criteria:

1. It should be computationally inexpensive to construct from the data 𝑥𝑖, offering a more cost-effective alternative to
increasing the number of simulations.
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2. It should exhibit a high correlation with the function 𝑔(𝑋), making it useful for reducing the error in the primary
estimate.

The optimal parameter 𝛽, which minimizes the approximation error, is typically found using regression:

𝑔(𝑥𝑖) = 𝛼 + 𝛽ℎ(𝑥𝑖)

By adjusting 𝛽, the control variate technique helps improve the accuracy of the estimated value of 𝑔(𝑋).

15.4.3 Simulating option prices

To simulate the price of a financial option, we assume that the logarithm of the stock price follows a normal distribution.
The log of the stock price at time 𝑇 , denoted 𝑠𝑇 , is given by:

𝑠𝑇 = 𝑠0 + 𝑇 (𝑟𝑓 − 𝜎2

2 ) +
√

𝑇𝑥𝑖

where 𝑥𝑖 is a random variable sampled from a normal distribution 𝑁(0, 𝜎2), 𝑟𝑓 is the risk-free rate, and 𝜎2 is the variance
of the stock return. The final stock price is then 𝑆𝑇 = exp(𝑠𝑇 ), and the present value of the option’s payoff is:

𝐶 = exp(−𝑟𝑓𝑇 ) max(𝑆𝑇 − 𝐾, 0)

where 𝐾 is the strike price of the option. The expected price of a call option can be estimated by averaging the simulated
payoffs:

𝐸[𝐶] = 𝐶 = 1
𝑏

𝑏
∑
𝑖=1

𝐶𝑖

where 𝐶𝑖 represents the simulated payoff for each instance. This approach is particularly useful for complex pricing
scenarios where analytical solutions may not exist.

# helpers for random number generator and monte carlo simulation
class RNG:

"""Helper to generate random normal variables, with optional antithetic variates""
↪"

def __init__(self, seed=None, antithetic=False, ppf=stats.norm.ppf):
self.ppf = ppf
self.antithetic = antithetic
self._prev = None # to track if antithetic pair available to return next
self.seed = seed
self.rng = np.random.default_rng(seed)

def __call__(self, shape=1, **kwargs):
_shape = (shape, ) if isinstance(shape, int) else shape
n = np.prod(_shape)
if self.antithetic: # generate half as many rv's, by returning 1-rv

new = int((n + 1) / 2) if self._prev is None else int(n / 2)
new = self.rng.random((new,))
rem = 1 - new[:n - len(new) - int(self._prev is not None)]
last = new[-1] if len(rem) < len(new) else None # if last pair unused
out = [] if self._prev is None else [1 - self._prev]
#out.extend(new)
#out.extend(rem)
for x, y in zip(new[:len(rem)], rem):

out.extend([x, y])

(continues on next page)
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if last is not None:
out.extend([last])

out = np.array(out)
self._prev = last

else:
out = self.rng.random(_shape)

if shape == 1:
return self.ppf(out[0], **kwargs)

else:
return self.ppf(out.reshape(_shape), **kwargs)

def monte_carlo(rng, S, K, sigma, r, T, control=None):
"""Helper to price European call option by Monte Carlo Simulation
Args:
control : True price of European put option, as control variate

"""
if rng.antithetic:

label = 'Both' if control else 'Antithetic'
else:

label = 'Control' if control else 'Standard'
result = {}
for b in [50*4**i for i in range(9)]:

tic = time.time()
x = rng(b, scale=sigma)
s = S * np.exp(T * (r - sigma**2/2) + np.sqrt(T) * x)
c = np.exp(-r * T) * np.maximum(s - K, 0)
if control is not None: # to apply control variate method

error = np.exp(-r * T) * np.maximum(K - s, 0) - control # error of put␣
↪price

ols = stats.linregress(x=error, y=c) # compute best hedge to minimize␣
↪error

c = c - ols.slope * error
result[b] = dict(Price=np.mean(c).round(2),

StdErr=(np.std(c) / np.sqrt(b)).round(2),
elapsed = np.round(time.time() - tic, 4))

return DataFrame.from_dict(result, orient='index').rename_axis(columns=label)

RNG(antithetic=True)((2, 3)) # generate normal r.v.'s with antithetic variates

array([[-0.72886259, 0.72886259, 0.25403329],
[-0.25403329, -0.81873243, 0.81873243]])

Standard simulation

S = 2500
K = 2500
sigma = 0.164
r = 0.02
T = 2

seed = 42
rng = RNG(seed=seed)
monte_carlo(rng, S=S, K=K, sigma=sigma, r=r, T=T)
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Standard Price StdErr elapsed
50 297.91 54.77 0.0005
200 247.65 25.97 0.0003
800 283.95 15.23 0.0003
3200 279.62 7.59 0.0004
12800 278.25 3.73 0.0009
51200 279.45 1.85 0.0027
204800 278.93 0.93 0.0112
819200 278.31 0.46 0.0491
3276800 278.59 0.23 0.2490

Antithetic Variates

rng = RNG(seed=seed, antithetic=True)
monte_carlo(rng, S=S, K=K, sigma=sigma, r=r, T=T)

Antithetic Price StdErr elapsed
50 280.86 54.41 0.0004
200 242.12 25.04 0.0006
800 276.97 14.15 0.0013
3200 284.38 7.63 0.0013
12800 277.30 3.72 0.0014
51200 279.28 1.87 0.0052
204800 278.15 0.93 0.0225
819200 278.46 0.46 0.1279
3276800 278.48 0.23 0.4977

Control Variates

control = put(S, K, sigma, r, T) # Black-Scholes-Merton put price
rng = RNG(seed=seed)
monte_carlo(rng, S=S, K=K, sigma=sigma, r=r, T=T, control=control)

Control Price StdErr elapsed
50 263.59 47.04 0.0010
200 251.85 22.76 0.0003
800 287.49 13.52 0.0002
3200 279.92 6.76 0.0003
12800 278.43 3.32 0.0010
51200 279.01 1.64 0.0022
204800 279.02 0.83 0.0109
819200 278.22 0.41 0.0441
3276800 278.64 0.21 0.3454

Both Antithetic and Control Variates

control = put(S, K, sigma, r, T) # Black-Scholes-Merton put price
rng = RNG(seed=seed, antithetic=True)
monte_carlo(rng, S=S, K=K, sigma=sigma, r=r, T=T, control=control)

Both Price StdErr elapsed
50 286.14 45.71 0.0006
200 227.29 22.03 0.0008
800 277.91 12.32 0.0003

(continues on next page)
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3200 286.51 6.79 0.0008
12800 276.56 3.31 0.0018
51200 279.47 1.66 0.0058
204800 277.88 0.83 0.0244
819200 278.41 0.41 0.1019
3276800 278.41 0.21 0.5569
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CHAPTER

SIXTEEN

VALUE AT RISK

The only constant in life is change - Heraclitus
Value at Risk (VaR) is a widely used risk measure in financial risk management that quantifies the potential loss in a
portfolio over a given time period with a specified confidence level. However, VaR has limitations, including its inability
to capture the severity of losses beyond its threshold. To address this, alternative measures such as Expected Shortfall
(ES) have been introduced. We explore different methodologies for calculating VaR, including parametric, historical, and
Monte Carlo simulation approaches, as well as advanced techniques such as stressed VaR and bootstrapping. Additionally,
we examine conditional volatility models, including EWMA and GARCH, to account for changing market conditions.
Finally, we discuss backtesting methods, such as the Kupiec Likelihood Ratio test and conditional coverage tests, to
validate the accuracy of VaR models in real-world scenarios.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from typing import Dict
import numpy as np
from scipy import stats
import pandas as pd
from pandas import DataFrame, Series
import statsmodels.api as sm
import matplotlib.pyplot as plt
from finds.readers import Alfred
from finds.utils import row_formatted
from secret import credentials
#pd.set_option('display.max_rows', None)
VERBOSE = 0
#%matplotlib qt
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16.1 Risk measures

Value at Risk (VaR) is a fundamental risk measure that estimates the maximum potential loss in a portfolio over a
specific period at a given confidence level. A VaR at an (\alpha%) confidence level represents the loss threshold that has
an (\alpha%) probability of being exceeded.

16.1.1 Coherence

A major limitation of VaR is that it does not provide insight into the magnitude of losses beyond its threshold. Artzner et
al. proposed four essential properties that a risk measure should satisfy:

1. Monotonicity: If one portfolio consistently performs worse than another under all conditions, it should have a
higher risk measure.

2. Translation Invariance: Adding a risk-free cash amount 𝐾 to a portfolio should reduce its risk measure by 𝐾.
3. Homogeneity: Scaling a portfolio by a factor of 𝑋 should scale its risk measure by the same factor.
4. Subadditivity: The risk measure of a merged portfolio should not exceed the sum of the individual risk measures,

ensuring diversification benefits.
A risk measure that satisfies all four properties is considered coherent. Expected Shortfall (ES) is a coherent risk
measure, whereas VaR lacks subadditivity. ES is calculated as the probability-weighted average of losses beyond the VaR
threshold. Other coherent risk measures can be derived by applying a risk aversion function to weight quantiles, with ES
being a special case where tail quantiles receive equal weighting.
Retrieve crypto currency index returns from FRED

# retrieve crypto currency index from FRED, as log returns
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE, convert_date=0)
cat = alf.get_category(33913)
cryptos = [alf(s['id'], log=1, diff=1)

for s in cat['series'] if 'DISCONT' not in s['title']]
cryptos = pd.concat(cryptos, axis=1).sort_index()
date_str = f" ({str(cryptos.index[0])[:10]} to {str(cryptos.index[-1])[:10]})"
titles = Series({s['id']: s['title']

for s in cat['series'] if 'DISCONT' not in s['title']},
name=cat['name'])

# crypto index names
titles.to_frame().rename_axis(index=cat['id'])

Cryptocurrencies
33913
CBBCHUSD Coinbase Bitcoin Cash
CBBTCUSD Coinbase Bitcoin
CBETHUSD Coinbase Ethereum
CBLTCUSD Coinbase Litecoin

# recent crypto log returns
cryptos
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CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
date
2014-12-01 NaN NaN NaN NaN
2014-12-02 NaN 0.021391 NaN NaN
2014-12-03 NaN 0.000000 NaN NaN
2014-12-04 NaN -0.002384 NaN NaN
2014-12-06 NaN 0.002384 NaN NaN
... ... ... ... ...
2025-02-26 0.010099 0.006085 -0.011953 0.018231
2025-02-27 0.062384 -0.003877 -0.030322 0.009735
2025-02-28 -0.014295 0.020210 -0.008916 -0.029413
2025-03-01 0.071640 0.091550 0.127686 0.028240
2025-03-02 -0.003326 -0.010081 -0.019098 0.015676

[3710 rows x 4 columns]

16.1.2 Parametric method

Assuming returns follow a normal distribution, VaR and ES at a confidence level 𝛼 are given by:

𝑉 𝑎𝑅 = −𝜇 + 𝜎𝑧1−𝛼

𝐸𝑆 = −𝜇 + 𝜎 exp(−𝑧2
1−𝛼/2)

(1 − 𝛼)
√

2𝜋
where 𝑧𝛼 is the standard normal quantile corresponding to 𝛼.
For example, at a 95% confidence level (𝛼 = 0.95), 𝑧𝛼 = −1.645, which represents the lower 5% quantile. In practice,
𝜇 and 𝜎 are estimated from historical data, but since short-term mean returns are difficult to measure accurately, 𝜇 is
often assumed to be zero.
Under the assumption that geometric returns are normally distributed, then arithmetic returns follow a lognormal dis-
tribution. The skewness of the lognormal (exp(𝜎2) + 2)√(exp(𝜎2) − 1) is always positive, hence the lognormal has a
long right-tail. The lognormal has kurtosis exp(𝜎2)4 + 2 exp(𝜎2)3 + 3 exp(𝜎2)2 − 3 which exceeds 3 and increases with
volatility, hence exhibits fatter tails than the normal distribution.

# Helper to compute parametric VaR and ES
def parametric_risk(sigma: float | Series, alpha: float) -> Dict:

"""Calculate parametric gaussian VaR and ES"""
var = -sigma * stats.norm.ppf(1 - alpha)
es = sigma * stats.norm.pdf(stats.norm.ppf(1 - alpha)) / (1 - alpha)
return dict(value_at_risk=var, expected_shortfall=es)

alpha = 0.95
volatility = {label: np.std(cryptos[label]) for label in cryptos}
parametric = DataFrame({label: Series(parametric_risk(std, alpha=alpha))

for label, std in volatility.items()})
print(f"Parametric Risk Measures (alpha={alpha})")
pd.concat([DataFrame.from_dict({'volatility': volatility}, orient='index'),

parametric], axis=0).round(4)

Parametric Risk Measures (alpha=0.95)
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CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
volatility 0.0576 0.0396 0.0505 0.0543
value_at_risk 0.0948 0.0651 0.0831 0.0894
expected_shortfall 0.1189 0.0817 0.1042 0.1121

16.1.3 Delta-Normal method

The delta-normal method provides an approximation for non-linear portfolios by assuming that underlying asset returns
are normally distributed. The risk of the portfolio is modeled using delta, which measures the sensitivity of portfolio
value to changes in underlying asset prices. A more refined approximation includes gamma, the second derivative of
portfolio value with respect to asset prices, known as the delta-gamma method.

16.1.4 Monte Carlo simulation method

Monte Carlo simulation applies to both linear and non-linear portfolios. This approach generates random scenarios based
on an assumed distribution for underlying risk factors. If 1,000 scenarios are simulated, the 95% VaR is estimated as the
50th worst loss (i.e., the 5th percentile), while Expected Shortfall is calculated as the average of the 49 worst losses.
However, standard Monte Carlo models assume normality and independence, which may not always reflect real-world
financial data, necessitating the use of non-parametric approaches.
A QQ plot compares the empirical distribution of returns to a theoretical normal distribution. If returns exhibit heavier
tails than the reference distribution, the QQ plot will have steeper slopes at the extremes.

# QQ Plot for Gaussian assumption
from statsmodels.graphics.gofplots import ProbPlot
fig, axes = plt.subplots(2, 2, figsize=(10, 9))
for label, ax in zip(cryptos, axes.flatten()):

pp = ProbPlot(cryptos[label].dropna(), fit=True)
pp.qqplot(ax=ax, color='C0', alpha=.5)
sm.qqline(ax=ax, fmt='r--', line='45', lw=1)
ax.set_title(f"{titles[label]}")

plt.suptitle(f"Daily Crypto Returns" + date_str)
plt.tight_layout()

/home/terence/env3.11/lib/python3.11/site-packages/statsmodels/graphics/gofplots.
↪py:1043: UserWarning: color is redundantly defined by the 'color' keyword␣
↪argument and the fmt string "b" (-> color=(0.0, 0.0, 1.0, 1)). The keyword␣
↪argument will take precedence.
ax.plot(x, y, fmt, **plot_style)
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Lag plot of daily returns

# Autocorrelation of returns
import statsmodels.api as sm
fig, axes = plt.subplots(2, 2, figsize=(10, 9))
for label, ax in zip(cryptos, axes.flatten()):

X = cryptos[label].dropna()
pd.plotting.lag_plot(X, lag=1, ax=ax)
r = stats.linregress(X.values[1:], X.values[:-1])
ax.axline((0, r.intercept), slope=r.slope, ls=':', color="red")
ax.set_title(f"{titles[label]}")

plt.suptitle(f"Daily Crypto Returns")
plt.tight_layout()
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Lag plot of squared daily returns

# Autocorrelation of squared returns
fig, axes = plt.subplots(2, 2, figsize=(10, 9))
for label, ax in zip(cryptos, axes.flatten()):

X = cryptos[label].dropna()**2
pd.plotting.lag_plot(X, lag=1, ax=ax)
r = stats.linregress(X.values[1:], X.values[:-1])
ax.axline((0, r.intercept), slope=r.slope, ls=':', color="red")
ax.set_title(f"{titles[label]}")

plt.suptitle(f"Daily Crypto Squared Returns")
plt.tight_layout()

298 Chapter 16. Value at Risk



Financial Data Science Python Notebooks

16.1.5 Historical Simulation method

Historical simulation (HS) is the simplest non-parametric approach that estimates VaR by ordering historical losses and
selecting the appropriate quantile. Expected Shortfall is calculated as the average of losses beyond the VaR threshold.
This method accommodates non-normal features such as skewness and fat tails, making it robust in capturing market
risks. However, its accuracy depends on whether the historical dataset adequately represents future market conditions.

# Helper to compute VaR, ES and sample moments from historical simulation
def historical_risk(X: Series, alpha: float):

"""Calculate historical VaR, ES, and sample moments"""
X = X.dropna()
N = len(X)
var = -np.percentile(X, 100 * (1 - alpha))
es = -np.mean(X[X < var])
vol = np.std(X, ddof=0)
skew = stats.skew(X)
kurt = stats.kurtosis(X)
jb = stats.jarque_bera(X)[0]

(continues on next page)
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jbp = stats.jarque_bera(X)[1]
return dict(N=N, value_at_risk=var, expected_shortfall=es, volatility=vol,

skewness=skew, excess_kurtosis=kurt-3, jb_statistic=jb, jb_pvalue=jbp)

hist = DataFrame({label: historical_risk(cryptos[label], alpha=alpha)
for label in cryptos})

print(f"Historical Risk Measures (alpha={alpha})")
row_formatted(hist.round(4), {'N': "{:.0f}"})

Historical Risk Measures (alpha=0.95)

CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
N 2623 3709 3207 3117
value_at_risk 0.0831 0.0583 0.074 0.0822
expected_shortfall 0.0078 0.0032 0.0055 0.0061
volatility 0.0576 0.0396 0.0505 0.0543
skewness -0.2394 -1.822 -0.4136 0.7306
excess_kurtosis 13.159 52.3855 6.0638 10.3101
jb_statistic 28562.5232 476116.6693 11069.1899 23285.8936
jb_pvalue 0.0 0.0 0.0 0.0

16.1.6 Stressed VaR method

During periods of market stress, volatility and correlations tend to rise, often leading to correlation breakdowns where
asset prices move more synchronously. It is sometimes stated that “in stressed markets all correlations go to one.”
Standard VaR models may not capture these dynamics accurately. Stressed VaR is calculated using historical periods of
extreme market distress, such as the 2008 Financial Crisis or the 2021–2022 Crypto Winter, as opposed to simply the
most recent number of years. Stress testing is designed to identify vulnerabilities, particularly those involving periods of
high volatility.

beg, end = '2021-11-01', '2022-11-21' # dubbed "crypto winter"
stress = DataFrame({label: historical_risk(cryptos.loc[beg:end, label], alpha=alpha)

for label in cryptos})
print(f"Stressed Risk Measures ({beg} to {end})")
row_formatted(stress.round(4).rename_axis(index='(alpha=0.05)'), {'N': "{:.0f}"})

Stressed Risk Measures (2021-11-01 to 2022-11-21)

CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
(alpha=0.05)
N 386 386 386 386
value_at_risk 0.0818 0.0624 0.0773 0.0911
expected_shortfall 0.0078 0.0058 0.0074 0.0053
volatility 0.0464 0.0348 0.0461 0.0478
skewness -0.3194 -0.5904 -0.3785 -0.417
excess_kurtosis -0.5048 0.7985 -0.6065 -1.0258
jb_statistic 106.6976 254.4822 101.3559 73.8708
jb_pvalue 0.0 0.0 0.0 0.0
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16.1.7 Bootstrap method

Bootstrap resampling improves historical simulation by repeatedly drawing random samples from the dataset with re-
placement. Each resampled dataset provides a new VaR or ES estimate, and the distribution of these estimates is used
to compute confidence intervals. However, basic bootstrap methods assume that observations are independent over time,
which may not hold for financial returns. Modifications such as the block bootstrap preserve time dependencies by
sampling blocks of consecutive observations.

def bootstrap_risk(X: Series, alpha: float, n: int) -> dict:
"""Calculate bootstrap VaR, ES, confidence and plot VaR histogram"""
X = X.dropna()
N = len(X)
bootstraps = []
for _ in range(n):

Z = Series(np.random.choice(X, N), index=X.index)
bootstraps.append(historical_risk(Z, alpha=alpha))

bootstraps = DataFrame.from_records(bootstraps)
return bootstraps

def confidence_intervals(X: Series, confidence: float) -> dict:
"""Extracts confidence intervals and median from a series"""
lower = (1 - confidence) / 2
upper = lower + confidence
return np.quantile(X, [lower, 0.5, upper], method='inverted_cdf')

# Run and plot bootstrapped VaR and ES
n = 100
confidence = 0.9
intervals = dict()
for measure in ['value_at_risk', 'expected_shortfall']:

intervals[measure] = dict()
fig, axes = plt.subplots(2, 2, figsize=(10, 6))
for label, ax in zip(cryptos, axes.flatten()):

bootstraps = bootstrap_risk(cryptos[label].dropna(), alpha=alpha, n=n)
interval = confidence_intervals(bootstraps[measure], confidence=confidence)
intervals[measure][label] = interval.tolist()
ax.hist(bootstraps[measure], color='blue', alpha=0.2, bins=int(n/5))
ax.axvline(x=interval[0], color='red')
ax.axvline(x=interval[1], color='green')
ax.legend(['bootstrapped', f"{confidence*100:.0f}% confidence bounds",

'median'], fontsize='x-small')
ax.axvline(x=interval[2], color='red')
ax.set_title(label)

plt.tight_layout()
plt.suptitle('Bootstrapped ' + measure.capitalize())
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# display confidence intervals of VaR
DataFrame(intervals['value_at_risk'], index=['lower', 'median', 'upper'])\

.rename_axis(index='Value at Risk')

CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
Value at Risk

(continues on next page)
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lower 0.078517 0.053589 0.069026 0.076687
median 0.082939 0.058818 0.073875 0.082435
upper 0.091576 0.061019 0.079481 0.085629

# display confidence intervals of VaR
DataFrame(intervals['expected_shortfall'], index=['lower', 'median', 'upper'])\

.rename_axis(index='Expected Shortfall')

CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
Expected Shortfall
lower 0.006168 0.002339 0.004729 0.004981
median 0.007616 0.003314 0.005362 0.006072
upper 0.008870 0.003924 0.006546 0.007182

16.2 Conditional volatility models

A return distribution’s characteristics may change over time. A mixture model of normal distributions with varying
volatilities produces more peakedness and fatter tails than a simple normal distribution. In a model where returns re
conditionally normal, the distribution is normal each day, while the standard deviation of the return varies over time. This
leads to an unconditional distribution with fat tails.

16.2.1 EWMA model

Volatility can be estimated using an equal-weighted moving average of squared returns. However, this method suffers
from sudden jumps when large returns enter or exit the dataset.
The Exponentially Weighted Moving Average (EWMA) model addresses this by applying exponentially decreasing
weights to past returns:

𝜎2
𝑡 = (1 − 𝜆)𝑟2

𝑡−1 + 𝜆𝜎2
𝑡−1

where 𝜆 is a positive value less than 1 which determines the decay rate of past observations. This formula provides a very
simple way of implementing EWMA. The new estimate of the variance rate on day 𝑡 is a weighted average of the estimate
of the variance rate made for the previous day 𝑡 − 1, and the most recent observation of the squared return on day 𝑡 − 1.
In the 1990s, JP Morgan’s RiskMetrics suggests 𝜆 = 0.94 for daily market volatility estimation.

# Estimate EWMA (lambda=0.94) rolling model predictions for all cryptos
lambda_ = 0.94
ewma = {label: np.sqrt((cryptos[label]**2).dropna().ewm(alpha=1-lambda_).mean())

for label in cryptos}

# Helper to plot predicted VaR vs actual returns
def plot_var(X: Series, VaR: Series, ax: plt.Axes):

"""Helper to plot returns and VaR predictions"""
ax.plot(X, ls='', marker='.', markersize=2)
ax.plot(-VaR.shift(-1), lw=1, ls='-', c='r')
ax.plot(VaR.shift(-1), lw=1, ls='-', c='r')
ax.legend([X.name, 'VaR', '$-$VaR'])
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# Plot daily returns and EWMA predicted VaR of all cryptos
fig, axes = plt.subplots(2, 2, figsize=(10, 9))
for label, ax in zip(cryptos, axes.flatten()):

Z = pd.concat([cryptos[label].dropna(),
parametric_risk(ewma[label], alpha=alpha)['value_at_risk']\
.rename('VaR')],

join='inner', axis=1).dropna()
plot_var(Z[label], VaR=Z['VaR'], ax=ax)
ax.set_title(titles[label])

plt.suptitle(f"Daily Returns and EWMA VaR (alpha={alpha})")
plt.tight_layout()

# Properties of EWMA normalized returns for all cryptos
ewma_hist = dict()
for label in cryptos:

X = (cryptos[label] / ewma[label].shift(-1)) # normalize by predict vol
ewma_hist[label] = Series(historical_risk(X, alpha=0.95)).rename(label)

print("Normalized by EWMA predicted volatility (alpha=0.95)")
DataFrame(ewma_hist).round(4)
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Normalized by EWMA predicted volatility (alpha=0.95)

CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
N 2622.0000 3708.0000 3206.0000 3116.0000
value_at_risk 1.5056 1.4695 1.5831 1.5697
expected_shortfall 0.1241 0.0717 0.0828 0.0896
volatility 0.9269 0.9252 0.9432 0.9425
skewness 0.1035 -0.0464 -0.0177 0.0048
excess_kurtosis -1.5298 -1.5609 -2.1157 -1.8466
jb_statistic 240.8139 321.2816 104.6335 172.7197
jb_pvalue 0.0000 0.0000 0.0000 0.0000

16.2.2 GARCH model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, developed by Robert Engel and
Tim Bollerslev, can be intuitively regarded as an extension of EWMA. In GARCH (1,1), we also give some weight to a
long run average variance �̂�.

𝜎2
𝑡 = 𝛼𝑟2

𝑡−1 + 𝛽𝜎2
𝑡−1 + 𝛾�̂�

where 𝛼 + 𝛽 + 𝛾 = 1. This introduces mean reversion, where the �̂� term provides a “pull”toward the long-run
average, ensuring that volatility stabilizes over time. And just as with ARMA specifications of time series models, more
complexGARCH(p,q)models can incorporate additional lags of 𝑞 squared returns and 𝑝 variance estimates for improved
accuracy.
rugarch package in R

# Estimate GARCH(1, 1) by calling R's rugarch library
import rpy2.robjects as ro
from rpy2.robjects.packages import importr
from finds.utils import PyR
def rugarch(X: Series, savefig: str = '', verbose=VERBOSE) -> Series:

"""GARCH(1,1) wrapper over rugarch"""
rugarch_ro = importr('rugarch') # to use library rugarch
c_ = ro.r['c']
list_ = ro.r['list']
spec = ro.r['ugarchspec'](mean_model=list_(armaOrder=c_(0,0), include_mean=False))
model = ro.r['ugarchfit'](spec, data=PyR(X.values).ro)
if verbose:

ro.r['show'](model)
if savefig:

for which in [4, 5, 10, 11]:
ro.r['plot'](model, which=which)
PyR.savefig(f"{savefig}{which}.png", display=None)

return Series(PyR(ro.r['sigma'](model)).values.flatten(),
index=X.index, name=X.name)

# Estimate GARCH(1,1) full period model for all cryptos
garch = {label: rugarch(cryptos[label].dropna()) for label in cryptos}

# Plot daily returns and GARCH predicted VaR
alpha = 0.95 # VaR parameter

(continues on next page)

16.2. Conditional volatility models 305



Financial Data Science Python Notebooks

(continued from previous page)

fig, axes = plt.subplots(2, 2, figsize=(10, 9))
for label, ax in zip(cryptos, axes.flatten()):

Z = pd.concat([cryptos[label],
parametric_risk(garch[label], alpha=alpha)['value_at_risk']\
.rename('VaR')],

join='inner', axis=1).dropna()
plot_var(Z[label], VaR=Z['VaR'], ax=ax)
ax.set_title(titles[label])

plt.suptitle(f"Daily Returns and GARCH VaR (alpha={alpha})")
plt.tight_layout()

# Properties of GARCH normalized returns
garch_hist = dict()
for label in cryptos:

X = (cryptos[label] / garch[label].shift(-1)) # normalize by predict vol
garch_hist[label] = Series(historical_risk(X, alpha=0.95)).rename(label)

print("Normalized by GARCH predicted volatility (alpha=0.95)")
DataFrame(garch_hist).round(4)
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Normalized by GARCH predicted volatility (alpha=0.95)

CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
N 2622.0000 3708.0000 3206.0000 3116.0000
value_at_risk 1.3382 1.2965 1.4123 1.3956
expected_shortfall 0.1062 0.0504 0.0789 0.0843
volatility 0.7901 0.7740 0.8411 0.8454
skewness 0.0185 -0.0364 -0.0033 0.0350
excess_kurtosis -2.5903 -2.9028 -2.7553 -1.9190
jb_statistic 18.4912 2.2795 8.0058 152.3519
jb_pvalue 0.0001 0.3199 0.0183 0.0000

16.3 Backtesting VaR

The simplest method for validating a VaR model is failure rate analysis, which counts the proportion of times actual
losses exceed the VaR estimate. If the model is accurate, these exceedances should follow a binomial distribution with
probability 𝑝 = 1 − 𝛼, where 𝛼 is the VaR confidence level. The VaR model can be rejected in two regions, both when
the number of observed violations is too few or too many.

16.3.1 Kupiec Likelihood Ratio test

Kupiec (1995) proposed a likelihood ratio test for backtesting VaR based on the number of observed violations:
$𝐿𝑅 = −2[(𝑁 − 𝑆) ln(1 − 𝑝) + 𝑆 ln(𝑝)] + 2[(𝑁 − 𝑆) ln(1 − 𝑆/𝑁) + 𝑆 ln(𝑆/𝑁)]$
where 𝑆 is the number of VaR exceedances in 𝑁 observations.

def kupiec_LR(alpha: float, s: int, n: int):
"""Compute Kupiec likelihood ratio given s violations in n trials

Returns:
Dict of likelihood statistic and pvalue

"""
p = 1 - alpha # prob of violation
num = np.log(1 - p)*(n - s) + np.log(p)*s
den = np.log(1 - (s/n))*(n - s) + np.log(s/n)*s
lr = -2 * (num - den)
return {'lr': lr, 'violations': s, 'N': n,

# '5%_critical': stats.chi2.ppf(0.95, df=1),
'pvalue': 1 - stats.chi2.cdf(lr, df=1)}

def kupiec(X: Series, VaR: Series, alpha: float) -> Dict:
"""Kupiec Likelihood Ratio test of VaR

Returns:
Dict of likelihood statistic and pvalue

"""
Z = pd.concat([X, VaR], axis=1).dropna()
n = len(Z)
s = np.sum(Z.iloc[:, 0] < -Z.iloc[:, 1]) # number of violations < -VaR
return kupiec_LR(alpha=alpha, s=s, n=n)
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# Kupiec likelihood ratio test for EWMA
row_formatted(DataFrame(

{label: kupiec(cryptos[label],
VaR=parametric_risk(ewma[label], alpha=alpha)['value_at_risk'],
alpha=alpha) for label in cryptos})\

.rename_axis(index=f"EWMA({lambda_})", columns="Kupiec LR Test:").
↪round(4),

{'N': '{:.0f}', 'violations': '{:.0f}'})

Kupiec LR Test: CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
EWMA(0.94)
lr 1.9136 3.8477 1.3918 3.0693
violations 116 160 146 135
N 2623 3709 3207 3117
pvalue 0.1666 0.0498 0.2381 0.0798

# Kupiec likelihood ratio test for GARCH(1,1)
row_formatted(DataFrame(

{label: kupiec(cryptos[label],
VaR=parametric_risk(garch[label], alpha=alpha)['value_at_risk'],
alpha=alpha) for label in cryptos})\

.rename_axis(index=f"GARCH(1,1)", columns="Kupiec LR Test:").round(4),
{'N': '{:.0f}', 'violations': '{:.0f}'})

Kupiec LR Test: CBBCHUSD CBBTCUSD CBETHUSD CBLTCUSD
GARCH(1,1)
lr 6.8446 5.5607 3.4345 12.3497
violations 103 155 138 115
N 2623 3709 3207 3117
pvalue 0.0089 0.0184 0.0638 0.0004

16.3.2 Conditional coverage tests

Value-at-Risk (VaR) violations should occur randomly over time; if violations cluster, it may suggest that the model
is misspecified. Conditional coverage tests, which extend Kupiec’s test, evaluate not only the frequency but also the
independence of exceptions over time.

# TODO: conditional likelihood test

References:
Jorion, Phillippe. Value at Risk.
P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath,“Coherent Measures of Risk”, Mathematical Finance 9 (1999): 203–
228.
Kupiec, P. (1995). Techniques for Verifying the Accuracy of Risk Measurement Models. Journal of Derivatives, 3,
73-84.
FRM Part I Exam Book Ch. 1-3
FRM Part II Exam Book Market Risk Measurement and Management Ch. 1-2
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SEVENTEEN

COVARIANCE MATRIX

Alone, we can do so little; together, we can do so much - Helen Keller
The covariance matrix quantifies the relationships between asset returns, enabling investors to assess diversification benefits
and manage portfolio risk. We begin by exploring risk budgeting, which breaks down a portfolio’s overall risk contribution
by asset, and specifically risk parity portfolios, which aim to distribute risk evenly across assets. We then cover techniques
for covariance matrix estimation, including principal component analysis (PCA), Exponentially Weighted Moving Average
(EWMA), and shrinkage methods.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
from sklearn.decomposition import PCA
from pandas import DataFrame
import cvxpy as cp
from tqdm import tqdm
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from sklearn.covariance import LedoitWolf, OAS, EmpiricalCovariance
from sklearn import cluster
from finds.utils import ColorMap
from finds.readers import FFReader
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

# %matplotlib qt
VERBOSE = 0

17.1 Portfolio risk

The covariance matrix is essential for portfolio risk analysis, helping investors evaluate diversification benefits and ef-
fectively manage overall risk. In this analysis, we use monthly returns from the 49 industry indexes compiled by Ken
French.

# Retrieve industry returns from Ken French Data Library website
symbol = '49_Industry_Portfolios'
ff = FFReader(symbol)
keep = ff[0].index[(ff[0] > -99).all(axis=1)]
rets = (ff[0] / 100).reindex(keep)
caps = (ff[4] * ff[5] * 10e6).reindex(keep) # number of firms x avg market cap
weights = caps.iloc[-1] / caps.iloc[-1].sum()
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X = (rets - rets.mean(axis=0)) # demean by industry
sigma = 12 * X.T @ X / len(X) # annualized covariance matrix
Y = caps.iloc[-1]\

.rename('cap')\

.to_frame()\

.join(DataFrame({'vol': np.sqrt(np.diag(sigma))}, index=X.columns))\

.sort_values('cap', ascending=False)

# Plot annualized volatility and market caps of industries
fig, ax = plt.subplots(nrows=2, figsize=(10, 8))
Y['cap'].plot.bar(ax=ax[0], color="C0", width=0.9)
ax[0].set_yscale('log')
ax[0].set_title(f"Market Cap and Volatility of FF49 Industries ({X.index[0]} to {X.

↪index[-1]})")
ax[0].set_ylabel(f"Log Market Cap")
Y['vol'].plot.bar(ax=ax[1], color="C1", width=0.9)
ax[1].set_ylabel(f"Annualized Volatility")
ax[1].set_xlabel(f"monthly returns ({X.index[0]} to {X.index[-1]})")

Text(0.5, 0, 'monthly returns (1969-07 to 2024-12)')
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17.1.1 Risk budgetting

Risk budgeting breaks down a portfolio’s overall risk contribution by asset.
• Portfolio Risk: The volatility of a market portfolio is given by:

$𝜎𝑃 = 𝑊𝑇 Σ𝑊𝑤ℎ𝑒𝑟𝑒 W 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑡ℎ𝑒𝑣𝑒𝑐𝑡𝑜𝑟𝑜𝑓𝑎𝑠𝑠𝑒𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖𝑛𝑡ℎ𝑒𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜, 𝑎𝑛𝑑 \Sigma $ is the covari-
ance matrix of asset returns.

• Covariance: The covariance of an individual security 𝑖 with the portfolio 𝑃 is expressed as:
$𝜎𝑖𝑃 = 𝜌𝑖𝑃 ⋅ 𝜎𝑖 ⋅ 𝜎𝑃 𝑤ℎ𝑒𝑟𝑒 \rho_{iP} $ is the correlation between the security and the portfolio.

• Beta (𝛽): The systematic risk of a security relative to the portfolio, defined as:
$𝛽𝑖 = 𝜎𝑖𝑃

𝜎2
𝑃

$
This represents the regression slope of the security’s returns against the portfolio’s returns.

• Marginal Contribution to Risk (MCR): Measures the sensitivity of portfolio volatility to small changes in an
asset’s weight:
$𝜕𝜎𝑃

𝜕𝑤𝑖
= 𝜎𝑖𝑃

𝜎𝑃
$

• Percent Contribution to Risk (PCR): Indicates the fraction of total portfolio risk attributable to a security:
$𝛽𝑖 ⋅ 𝑤𝑖$
The sum of all asset contributions equals 1.

• Contribution to Portfolio Risk: The total portfolio risk can also be expressed as:
$𝛽𝑖 ⋅ 𝑤𝑖 ⋅ 𝜎𝑃 = 𝑤𝑖 ⋅ 𝜎𝑖 ⋅ 𝜌𝑖𝑃 $ This highlights how an asset’s weight, volatility, and correlation with the portfolio
drive its risk contribution.

# Helper to compute portfolio risk budget
def risk_budget(w, sigma, labels):

"""Compute portfolio risk analytics"""
sigma_ = np.array(sigma) * 100 * 100 # express as percent returns
w_ = np.array(w)

# Portfolio volatility (percent)
vol = np.sqrt(w_.T @ sigma_ @ w_)

# Covariance of each security wrt market portfolio
cov = sigma_ @ w_

# Beta of each security wrt market portfolio
beta = cov / (w_.T @ sigma_ @ w_)

# Marginal Contribution to Risk of each security
marginal = beta * vol

# Percent Contribution to Risk
percent = beta * w_ * 100

# Contribution to Risk
contrib = marginal * w_

return DataFrame({'weight': list(w),
'Beta': list(beta),
'MCR(%)': list(marginal),
'PCR(%)': list(percent),
'CR': list(contrib)},
index=labels)
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vol = np.sqrt(weights.T @ sigma @ weights) # market portfolio risk
print(f"Market Portfolio Risk Budget (vol={vol*100:.2f}%)")
risk_budget(weights, sigma, weights.index).sort_values('CR', ascending=False)

Market Portfolio Risk Budget (vol=19.34%)

weight Beta MCR(%) PCR(%) CR
Softw 0.182276 1.555931 30.097357 28.360924 5.486032
Chips 0.161610 1.184836 22.919038 19.148127 3.703943
Rtail 0.085470 0.828755 16.031140 7.083394 1.370186
Banks 0.059413 0.843213 16.310804 5.009761 0.969070
Fin 0.033877 0.971510 18.792521 3.291171 0.636632
Drugs 0.053875 0.581038 11.239382 3.130335 0.605520
BusSv 0.031733 0.953210 18.438533 3.024847 0.585115
Other 0.028863 0.906179 17.528786 2.615469 0.505927
Insur 0.034341 0.726098 14.045377 2.493480 0.482330
Autos 0.023701 0.997867 19.302368 2.365052 0.457487
Mach 0.022131 0.974029 18.841261 2.155620 0.416975
Trans 0.019526 0.884115 17.101985 1.726316 0.333932
LabEq 0.015992 1.048768 20.286986 1.677156 0.324423
Oil 0.028253 0.592003 11.451492 1.672590 0.323540
MedEq 0.019788 0.718659 13.901468 1.422059 0.275078
Telcm 0.020845 0.597110 11.550276 1.244649 0.240760
Meals 0.014186 0.862779 16.689278 1.223961 0.236759
Fun 0.010471 1.140790 22.067019 1.194478 0.231055
Util 0.027976 0.375849 7.270286 1.051464 0.203391
Hardw 0.010442 0.988086 19.113163 1.031731 0.199574
Whlsl 0.011183 0.869373 16.816831 0.972226 0.188064
Aero 0.009449 0.927079 17.933076 0.875994 0.169449
Hshld 0.012793 0.598646 11.579978 0.765832 0.148140
Cnstr 0.007072 1.050526 20.320993 0.742934 0.143710
Chems 0.008270 0.808718 15.643534 0.668792 0.129369
Hlth 0.005851 0.968313 18.730690 0.566569 0.109595
BldMt 0.005606 0.956894 18.509810 0.536398 0.103759
Clths 0.004255 0.938755 18.158938 0.399468 0.077272
Food 0.007388 0.497495 9.623355 0.367564 0.071100
Soda 0.006012 0.610836 11.815793 0.367218 0.071033
Mines 0.004196 0.870379 16.836284 0.365172 0.070638
Beer 0.005945 0.567434 10.976238 0.337364 0.065259
PerSv 0.003352 0.919656 17.789492 0.308300 0.059636
Smoke 0.005225 0.477864 9.243631 0.249665 0.048294
ElcEq 0.002505 0.982095 18.997290 0.245969 0.047579
Steel 0.002262 1.052579 20.360697 0.238090 0.046055
Guns 0.003317 0.646421 12.504129 0.214389 0.041471
RlEst 0.001590 1.038549 20.089312 0.165107 0.031938
Paper 0.001822 0.736880 14.253940 0.134245 0.025968
Boxes 0.001378 0.731479 14.149461 0.100793 0.019497
Rubbr 0.001124 0.872047 16.868545 0.098007 0.018958
Ships 0.000854 0.858852 16.613317 0.073364 0.014191
Toys 0.000644 0.991057 19.170634 0.063808 0.012343
Agric 0.000859 0.704508 13.627738 0.060501 0.011703
Books 0.000555 0.874586 16.917676 0.048503 0.009382
Gold 0.000960 0.429793 8.313752 0.041262 0.007982
Coal 0.000311 0.879600 17.014650 0.027317 0.005284
FabPr 0.000234 0.912134 17.643973 0.021316 0.004123
Txtls 0.000225 0.946333 18.305513 0.021250 0.004111
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17.1.2 Risk parity portfolios

A risk parity portfolio (RPP) aims to equalize the risk contribution of each asset class before leveraging to reach a
target volatility. The allocation can be framed as a convex optimization problem, as proposed by Spinu (2013):
$min𝑤

1
2𝑤𝑇 Σ𝑊 −∑𝑖 𝑏𝑖 log 𝑤𝑖𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑛𝑜𝑛−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑎𝑠𝑠𝑒𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑠 w_i \geq 0 , 𝑤ℎ𝑒𝑟𝑒 b_i = 1/N $ represents the

desired risk budget for an equally weighted risk-parity portfolio.
We use the cvxpy convex optimization package. The risk parity portfolio has the greatest weight in the Utilities industry
and lowest weight in Software. By contrast, Software has the most weight in the market.

# Set up variables and constraints
N = len(sigma)
b = np.ones(N)/N # risk parity
W = cp.Variable(N) # portfolio weights to solve for
constraints = [W >= 0] # non-negative weights constraint

# Solve objective
obj = 0.5 * cp.quad_form(W, sigma) - cp.sum(cp.multiply(b, cp.log(W)))
prob = cp.Problem(cp.Minimize(obj), constraints)
prob.solve()

2.6135631335344156

# normalize solution weights
rpp = (W/cp.sum(W)).value

vol = np.sqrt(rpp.T @ sigma @ rpp)
print(f"Risk Parity Portfolio (vol={vol*100:.2f}%)")
risk_budget(rpp, sigma, weights.index).sort_values('weight', ascending=False)

Risk Parity Portfolio (vol=16.47%)

weight Beta MCR(%) PCR(%) CR
Util 0.038404 0.531408 8.750135 2.040813 0.336039
Food 0.030511 0.668941 11.014738 2.040994 0.336069
Smoke 0.029554 0.690540 11.370397 2.040830 0.336042
Drugs 0.028845 0.707521 11.650005 2.040838 0.336043
Telcm 0.028641 0.712525 11.732403 2.040757 0.336030
Gold 0.028104 0.726190 11.957409 2.040872 0.336049
Beer 0.027832 0.733279 12.074135 2.040854 0.336046
Hshld 0.026951 0.757247 12.468779 2.040819 0.336040
Soda 0.024589 0.829944 13.665817 2.040752 0.336029
Oil 0.024289 0.840218 13.834978 2.040816 0.336040
Guns 0.023380 0.872899 14.373107 2.040875 0.336049
MedEq 0.023346 0.874162 14.393900 2.040858 0.336046
Agric 0.022982 0.888036 14.622356 2.040846 0.336045
Insur 0.021825 0.934992 15.395521 2.040612 0.336006
Rtail 0.021405 0.953405 15.698710 2.040790 0.336035
Boxes 0.021403 0.953503 15.700322 2.040788 0.336035
Paper 0.021003 0.971719 16.000274 2.040923 0.336057
Hardw 0.019636 1.039324 17.113457 2.040800 0.336037
Meals 0.019328 1.055907 17.386507 2.040808 0.336038

(continues on next page)
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Banks 0.019318 1.056439 17.395264 2.040815 0.336039
Whlsl 0.019181 1.063981 17.519442 2.040796 0.336036
Chems 0.019173 1.064438 17.526974 2.040834 0.336042
Books 0.018802 1.085413 17.872354 2.040809 0.336038
Rubbr 0.018759 1.087921 17.913644 2.040859 0.336047
Other 0.018749 1.088522 17.923535 2.040857 0.336046
Trans 0.018642 1.094754 18.026153 2.040836 0.336043
BusSv 0.018231 1.119418 18.432270 2.040768 0.336032
PerSv 0.018229 1.119511 18.433801 2.040785 0.336035
Fin 0.017894 1.140526 18.779843 2.040823 0.336041
Clths 0.017822 1.145101 18.855166 2.040831 0.336042
Ships 0.017659 1.155699 19.029669 2.040855 0.336046
Aero 0.017440 1.170157 19.267736 2.040774 0.336033
Mines 0.017359 1.175643 19.358068 2.040800 0.336037
FabPr 0.017234 1.184134 19.497876 2.040778 0.336033
ElcEq 0.017124 1.191811 19.624284 2.040799 0.336037
LabEq 0.017067 1.195775 19.689563 2.040793 0.336036
Mach 0.016969 1.202645 19.802683 2.040811 0.336039
Autos 0.016837 1.212055 19.957625 2.040782 0.336034
Toys 0.016776 1.216480 20.030489 2.040790 0.336035
Chips 0.016721 1.220482 20.096388 2.040783 0.336034
BldMt 0.016630 1.227147 20.206127 2.040795 0.336036
Hlth 0.016604 1.229089 20.238114 2.040814 0.336039
Coal 0.016511 1.236048 20.352700 2.040804 0.336038
Txtls 0.016357 1.247656 20.543830 2.040811 0.336039
RlEst 0.015599 1.308309 21.542534 2.040793 0.336036
Cnstr 0.015534 1.313753 21.632185 2.040810 0.336039
Fun 0.015339 1.330599 21.909558 2.040955 0.336062
Steel 0.015297 1.334155 21.968126 2.040802 0.336037
Softw 0.014115 1.445795 23.806377 2.040797 0.336037

17.2 Covariance matrix estimation

The simplest way to estimate the covariance matrix is to calculate the average product of return deviations for each
pair of assets. Additionally, we examine other techniques designed to improve estimation accuracy, particularly in high-
dimensional settings.

17.2.1 Principal components

By retaining only the largest principal components, the Principal Component Analysis (PCA)method provides a lower-
dimensional but more stable approximation of the covariance matrix that captures most of the data’s variability.
Each principal component (PC) can be interpreted as a weighted portfolio of industry assets. The projection of industry
returns onto a given component effectively computes the returns of the corresponding portfolio.

# Fit PCA
pca = PCA().fit(X)

# Retrieve components, and sign flip if necessary
loadings = (np.diag(pca.singular_values_) @ pca.components_).T # compute loadings by␣

↪column
components = DataFrame.from_records(pca.components_.T, index=X.columns)

(continues on next page)
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components *= np.sign(components.sum(axis=0))

# Compute projections, can be interpreted as portfolio returns
proj = pca.transform(X)
proj *= np.sign(np.sum(pca.components_, axis=1)) # flip signs if necessary

# Equal weighted market average return
avg = X.mean(axis=1)

From the summaries of the weights, the first principal component (PC1) resembles a broadly diversified portfolio, cap-
turing more than half of the total variance. Higher-order principal components represent long-short spread portfolios,
which explain incremental variance.

K = 20
print(f"Top {K} principal components")
DataFrame({

'frac weights +ve': np.mean(components.iloc[:, :K].values >= 0, axis=0),
'sum weights': np.sum(components.iloc[:, :K].values, axis=0),
'sum sqr weights': np.sum((components.iloc[:, :K].values)**2, axis=0),
'sum abs weights': np.sum(np.abs(components.iloc[:, :K].values), axis=0),
'corr avg ret': [np.corrcoef(avg, proj[:, i])[0, 1] for i in range(K)],
'cumulative expl ratio': np.cumsum(pca.explained_variance_ratio_[:K])},

index=[f"PC{i+1}" for i in range(K)]).round(4)

Top 20 principal components

frac weights +ve sum weights sum sqr weights sum abs weights \
PC1 1.0000 6.8350 1.0 6.8350
PC2 0.2449 0.0942 1.0 4.1476
PC3 0.5306 0.3638 1.0 3.5694
PC4 0.6735 0.9018 1.0 5.1037
PC5 0.4694 0.5504 1.0 5.2080
PC6 0.5510 0.7125 1.0 5.5172
PC7 0.5714 0.0807 1.0 5.5623
PC8 0.5510 0.0678 1.0 4.9024
PC9 0.5102 0.1727 1.0 5.1930
PC10 0.4898 0.2090 1.0 4.8891
PC11 0.4490 0.2954 1.0 5.0131
PC12 0.5306 0.0517 1.0 5.2657
PC13 0.6531 0.1003 1.0 4.8573
PC14 0.5102 0.1026 1.0 4.8301
PC15 0.4898 0.1416 1.0 4.8642
PC16 0.5102 0.0216 1.0 5.1350
PC17 0.4898 0.0855 1.0 5.3457
PC18 0.5714 0.1669 1.0 5.1840
PC19 0.5102 0.1752 1.0 5.1187
PC20 0.4694 0.1086 1.0 5.1526

corr avg ret cumulative expl ratio
PC1 0.9988 0.5590
PC2 0.0046 0.6218
PC3 0.0142 0.6620
PC4 0.0341 0.6994
PC5 0.0185 0.7290

(continues on next page)
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PC6 0.0207 0.7510
PC7 0.0021 0.7689
PC8 0.0016 0.7831
PC9 0.0040 0.7971
PC10 0.0045 0.8091
PC11 0.0063 0.8210
PC12 0.0011 0.8321
PC13 0.0020 0.8423
PC14 0.0020 0.8521
PC15 0.0027 0.8615
PC16 0.0004 0.8703
PC17 0.0015 0.8788
PC18 0.0028 0.8864
PC19 0.0029 0.8936
PC20 0.0018 0.9007

Spectral Clustering
Spectral clustering is a technique that groups data points based on the eigenvalues and eigenvectors of a similarity matrix.
From the results, Component 1 primarily appears to capture market-wide beta risk sensitivity. Component 2 appears to
reflect exposure to commodity-related factors (e.g. gold, coal and mining)

# Spectral clustering
spectral = cluster.SpectralClustering(

n_clusters=10,
eigen_solver="arpack",
#affinity="nearest_neighbors",
random_state=42,

)
spectral.fit(X.T) # number of features equals the number observations dates
cmap = ColorMap(spectral.n_clusters, colormap='Dark2')
fig, ax = plt.subplots(figsize=(10, 8))
ax.scatter(components.iloc[:, 0], components.iloc[:, 1],

c=cmap[spectral.labels_], alpha=.8)
for t, c, xy in zip(components.index, spectral.labels_,

components.iloc[:, :2].values):
ax.annotate(text=t, xy=xy, xytext=xy * 1.01, color=cmap[c], fontsize='x-small')

ax.set_xlabel('Component 1')
ax.set_ylabel('Component 2')
ax.set_title(f"Spectral Clustering ({spectral.n_clusters} clusters)")
plt.tight_layout()
plt.show()
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DataFrame({'cluster': spectral.labels_}, index=components.index).sort_values('cluster
↪')

cluster
Fun 0
Toys 0
Txtls 0
Clths 0
Rubbr 0
Autos 0
RlEst 0
Rtail 0
Meals 0
Gold 1
BldMt 2
ElcEq 2
Books 2
Telcm 2
Cnstr 2
Chems 2
Boxes 2
Paper 2
BusSv 2

(continues on next page)
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Other 2
Fin 2
Insur 2
Banks 2
Trans 2
PerSv 2
Mach 2
Whlsl 2
Coal 3
Chips 4
LabEq 4
Hardw 4
Softw 5
Steel 6
Mines 6
Smoke 7
Food 7
FabPr 7
Oil 7
Agric 7
Util 7
Aero 8
Ships 8
Guns 8
Hlth 9
Hshld 9
Drugs 9
Soda 9
Beer 9
MedEq 9

17.2.2 EWMA

The Exponentially-Weighted Moving Average (EWMA) method assigns greater importance to recent data when es-
timating the covariance matrix, which is particularly useful for tracking market risk changes. JP Morgan RiskMetrics
(1996) proposed a decay parameter 𝜆 = 0.97, implying a monthly decay rate of 0.03. The half-life of the weighting
function represents the time required for a weight to decrease by 50%.

# Compute half-life of risk metrics' lambda for monthly data
def halflife(decay, half=0.5):

"""Returns halflife (t) from its definition: 0.5 = (1-decay)^t"""
return -np.log(1/half)/np.log(1 - decay)

risk_metrics_lambda = 0.97 # for monthly data
print('Half-life: ', halflife(decay=1-risk_metrics_lambda).round(1), 'months')

Half-life: 22.8 months

def ewma(X, decay):
"""Helper to compute EWMA covariance matrix estimate"""
weights = (1 - decay)**np.arange(len(X))[::-1]
return (weights.reshape((1, -1)) * X.T) @ X / weights.sum()
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17.2.3 Shrinkage methods

Covariance matrix estimates can be regularized using shrinkage. Ledoit and Wolf (1993) proposed shrinking the sample
covariance matrix towards an identity matrix, and derived a closed-form formula to compute the asymptotically optimal
shrinkage parameter 𝛽 by minimizing a MSE criterion:

(1 − 𝛽)Σ + 𝛽 𝑡𝑟(Σ)
𝑁 𝐼𝑛

Chen et al. (2010) proposed theOracleApproximating Shrinkage (OAS)Estimatorwhose convergence is significantly
better under the assumption that the data are Gaussian.

17.2.4 Volatility of the GMV portfolio

The out-of-sample (OOS) realized volatility of theGlobalMinimumVariance Portfolio (GMV) serves as a benchmark
for evaluating covariance estimation accuracy. The GMV portfolio is designed to minimize total portfolio volatility. Since
it relies on accurate covariance estimates, errors can lead to suboptimal diversification and higher realized volatility.
Beginning in January 2000, we update the covariance matrix estimate monthly using a rolling 30-year data window, and
track the month-ahead return of the GMV portfolio. By the end of the test period, we expect the most accurate covariance
matrix estimator to achieve the lowest return volatility.

# Helper method to compute Minimum Variance Portfolio and realized volatility
def gmv(cov, ret):

"""Compute minimum variance portfolio and return"""
w = np.linalg.inv(cov) @ np.ones((cov.shape[1], 1))
return float((np.array(ret) @ w/sum(w)).flatten()[0])

# Rolling monthly evaluation
decay = 0.03 # risk metrics monthly decay rate for EWMA
n_components = 10 # for PCA
split = '2000-01' # start rolling OOS prediction tests from this date

r = {} # collect realized returns
for date in tqdm(rets.index[rets.index >= split]):

X_train = rets.iloc[rets.index < date, :][-30*12:] # 30 years of training data
X_test = rets.iloc[rets.index == date, :] # predict one month ahead returns
r[date] = {}

# Empirical covariance
cov = EmpiricalCovariance().fit(X_train).covariance_
r[date]['Covariance'] = gmv(cov, X_test)
r[date]['Diagonal'] = gmv(np.diag(np.diag(cov)), X_test)
r[date]['EWMA'] = gmv(ewma(X_train, decay=decay), X_test)
r[date][f"PCA-{n_components}"] = gmv(PCA(n_components).fit(X_train).get_

↪covariance(), X_test)
r[date]['Identity'] = gmv(np.identity(len(cov)), X_test)
r[date]['LW'] = gmv(LedoitWolf().fit(X_train).covariance_, X_test)
r[date]['OAS'] = gmv(OAS().fit(X_train).covariance_, X_test)

100%|██████████| 300/300 [01:01<00:00, 4.86it/s]
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ts = DataFrame.from_dict(r, orient='index')
vol = ts.std().rename('realized volatility').to_frame()
print('Realized volatility of minimum variance portfolio')
vol.T

Realized volatility of minimum variance portfolio

Covariance Diagonal EWMA PCA-10 Identity \
realized volatility 0.035531 0.045541 0.040645 0.036339 0.048569

LW OAS
realized volatility 0.034681 0.035041

Plot evaluation period realized volatility of minimum variance portfolios

fig, ax = plt.subplots(figsize=(10, 6))
values = vol.values.flatten()
ax.barh(vol.index, width=values, color=list(mcolors.TABLEAU_COLORS.values()))
for row, val in enumerate(values):

ax.annotate(f"{val:.4f}", xy=(val, row))
ax.set_title(f"Realized Test Volatility of Global MVPs {split} to {rets.index[-1]}")
plt.tight_layout()
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CHAPTER

EIGHTEEN

MARKET MICROSTRUCTURE

Beware of little expenses. A small leak will sink a great ship - Benjamin Franklin
Market microstructure focuses on the mechanics of how securities are traded, analyzing factors such as price formation,
liquidity, and trading costs. The NYSE Trade and Quote (TAQ) dataset is a widely used source of tick data, containing
detailed records of executed trades and best bid and offer quotes. We analyze how key liquidity measures vary across
market capitalization and during the trading day. We also examine intraday volatility patterns through the variance ratio
and high-frequency estimators.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
import time
import os
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from tqdm import tqdm
import multiprocessing
from finds.database import SQL, RedisDB
from finds.structured import CRSP, BusDay
from finds.readers import opentaq, itertaq, bin_trades, bin_quotes, TAQ, \

clean_trade, clean_nbbo, align_trades, plot_taq
from finds.utils import plot_time, Store, row_formatted
from finds.recipes import weighted_average, hl_vol, ohlc_vol
from secret import credentials, paths
import warnings
VERBOSE = 0
if not VERBOSE: # Suppress FutureWarning messages

warnings.simplefilter(action='ignore', category=FutureWarning)

%matplotlib inline

sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bday = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bday, rdb=rdb, verbose=VERBOSE)

taqdir = paths['taq']
storedir = paths['scratch'] / 'ticks'
open_t = pd.to_datetime('1900-01-01T9:30') # exclude <=
close_t = pd.to_datetime('1900-01-01T16:00') # exclude >

(continues on next page)

321



Financial Data Science Python Notebooks

(continued from previous page)

EPSILON = 1e-15
dates = [20191007, 20191008, 20180305, 20180306]

18.1 Tick data

18.1.1 NYSE TAQ

The NYSE Trade and Quote (TAQ) dataset contains tick-by-tick intraday trading data for U.S. equities, providing
information on executed trades and best bid/offer quotes from various exchanges. There are three primary types of TAQ
daily files:

1. Trades (EQY_US_ALL_TRADE_YYYYMMDD.gz) –containing executed trades data, including price, volume,
microsecond timestamps, sale conditions and trade correction indicators

2. National Best Bid and Offer NBBO (EQY_US_ALL_NBBO_YYYYMMDD.gz) - containing best bid/offer price,
size, microsecond timestamps, quote conditions and market center identifiers

3. Master (EQY_US_ALL_REF_MASTER_YYYYMMDD.gz) –containing reference information about securities,
including symbol, CUSIP, security description, shares outstanding and primary exchange

The taq module in the FinDS package provides tools for processing NYSE TAQ data, with functionalities including:
• File reading & indexing: open_taq, itertaq, taq_from_csv
• Data cleaning & filtering: clean_trades, clean_nbbo
• Tick-level analysis: TAQ class
• Resampling & binning: bin_trades, bin_quotes, align_trades
• Visualization: plot_taq

Bad trades and quotes records, such as invalid prices, duplicate records, and specific sale conditions, can be filtered out
to ensure data integrity.
Retrieve and visualize tick-level trades and quotes for a selected stock (e.g., VOO, an ETF tracking the S&P 500).

# Plot VOO tick-by-tick
master, trades, quotes = opentaq(dates[0], taqdir)
symbol = "VOO"
t = trades[symbol]
q = quotes[symbol]
ct = clean_trade(t, close_t=close_t + np.timedelta64('5','m'))
cq = clean_nbbo(q)
align_trades(ct, cq, inplace=True)

plot_taq(ct[['Trade_Price', 'Prevailing_Mid']].groupby(level=0).last(),
ct['Trade_Volume'].groupby(level=0).last(),
(cq['Best_Offer_Price'] - cq['Best_Bid_Price'])\
.rename('Quoted Spread').groupby(level=0).last(),
((cq['Best_Bid_Size'] + cq['Best_Offer_Size']) / 2)\
.rename('Depth').groupby(level=0).last(),
open_t=open_t,
close_t=close_t + np.timedelta64('5','m'),
num=1,
title=f"Tick Prices, Volume, Quotes, Spreads, and Depths ({dates[0]})"

)
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(<Axes: title={'center': 'Tick Prices, Volume, Quotes, Spreads, and Depths␣
↪(20191007)'}, xlabel='VOO', ylabel='Trade_Price'>,
<Axes: xlabel='VOO', ylabel='Quoted Spread'>)

The data is preprocessed to extract a universe of U.S.-domiciled common stocks, and indexed by ticker symbol for efficient
access.
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for d, date in enumerate(dates):
store = Store(storedir / str(date), verbose=VERBOSE)
master, trades, quotes = opentaq(date, taqdir)

# screen on CRSP universe
univ = crsp.get_universe(date)\

.join(crsp.get_section(dataset='names',
fields=['ncusip', 'permco', 'exchcd'],
date_field='date',
date=date,
start=0), how='inner')\

.sort_values(['permco', 'ncusip'])

# drop duplicate share classes (same permco): keep largest cap
dups = master['CUSIP'].str\

.slice(0, 8)\

.isin(univ.loc[univ.duplicated(['permco'],keep=False),
'ncusip'])

#shareclass.extend(master[dups].to_dict(orient='index').values())
univ = univ.sort_values(['permco', 'cap'], na_position='first')\

.drop_duplicates(['permco'], keep='last')\

.reset_index()\

.set_index('ncusip', drop=False)

# Iterate by symbol over Daily Taq trades, nbbo and master files
for ct, cq, mast in itertaq(trades,

quotes,
master,
cusips=univ['ncusip'],
open_t=open_t,
close_t=None,
verbose=VERBOSE):

header = {'date':date}
header.update(univ.loc[mast['CUSIP'][:8],

['permno','decile','exchcd','siccd']])
header.update(mast[['Symbol', 'Round_Lot']])
store[header['Symbol']] = dict(header=header, ct=ct, cq=cq, mast=mast)

quotes.close()
trades.close()

18.2 Liquidty measures

• Depth: The average bid and ask size at the best quotes, indicating the available liquidity at the current market price.
• Quoted Spread: The difference between the best ask and best bid prices, representing the cost of immediacy for

traders.
• Effective Spread: A trade-based measure of execution cost, calculated as twice the absolute difference between

the trade price and the midquote.
• Price Impact: The change in the midquote price after a trade, reflecting how much a trade moves the market.
• Realized Spread: The difference between the trade price and the midquote price a few minutes later, measuring

the profitability of liquidity providers.
• Lee-Ready Tick Test: A method for classifying trades as buyer- or seller-initiated, using trade price movements

relative to the prevailing midquote.
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• Volume Weighted Average Price (VWAP) –A common trade execution benchmark, though it can be influenced
by the trade itself –achieving zero slippage to VWAP while accounting for 100% of market volume does not
necessarily indicate good execution.

18.2.1 Intraday liquidity

Intraday liquidity is analyzed computing liquidity measures across various time intervals: 1-second, 2-second, 5-second,
15-second, 30-second, 1-minute, 2-minute, and 5-minute bins.

intervals = ([(v, 's') for v in [1, 2, 5, 15, 30]] + [(v, 'm') for v in [1, 2, 5]])
max_num = 100000
bin_keys = ['effective', 'realized', 'impact',

'quoted', 'volume', 'offersize', 'bidsize',
'ret', 'retq', 'counts']

# helper call run liquidity calculations by date, parallelizable
def intraday(date):

"""Compute intraday liquidity for a date"""
store = Store(storedir / str(date), verbose=VERBOSE)
symbols = sorted(store)
daily_all = []
bins_all = {k: [] for k in bin_keys}
for num, symbol in enumerate(symbols):

if num >= max_num: # set small max_num for debugging
break

header, ct, cq, mast = store[symbol].values()

# Compute and collect daily and bin statistics at all intervals
daily = header.copy() # to collect current stock's daily stats

# Compute effective spreads by large and small trade sizes
med_volume = mast['Round_Lot'] * (cq['Best_Bid_Size'].median()

+ cq['Best_Offer_Size'].median()) / 2.
data = ct.loc[(ct.index > open_t) & (ct.index < close_t),

['Trade_Price', 'Prevailing_Mid', 'Trade_Volume']]
eff_spr = data['Trade_Price'].div(data['Prevailing_Mid']).sub(1).abs()
eff_large = eff_spr[data['Trade_Volume'].ge(med_volume).to_numpy()]
daily['large_trades'] = len(eff_large)
daily['large_volume'] = data.loc[data['Trade_Volume'].ge(med_volume),

'Trade_Volume'].mean()
daily['large_spread'] = eff_large.mean()
eff_small = eff_spr[data['Trade_Volume'].lt(med_volume)]
daily['small_trades'] = len(eff_small)
daily['small_volume'] = data.loc[data['Trade_Volume'].lt(med_volume),

'Trade_Volume'].mean()
daily['small_spread'] = eff_small.mean()

v, u = intervals[-1]
for (v, u) in intervals:

bt = bin_trades(ct, v, u, open_t=open_t, close_t=close_t)
bq = bin_quotes(cq, v, u, open_t=open_t, close_t=close_t)
daily[f"tvar{v}{u}"] = bt['ret'].var(ddof=0) * len(bt)
daily[f"tvarHL{v}{u}"] = ((hl_vol(bt['maxtrade'], bt['mintrade'])**2)

* len(bt))
daily[f"tvarOHLC{v}{u}"] = ((ohlc_vol(bt['first'],

(continues on next page)
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bt['maxtrade'],
bt['mintrade'],
bt['last'])**2)

* len(bt))
daily[f"qvar{v}{u}"] = bq['retq'].var(ddof=0) * len(bq)
daily[f"qvarHL{v}{u}"] = ((hl_vol(bq['maxmid'], bq['minmid'])**2)

* len(bq))
daily[f"qvarOHLC{v}{u}"] = ((ohlc_vol(bq['firstmid'],

bq['maxmid'],
bq['minmid'],
bq['mid'])**2)

* len(bq))
daily[f"tunch{v}{u}"] = np.mean(np.abs(bt['ret']) < EPSILON)
daily[f"qunch{v}{u}"] = np.mean(np.abs(bq['retq']) < EPSILON)
daily[f"tzero{v}{u}"] = np.mean(bt['counts'] == 0)

# Collect final (i.e. 5 minute bins) bt and bq intraday series
df = bq.join(bt, how='left')
for s in ['effective', 'realized', 'impact', 'quoted']:

bins_all[s].append({**header,
**(df[s]/df['mid']).to_dict()})

for s in ['volume', 'offersize', 'bidsize', 'ret', 'retq', 'counts']:
bins_all[s].append({**header,

**df[s].to_dict()})

# Collect daily means
daily.update(df[['bidsize', 'offersize', 'quoted', 'mid']].mean())
daily.update(df[['volume', 'counts']].sum())
daily.update(weighted_average(df[['effective', 'impact', 'realized',

'vwap', 'volume']],
weights='volume'))

daily_all.append(daily)

return DataFrame(daily_all), {k: DataFrame(bins_all[k]) for k in bin_keys}

To optimize performance, multiprocessing package is used to parallelize computations, allowing efficient distribution of
input data across multiple processes using its Pool API.

# Run each day as a parallel thread, must be called as context manager or with close␣
↪command

with multiprocessing.Pool(processes=min(os.cpu_count(), len(dates))) as p:
data = p.map(intraday, dates)

# Combine data
daily_df = pd.concat([data[j][0] for j in range(len(data))], ignore_index=True)
bins_df = {k: pd.concat([data[j][1][k] for j in range(len(data))], ignore_index=True)

for k in bin_keys}

# Store in scratch folder
store = Store(paths['scratch'])

store['tick.daily'] = daily_df
store['tick.bins'] = bins_df
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# Fetch extracted data
daily_df = store['tick.daily']
bins_df = store['tick.bins']

18.3 By market capitalization

The daily averages of liquidity measures are analyzed across different market capitalization categories.

# group by market cap (NYSE deciles 1-3, 4-6, 7-9, 10) and exchange listed
daily_df['Size'] = pd.cut(daily_df['decile'],

[0, 3.5, 6.5, 9.5, 11],
labels=['large', 'medium', 'small', 'tiny'])

groupby = daily_df.groupby(['Size'], observed=False)

# collect results for each metric
results = {} # to collect results as dict of {column: Series}
formats = {} # and associated row formatter string
results.update(groupby['mid']\

.count()\

.rename('Number of Stock/Days').to_frame())
formats.update({'Number of Stock/Days': '{:.0f}'})

result = groupby[['mid', 'vwap']].mean() # .quantile(), and range
result.columns = ['Midquote Price', "VWAP"]
formats.update({k: '{:.2f}' for k in result.columns})
results.update(result)

result = groupby[['counts', 'volume']].mean()
result.columns = ['Number of trades', "Volume (shares)"]
formats.update({k: '{:.0f}' for k in result.columns})
results.update(result)

# volatility from 5m intervals
result = np.sqrt(groupby[['tvar5m', 'qvar5m', 'tvarHL5m', 'qvarHL5m',

'tvarOHLC5m', 'qvarOHLC5m']].mean())
result.columns = ['Volatility(trade price)', "Volatility(midquote)",

'Volatility(HL trade price)', "Volatility(HL midquote)",
'Volatility(OHLC trade price)', "Volatility(OHLC midquote)"]

formats.update({k: '{:.4f}' for k in result.columns})
results.update(result)

result = groupby[['offersize', 'bidsize']].mean()
result.columns = [s.capitalize() + ' (lots)' for s in result.columns]
formats.update({k: '{:.1f}' for k in result.columns})
results.update(result)

spr = ['quoted', 'effective', 'impact', 'realized']
result = groupby[spr].mean()
result.columns = [s.capitalize() + ' $ spread' for s in spr]

(continues on next page)
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formats.update({k: '{:.4f}' for k in result.columns})
results.update(result)

rel = [s.capitalize() + ' (% price)' for s in spr]
daily_df[rel] = daily_df[spr].div(daily_df['mid'], axis=0) # scale spreads
result = 100*groupby[rel].mean()
formats.update({k: '{:.4f}' for k in result.columns})
results.update(result)

# summarize large and small trade effective spreads
spr = ['large_spread', 'small_spread']
result = 100*groupby[spr].mean()
result.columns = ['Large trade (% spread) ', 'Small trade (% spread) ']
formats.update({k: '{:.4f}' for k in result.columns})
results.update(result)

spr = ['large_trades', 'small_trades']
result = groupby[spr].mean()
result.columns = ['Large trade (# trades) ', 'Small trade (# trades) ']
formats.update({k: '{:.0f}' for k in result.columns})
results.update(result)

spr = ['large_volume', 'small_volume']
result = groupby[spr].mean()
result.columns = ['Large trade (avg volume) ', 'Small trade (avg volume) ']
formats.update({k: '{:.0f}' for k in result.columns})
results.update(result)

# display table of results
print("Average Liquidity by Market Cap")
row_formatted(DataFrame(results).T, formats)

Average Liquidity by Market Cap

Size large medium small tiny
Number of Stock/Days 2063 2572 4297 4618
Midquote Price 128.98 64.91 27.76 7.92
VWAP 128.97 64.92 27.75 7.90
Number of trades 25178 8407 3658 837
Volume (shares) 3031056 995483 533736 254773
Volatility(trade price) 0.0145 0.0211 0.0359 0.0807
Volatility(midquote) 0.0152 0.0223 0.0355 0.0918
Volatility(HL trade price) 0.0176 0.0217 0.0335 0.0690
Volatility(HL midquote) 0.0144 0.0198 0.0288 0.0594
Volatility(OHLC trade price) 0.0184 0.0218 0.0324 0.0612
Volatility(OHLC midquote) 0.0138 0.0183 0.0255 0.0452
Offersize (lots) 8.8 9.8 11.9 13.6
Bidsize (lots) 8.9 17.0 14.1 16.5
Quoted $ spread 0.0630 0.0672 0.0781 0.0841
Effective $ spread 0.0379 0.0442 0.0406 0.0457
Impact $ spread 0.0273 0.0244 0.0248 0.0186

(continues on next page)
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Realized $ spread 0.0106 0.0199 0.0158 0.0270
Quoted (% price) 0.0350 0.0834 0.2500 1.1582
Effective (% price) 0.0200 0.0421 0.1287 0.6638
Impact (% price) 0.0165 0.0345 0.0904 0.2669
Realized (% price) 0.0036 0.0077 0.0384 0.3973
Large trade (% spread) 0.0191 0.0420 0.1310 0.6398
Small trade (% spread) 0.0190 0.0400 0.1304 0.6755
Large trade (# trades) 3133 1140 423 108
Small trade (# trades) 22045 7267 3236 729
Large trade (avg volume) 1734 1608 2635 2324
Small trade (avg volume) 61 57 71 85

18.3.1 By time of day

Market liquidity changes are examined over the trading day.

# Plot intraday spreads, depths and volumes
keys = ['effective', 'realized', 'impact', 'quoted',

'volume', 'counts', 'offersize', 'bidsize']
for num, key in enumerate(keys):

df = bins_df[key].drop(columns=['Round_Lot', 'Symbol'])
df.index = list(zip(df['permno'], df['date']))

# Group by market cap
df['Size'] = pd.cut(df['decile'],

[0, 3.5, 6.5, 9.5, 11],
labels=['large', 'medium', 'small', 'tiny'])

df = df.drop(columns=['date', 'permno', 'decile', 'exchcd', 'siccd'])\
.dropna()\
.groupby(['Size'], observed=False)\
.median().T

fig, ax = plt.subplots(1, 1, num=num+1, clear=True, figsize=(10, 6))
plot_time(df.iloc[1:], ax=ax, fontsize=8)
ax.legend(['large'] + list(df.columns),

loc='upper left', bbox_to_anchor=(1.0, 1.0),
fontsize=8)

ax.set_title('Median ' + key.capitalize())
plt.subplots_adjust(right=0.8)
plt.tight_layout()
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18.4 High frequency sampling

18.4.1 Variance ratio

Tick data often exhibits spurious autocorrelation due to irregularly spaced trades and quotes rather than continuous trading:
• Non-Continuous Trading: Trades and quotes occur discretely, often clustering around news or market events.
• Order Flow Clustering: Market participants submit bursts of orders, creating short-term price autocorrelation.
• Bid-Ask Bounce: Trades alternate between the bid and ask prices, creating an illusion of mean-reverting returns.

The variance ratio test (Lo & MacKinlay, 1988) checks for mean reversion or momentum by comparing **multi-period
return variance to single-period return variance, scaled by the number of periods.

def plot_helper(result, xticks, keys, legend, xlabel, title, ylim=[],
figsize=(10, 6), num=1, fontsize=8):

"""helper to plot bar graphs by sampling frequency"""
fig, ax = plt.subplots(num=num, clear=True, figsize=figsize)
result.plot(kind='bar',

fontsize=fontsize,
rot=0,
width=0.8,
xlabel='',
ax=ax)

if ylim:
ax.set_ylim(*ylim)

ax.set_xticklabels(xticks, fontsize=fontsize)
ax.legend(keys, loc='upper left', bbox_to_anchor=(1.0, 1.0),

fontsize=fontsize, title=legend, title_fontsize=8)
ax.set_xlabel(xlabel, fontsize=fontsize + 2)
ax.set_title(title, fontsize=fontsize + 2)
plt.subplots_adjust(right=0.8, bottom=0.15)
plt.tight_layout()
return ax

xticks = [f"{v}{u}" for v, u in intervals] # x-axis: bin lengths
keys = list(groupby.indices.keys()) # legend labels

labels = [f"tunch{v}{u}" for v, u in intervals]
result = groupby[labels].median()*100
ax = plot_helper(result.T,

title="% Unchanged Bins (Last Trade Price)",
xticks=xticks,
xlabel="Bin Length",
keys=keys,
legend='Size',
num=1)
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labels = [f"qunch{v}{u}" for v, u in intervals]
result = groupby[labels].median()*100
ax = plot_helper(result.T,

title="% Unchanged Bins (Last MidQuote)",
xticks=xticks,
xlabel="Bin Length",
keys=keys,
legend='Size',
num=2)
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labels = [f"tzero{v}{u}" for v, u in intervals]
result = groupby[labels].median()*100
ax = plot_helper(result.T,

title="% Zero-Volume Bins",
xticks=xticks,
xlabel="Bin Length",
keys=keys,
legend='Size',
num=3)
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labels = [f"tvar{v}{u}" for v, u in intervals]
result = groupby[labels].median()
result = result.div(result['tvar1s'].values, axis=0)
ax = plot_helper(result.T,

title="Variance Ratio (Last Trade Price)",
xticks=xticks,
xlabel="Bin Length",
keys=keys,
legend='Size',
num=4)
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labels = [f"tvar{v}{u}" for v, u in intervals]
result = np.sqrt(groupby[labels].median())
ax = plot_helper(result.T,

title="Daily Ret StdDev (last trade price)",
xticks=xticks,
xlabel="Bin Length",
keys=keys,
legend='Size',
num=5)
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labels = [f"qvar{v}{u}" for v, u in intervals]
result = np.sqrt(groupby[labels].median())
ax = plot_helper(result.T,

title="Daily Ret StdDev (midquote)",
xticks=xticks,
xlabel="Bin Length",
keys=keys,
legend='Size',
num=6)
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18.4.2 Volatility measures

Parkinson’s (HL) Volatility estimator uses the high-low price range to estimate volatility, assuming a geometric Brow-
nian motion without a drift term:
$𝜎𝐻𝐿 =

√
ln 2√

4𝑇 ln 2 × H−L√
Δ𝑡$

This method is more efficient than close-to-close volatility but assumes continuous trading and no jumps.
The Klass-Garman (OHLC) Volatility estimator improves on Parkinson’s by incorporating open, high, low, and close
prices for better accuracy:
$𝜎2

𝑂𝐻𝐿𝐶 = 0.511(𝐻 − 𝐿)2 − 0.019(𝐶 − 𝑂)(𝐻 + 𝐿 − 2𝑂) − 0.383(𝐶 − 𝑂)2$
This model accounts for both overnight jumps and intra-day movements.

# Compare methods of volatility estimates, by interval and market cap
for ifig, (split_label, split_df) in enumerate(groupby):

vol_df = np.sqrt(split_df[[c for c in daily_df.columns if "qvar" in c or "tvar"␣
↪in c]])

result = []
for col in [c for c in vol_df.columns if "qvar" in c or "tvar" in c]:

if col[4] == 'H':
m = 'HL'

elif col[4] == 'O':
m = 'OHLC'

else:
m = 'Close'

result.append({'method': {'t': 'Last Trade', 'q': 'Mid Quote'}[col[0]] + ' '␣
↪+ m,

'interval': (int("".join(filter(str.isdigit, col)))
* (60 if col[-1] == 'm' else 1)),

'val': vol_df[col].median()})

(continues on next page)
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result = DataFrame.from_dict(result, orient='columns')\
.pivot(index='interval', columns='method', values='val')\
.sort_index()

ax = plot_helper(result,
title="Median Volatility in " + " ".join(split_label) + " stocks

↪",
xticks=xticks,
xlabel="Bin Length",
keys=result.columns,
num=ifig+1,
legend='method')
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CHAPTER

NINETEEN

EVENT RISK

Don’t worry about failure; you only have to be right once—Drew Houston
Event risk refers to the potential for a sudden and significant impact on an asset’s price or a portfolio’s value due to an
unforeseen event. These can be company-specific or broad market events that introduce volatility and uncertainty. For
example, a company missing or exceeding analysts’earnings expectations can cause sharp price movements. Other types
of event risk in finance include credit defaults and downgrades, mergers and acquisitions, or monetary policy changes.
We explore how Poisson regression, an example of a generalized linear model (GLM) suited for count data, can be
used to model the frequency of events such as earnings misses.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from finds.database import SQL, RedisDB
from finds.structured import BusDay, SignalsFrame, CRSP, IBES
from finds.readers import Alfred
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
#%matplotlib qt

# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
ibes = IBES(sql, bd, verbose=VERBOSE)
LAST_DATE = CRSP_DATE

19.1 Earnings expectations

The consensus analyst estimate for a company’s quarterly earnings is derived from the average of all the analyst forecasts
covering that company. The number of analysts following a particular company typically correlates with the company’s
size and the liquidity of its stock. Large, well-known companies often have many analysts providing coverage, resulting
in a consensus estimate derived from various opinions. In contrast, smaller or less-recognized companies may have only
a few analysts covering them, or none at all.
When a company reports earnings that fall below the consensus expectation, this is referred to as an earnings miss. On
the other hand, if the company’s earnings exceed the analysts’expectations, it is called an earnings beat.
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19.1.1 Standardized unexpected earnings (SUE)

To quantify earnings surprises, the Standardized Unexpected Earnings (SUE) is calculated. This is determined by sub-
tracting the median of the analysts’estimates for a particular fiscal quarter from the company’s reported earnings, then
scaling it by the stock price.

# retrieve ibes Q1 where forecast period <= fiscal date, and keep latest
df = ibes.get_linked(dataset='statsum',

fields=['fpedats', 'medest', 'actual'],
date_field='statpers',
where=" fpi = '6' AND statpers <= fpedats")

summ = df.dropna()\
.sort_values(['permno', 'fpedats', 'statpers'])\
.drop_duplicates(['permno', 'fpedats'], keep='last')

summ['rebaldate'] = bd.endmo(summ['fpedats'])
summ = summ.set_index(['permno', 'statpers'])

# retrieve ibes price
df = ibes.get_linked(dataset='actpsum',

fields=['price'],
date_field='statpers')

hist = df.dropna()\
.sort_values(['permno', 'statpers'])\
.drop_duplicates(['permno', 'statpers'], keep='last')

hist = hist.set_index(['permno', 'statpers'])

# calculate sue with ibes surprise and price
summ = summ.join(hist[['price']], how='inner')
summ['sue'] = (summ['actual'] - summ['medest']).div(summ['price'])

# define large earnings surprises as 5% of price
START = 19841201
signals = SignalsFrame(summ.reset_index(drop=False))
rebaldates = bd.date_range(START, LAST_DATE-100, freq='quarterly')
label = 'sue'
out = []
for rebaldate in rebaldates:

univ = crsp.get_universe(rebaldate) # get this quarter's universe
univ = univ[(abs(univ['prc']) >= 5.0) & (univ['decile'] < 9)] # no small low-

↪price
signal = signals(label=label,

date=rebaldate,
start=bd.endqr(rebaldate, quarters=-1))\
.reindex(univ.index)\
.dropna()\
.reset_index()

signal['rebaldate'] = rebaldate // 100
signal['miss'] = signal['sue'] < -0.05 # large earnings misses
out.append(signal.set_index('permno').join(univ['decile'], how='inner')\

.reset_index())
out = pd.concat(out)
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# median quarterly earnings surprise by firm size
fig, axes = plt.subplots(2, 2, figsize=(10, 9), sharex=True, sharey=True)
axes = axes.flatten()
for label, (ax, dec) in enumerate(zip(axes, [[1,2], [3,4], [5,6], [7,8]])):

y = out[out['decile'].isin(dec)].groupby('rebaldate')['sue'].median()
y.plot(ax=ax, marker='+', color="C0")
y.rolling(4).mean().plot(ax=ax, color="C1")
ax.set_title(f"size quintile {label+1}")
if not label:

ax.legend(['sue','1-year average'])
ax.axhline(0, color='C2', ls=':')
ax.set_xticks(y.index[::28])
ax.minorticks_off()

plt.suptitle('Median quarterly earnings surprises by firm size')
plt.tight_layout()
plt.show()

Historically, the median earnings surprise was negative (i.e. estimates were too optimistic), especially for smaller stocks,
until the early-1990s, after which the trend generally shifted to positive earnings surprises
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19.1.2 Earnings misses

We define earnings misses to be large negative earnings surprises exceeding 5% of stock price.

# count number of stocks with large earnings misses
frac = out.groupby('rebaldate')['miss'].mean().rename('frac')
count = out.groupby('rebaldate')['miss'].sum().rename('count')
exposures = out['rebaldate'].value_counts().sort_index().rename('exposures')
Y = pd.concat([exposures, frac, count], axis=1)
Y.index = Y.index.astype(str)
print("Earnings misses")
Y

Earnings misses

exposures frac count
rebaldate
198412 1327 0.051997 69
198503 1302 0.038402 50
198506 1384 0.040462 56
198509 1384 0.033960 47
198512 1398 0.063662 89
... ... ... ...
202309 1845 0.008672 16
202312 1812 0.009934 18
202403 1764 0.003401 6
202406 1776 0.004505 8
202409 1737 0.005757 10

[160 rows x 3 columns]

19.2 Poisson regression

The Poisson distribution is often used to model count data, or events that occur in a fixed period of time or space. Poisson
regression models the expected count of events as a function of certain covariates. Specifically, it is expressed as:

log(𝐸[𝑌 |𝑋]) = 𝛽𝑋
which is equivalent to:

𝐸[𝑌 |𝑋] = 𝑒𝛽𝑋

In this model, the interpretation of the coefficient 𝛽 is that an increase in 𝑋𝑖 by one unit is associated with a multiplicative
change in the expected value of 𝑌𝑖 by a factor of 𝑒𝛽𝑖 . The variance of 𝑌𝑖 under the Poisson model is equal to its expected
value, i.e., 𝑉 𝑎𝑟[𝑌𝑖] = 𝐸[𝑌𝑖]. Importantly, the Poisson model ensures that the fitted values are non-negative, as it only
allows for counts of zero or more.
Poisson regression can also be useful for modeling rates, where the event count is divided by some measure of exposure.
For example, when modeling the number of stocks with large earnings misses each quarter, the exposure would be the
total number of stocks, denoted 𝑁 . The log of the total number of stocks, called the offset variable, is included in the
regression equation with a coefficient constrained to 1.
The modified equation would then look like:

log [ 𝐸[𝑌 |𝑋]
exposure] = 𝑋𝛽 − log(exposure)
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19.2.1 Generalized Linear Models

Linear and Poisson regression models are both types of Generalized Linear Models (GLMs). GLMs are a class of models
where the response variable is modeled as a function of the predictors through a link function. Specifically, the mean of
the response variable 𝑌𝑖 is transformed using the link function, which ensures the mean of the response is related linearly
to the predictors.
For linear regression, the link function is the identity function, which simply states that the transformed mean is equal to the
expected value: 𝜈(𝐸[𝑌 ]) = 𝐸[𝑌 ]. In Poisson regression, the link function is the log function, so 𝜈(𝐸[𝑌 ]) = log(𝐸[𝑌 ]),
which transforms the expected count to the log scale. Specifically, Poisson regression models the response as coming from
the Poisson distribution (with support 0, 1, 2⋯,), with its canonical link function being the log function 𝑋𝛽 = log 𝐸[𝑌 ],
and the mean function being the exponential 𝐸[𝑌 ] = 𝑒𝑋𝛽

Both linear and Poisson regression are based on the assumption that, conditional on 𝑋, the response variable 𝑌 comes
from a member of the exponential family of distributions. The exponential family includes both discrete and continuous
distributions such as the Gaussian, Poisson, Bernoulli, Multinomial, Exponential, Gamma, and Negative Binomial distri-
butions. A GLM links the transformed mean of the distribution to the predictors, enabling flexible modeling of different
types of data.

# retrieve and transform economics series
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)

X = pd.concat([alf(s, log=1, diff=1, freq='Q') for s in ['INDPRO', 'NASDAQCOM']],␣
↪axis=1).dropna()

X.index = (X.index // 100).astype(str)
X

INDPRO NASDAQCOM
date
197106 0.014847 0.017122
197109 0.007394 0.011345
197112 0.023171 0.045627
197203 0.040696 0.115873
197206 0.012599 0.015026
... ... ...
202403 -0.001095 0.087222
202406 0.007142 0.079377
202409 -0.006472 0.025422
202412 0.003853 0.059838
202503 0.005111 -0.024295

[216 rows x 2 columns]

# Run GLM regression with Poisson family and Log link
Z = Y.loc[Y.index > '199512'].join(X, how='inner')
Z['const'] = 1
glm = sm.GLM(exog=Z[['const'] + list(X.columns)],

endog=Z['count'],
family=sm.families.Poisson(link=sm.families.links.Log()),
exposure=Z['exposures'])\

.fit()
y_pred = glm.predict(exog=Z[['const'] + list(X.columns)],

exposure=Z['exposures']).rename('predicted')
print(glm.summary())
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Generalized Linear Model Regression Results
==============================================================================
Dep. Variable: count No. Observations: 115
Model: GLM Df Residuals: 112
Model Family: Poisson Df Model: 2
Link Function: Log Scale: 1.0000
Method: IRLS Log-Likelihood: -473.08
Date: Mon, 03 Mar 2025 Deviance: 519.46
Time: 21:57:30 Pearson chi2: 622.
No. Iterations: 5 Pseudo R-squ. (CS): 0.9417
Covariance Type: nonrobust
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
const -5.3070 0.032 -167.739 0.000 -5.369 -5.245
INDPRO -24.3445 1.378 -17.665 0.000 -27.046 -21.643
NASDAQCOM -1.4022 0.209 -6.724 0.000 -1.811 -0.994
==============================================================================

# Plot predicted and predictors
fig, ax = plt.subplots(figsize=(10, 6))
bx = ax.twinx()
Z['count'].plot(kind='bar', width=1.0, alpha=0.4, color="C0", ax=ax)
y_pred.plot(ls='', marker='^', color="C0", ax=ax)
ax.set_ylabel('quarterly number of stocks', color="C0")
Z['INDPRO'].cumsum().plot(color="C1", alpha=.5, ax=bx)
Z['NASDAQCOM'].cumsum().plot(color="C2", alpha=.5, ax=bx)
ax.legend(loc='upper left')
bx.legend(loc='upper right')
ax.set_xticks(np.arange(0, len(Z), 12), Z.index[::12])
ax.set_title('Number of stocks with large earnings misses')
plt.tight_layout()
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Credit losses
Suppose a financial institution has a portfolio N loans, and:

• default risk 𝑝𝑖 is the probability of default of the 𝑖 th loan
• loss severity or loss given default 𝐿𝑖 is the portion of the 𝑖 th loan lost in the event of default. This is often assumed

known with certainty

Then Expected loss is the sum of Default Probability × Loss given default over all loans = ∑𝑁
𝑖=1 𝑝𝑖𝐿𝑖

The standard deviation of the expected loss on an individual loan, by applying the “Bernoulli shortcut”is 𝜎𝑖 =
√𝑝𝑖(1 − 𝑝𝑖)𝐿𝑖.
The standard deviation of the loss of the portfolio depends on the correlation of defaults between loands 𝜎𝑃 =
√∑𝑖 ∑𝑗 𝜌𝑖𝑗𝜎𝑖𝜎𝑗. For tractability, the correlations may be simplified to be constant or determined by a (Gaussian)
copula, though neither assumption suffices to model real markets.
Actuarial Loss:

• Severity
• Frequency

References:
https://sites.google.com/site/zoubin019/teaching/math-5639-actuarial-loss-models
Lim, Terence, 2001,“Rationality and Analysts’Forecast Bias”, Journal of Finance, Volume 56, Issue 1, Pages 369-385.
https://doi.org/10.1111/0022-1082.00329
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TWENTY

SUPPLY CHAIN NETWORK GRAPHS

Forget about your competitors, just focus on your customers - Jack Ma
Supply chain networks comprise the interconnected relationships between suppliers and their customers. An effective way
to study these relationships is by constructing graphs that visually and mathematically represent supply chain structures.
We introduce key properties of graphical networks, such as degree distribution, clustering coefficients, and path lengths,
and explore how to identify central and connected firms.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import math
import numpy as np
import pandas as pd
import networkx as nx
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from finds.database import SQL
from finds.recipes import graph_draw
from secret import credentials
import warnings
# %matplotlib qt
VERBOSE = 0
if not VERBOSE:

warnings.simplefilter(action='ignore', category=FutureWarning)
sql = SQL(**credentials['sql'], verbose=VERBOSE)

20.1 Principal customers

The relationships between upstream suppliers and downstream customers, collectively known as “supply chain”rela-
tionships, form a crucial component of economic linkages, representing the movement of goods, services, and financial
transactions across industries and individual firms.
Principal customers are those that contribute more than 10% of a firm’s total sales, as defined by Regulation S-K and
SFAS 131. Under these disclosure requirements, suppliers are often significantly smaller than their corporate principal
customers.
Retrieve principal customer relationships from the database:

# retrieve principal customers info
year = 2022
cust = sql.read_dataframe(f"select gvkey, cgvkey, stic, ctic, conm, cconm "

f" from customer "

(continues on next page)
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f" where srcdate >= {year}0101 "
f" and srcdate <= {year}1231")

Construct a lookup table to map company tickers to their full names:

# construct Series to lookup company full name from ticker
lookup = pd.concat([Series(cust['conm'].values, cust['stic'].values),

Series(cust['cconm'].values, cust['ctic'].values)])\
.drop_duplicates()

20.2 Graph properties

In a graph, nodes (also called vertices) represent entities, while edges denote relationships between them. The degree
of a node is the number of edges directly connected to it.
Density measures the proportion of existing edges relative to the maximum possible edges:

• In undirected graphs: 2𝑚
𝑛(𝑛−1)

• In directed graphs: 𝑚
𝑛(𝑛−1)

where 𝑚 is the number of edges and 𝑛 is the number of nodes.
A simple graph has no self-loops (edges connecting a node to itself) and does not contain multiple edges between the
same pair of nodes.
A subgraph is a subset of nodes and the edges that connect them. A component is a subgraph in which every node is
connected to every other node by some path.
Key graph attributes include:

• Weighted vs. Unweighted: Indicates whether numerical values are assigned to edges.
• Directed vs. Undirected: Determines whether edges have a defined direction.
• Cyclic vs. Acyclic: A cyclic graph contains at least one cycle (a path that starts and ends at the same node), while

an acyclic graph does not.
• Connected vs. Disconnected: A graph is connected if a path exists between any two nodes.
• Weakly vs. Strongly Connected Components: Weakly connected components have a path between every pair

of nodes when edge direction is ignored, whereas strongly connected components require directed paths between
every pair of nodes.

To model supply chains, we construct a directed graph with edges pointing from suppliers to their principal customers
and analyze its structural properties.

# nodes are companies, with directed edges from supplier to customer
vertices = set(cust['stic']).union(cust['ctic'])
edges = cust[['stic', 'ctic']].values.tolist() # supplier --> customer

# Populate networkx directed graph with nodes and edges
DG = nx.DiGraph()
DG.add_nodes_from(vertices)
DG.add_edges_from(edges)

Display graph properties:
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# Helper to display graph properties
def graph_info(G):

out = dict()
out['is_directed'] = nx.is_directed(G)
out['num_edges'] = nx.number_of_edges(G)
out['num_nodes'] = nx.number_of_nodes(G)
out['num_selfloops'] = nx.number_of_selfloops(G)
out['density'] = nx.density(G)

out['is_weighted'] = nx.is_weighted(G)
if nx.is_weighted(G):

out['is_negatively_weighted'] = nx.is_negatively_weighted(G)

# Components
if nx.is_directed(G):

out['is_weakly_connected'] = nx.is_weakly_connected(G)
out['weakly_connected_components'] = nx.number_weakly_connected_components(G)
out['size_largest_weak_component'] = len(max(

nx.weakly_connected_components(G), key=len))
out['is_strongly_connected'] = nx.is_strongly_connected(G)
out['strongly_connected_components'] = nx.number_strongly_connected_

↪components(G)
out['size_largest_strong_component'] = len(max(

nx.strongly_connected_components(G), key=len))
else:

out['is_connected'] = nx.is_connected(G)
out['connected_components'] = nx.number_connected_components(G)
out['size_largest_component'] = len(max(

nx.connected_components(G), key=len))
return out

Series(graph_info(DG)).rename('Principal Customers Graph').to_frame()

Principal Customers Graph
is_directed True
num_edges 2561
num_nodes 1696
num_selfloops 5
density 0.000891
is_weighted False
is_weakly_connected False
weakly_connected_components 111
size_largest_weak_component 1398
is_strongly_connected False
strongly_connected_components 1692
size_largest_strong_component 3

# remove self-loops, if any
DG.remove_edges_from(nx.selfloop_edges(DG))
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20.2.1 Clustering coefficient

The clustering coefficient measures how nodes in a graph tend to cluster together.
• A triplet consists of three nodes connected by two (open triplet) or three (closed triplet) edges.
• A triangle comprises three closed triplets.
• The clustering coefficient of a node is given by:

2 × # of triangles
degree × (degree − 1)

• Graph transitivity is the fraction of all possible triangles that are actually present: $3 × # of triangles
# of triads $

# as an undirected graph
G = nx.Graph(DG)
DataFrame({'transitivity': nx.transitivity(G),

'average clustering': nx.average_clustering(G)},
index=['clustering'])

transitivity average clustering
clustering 0.007702 0.011649

20.2.2 Degree analysis

In directed graphs:
• Out-degree represents the number of edges pointing out from a node.
• In-degree represents the number of edges pointing into a node.

# Plot distribution of degrees
degrees = {'Out Degree': sorted((d for n, d in DG.out_degree()), reverse=True),

'In Degree': sorted((d for n, d in DG.in_degree()), reverse=True)}
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 8))
for ax, direction in zip(axes, degrees):

ax[0].plot(degrees[direction], "b-", marker=".")
ax[0].set_title(f"{direction} Rank")
ax[0].set_ylabel(f"{direction}")
ax[0].set_xlabel("Rank of Node")
ax[1].bar(*np.unique(degrees[direction], return_counts=True))
ax[1].set_title(f"{direction} Distribution")
ax[1].set_xlabel(f"{direction}")
ax[1].set_ylabel("Number of Nodes")

plt.tight_layout()
plt.show()
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20.2.3 Ego network

An ego is a focal node in a network. Each node in a network can serve as an ego. A neighborhood consists of the ego
and all nodes directly connected to it.
For analysis, we select the node with the highest degree as the focal node and construct its one-step neighborhood, capturing
immediate suppliers and principal customers.

# find node with greatest degree
(ego, degree) = max(G.degree(), key=lambda x: x[1])

# build subgraph of ego and neighbors
all_neighbors = list(nx.all_neighbors(DG, ego)) # predecessors and successors
neighbors = list(nx.neighbors(DG, ego)) # successors only
ego_graph = DG.subgraph([ego] + all_neighbors).copy()

# Plot ego graph
node_color = (dict.fromkeys(all_neighbors, 'b') # plot predecessor (supplier) nodes␣

↪in blue
| dict.fromkeys(neighbors, 'g') # plot successor (customer) nodes␣

↪in green
| {ego: 'cyan'})

labels = ({ticker: ticker for ticker in ego_graph.nodes}
| {ticker: lookup[ticker] for ticker in [ego] + neighbors})

graph_draw(ego_graph, figsize=(10, 8), node_size=300, seed=42,

(continues on next page)
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width=1, node_color=node_color, labels=labels, style='-',
title=f"Ego network {ego}")

plt.show()

20.2.4 Path lengths

The distance or path length between two nodes is the shortest path (fewest number of edges) between them.
• Eccentricity of a node is the maximum distance from that node to any other node in the graph.
• Diameter is the maximum eccentricity across all nodes in the graph.

To analyze path lengths, we identify the largest connected component of the graph and compute the longest undirected
path within it.

# find component with the longest diameter
components = list(nx.weakly_connected_components(DG))
nodes = components[np.argmax([nx.diameter(G.subgraph(c)) for c in components])]

# compute all shortest path lengths, and determine the longest
best_length = 0

(continues on next page)
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for src, targets in dict(nx.shortest_path(G.subgraph(nodes))).items():
for tgt, path in targets.items():

length = len(path)
if length > best_length:

best_length = length
best_path = path

# Archimedean spiral: r = b theta
pos = {ticker: ((n + 5) * math.cos(n), (n + 5) * math.sin(n))

for n, ticker in enumerate(best_path)}

# Plot nodes in a spiral graph
labels = {ticker: lookup[ticker] for ticker in best_path}
graph_draw(DG.subgraph(best_path), figsize=(10, 8), node_size=300,

width=3, labels=labels, style='-', pos=pos,
title=f"Longest Undirected Path")

{'CGAU': (5.0, 0.0),
'RGLD': (3.2418138352088386, 5.048825908847379),
'TECK': (-2.9130278558299967, 6.365081987779772),
'HL': (-7.919939972803563, 1.1289600644789377),
'CM': (-5.882792587772507, -6.811222457771354),
'SSRM': (2.8366218546322624, -9.589242746631385),
'BMO': (10.561873153154025, -3.0735704801881845),
'CDE': (9.046827052119655, 7.883839184625469),
'TD': (-1.8915004395119759, 12.861657206103963),
'SLG': (-12.755823666385478, 5.769658793384592),
'SONY': (-12.586072936146786, -8.160316663340547),
'SYNA': (0.07081116780881257, -15.999843304811256),
'F': (14.345517298452366, -9.121739606007393),
'VC': (16.33404206610353, 7.563006662879537),
'MBGYY': (2.5980071459488383, 18.821539758202537),
'NPO': (-15.193758257176427, 13.005756803142337),
'CVX': (-20.110849086791077, -6.045969649966372),
'MUR': (-6.053593437135133, -21.15074482135025),
'PSX': (15.187284289613844, -17.272706675748548),
'SPND': (23.72891083648006, 3.597053031910856),
'DCP': (10.202051545334799, 22.82363126819069),
'PDCE': (-14.240960765830978, 21.75304660193746),
'UNRG': (-26.998942312655203, -0.23898535084090466)}
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TWENTYONE

INDUSTRY COMMUNITY DETECTION

Realize that everything connects to everything else - Leonardo DaVinci
Traditional industry classification systems, such as SIC and NAICS, group firms based on production processes or product
similarities. Natural language processing techniques can be leveraged to analyze product descriptions and capture dynamic
changes in industry structures over time, as proposed by Hoberg and Phillips (2016). Industry communities can be
detected through network analysis, where firms are modeled as nodes in a graph, and connections between them are
determined by similarities in their product and market descriptions.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import zipfile
import io
from itertools import chain
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import seaborn as sns
import networkx as nx
from finds.database import SQL
from finds.readers import requests_get, Sectoring
from finds.structured import BusDay, PSTAT
from finds.recipes import graph_info
from secret import credentials
# %matplotlib qt
VERBOSE = 0

sql = SQL(**credentials['sql'], verbose=VERBOSE)
bd = BusDay(sql)
pstat = PSTAT(sql, bd, verbose=VERBOSE)

21.1 Industry taxonomy

Industry classification, or industry taxonomy, organizes companies into groups based on shared characteristics such as
production processes, product offerings, or financial market behaviors.
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21.1.1 Text-based industry classification

Hoberg and Phillips (2016) developed a text-based measure of firm similarity by analyzing product descriptions in 10-
K filings. They construct firm-by-firm similarity scores using word vectors, filtering out common words and focusing
on nouns and proper nouns, while excluding geographic terms. The similarity between firms is quantified using cosine
similarity, creating a pairwise similarity matrix across firms and years.
Since Item 101 of Regulation S-K mandates that firms accurately describe their key products in their 10-K filings, the
TNIC scheme, based on textual similarity, provides a dynamic classification system that evolves with market changes.
This method offers a more flexible alternative to traditional classification systems, capturing shifts in product markets
over time.
Source: Hoberg and Phillips Industry Classification
The TNIC pair-wise firm similiarities are retrieved from the Hoberg and Phillips website:

# Retrieve TNIC scheme from Hoberg and Phillips website
tnic_scheme = 'tnic3'
root = 'https://hobergphillips.tuck.dartmouth.edu/idata/'
source = root + tnic_scheme + '_data.zip'
if source.startswith('http'):

response = requests_get(source)
source = io.BytesIO(response.content)

# extract the csv file from zip archive
with zipfile.ZipFile(source).open(tnic_scheme + "_data.txt") as f:

tnic_data = pd.read_csv(f, sep='\s+')

# extract latest year of tnic as data frame
year = max(tnic_data['year']) # [1989, 1999, 2009, 2019]
tnic = tnic_data[tnic_data['year'] == year].dropna()
tnic

year gvkey1 gvkey2 score
26307358 2023 1004 1823 0.0127
26307359 2023 1004 4091 0.0087
26307360 2023 1004 5567 0.0063
26307361 2023 1004 9698 0.0075
26307362 2023 1004 10519 0.0191
... ... ... ... ...
26973403 2023 351038 329141 0.0684
26973404 2023 351038 331856 0.0769
26973405 2023 351038 332115 0.1036
26973406 2023 351038 347007 0.0731
26973407 2023 351038 349972 0.0871

[666050 rows x 4 columns]
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21.1.2 Industry classification

Industry classification systems such as SIC and NAICS follow hierarchical structures to categorize firms based on their
economic activities:

• Standard Industrial Classification (SIC): Uses a 2-digit, 3-digit, and 4-digit hierarchy to classify industries.
• North American Industry Classification System (NAICS): Expands classification granularity from 2-digit to

6-digit levels.

# populate dataframe of nodes with gvkey (as index), permno, sic and naics
nodes = DataFrame(index=sorted(set(tnic['gvkey1']).union(tnic['gvkey2'])))\

.rename_axis(index='gvkey')
for code in ['lpermno', 'sic', 'naics']:

lookup = pstat.build_lookup('gvkey', code, fillna=0)
nodes[code] = lookup(nodes.index)

Series(np.sum(nodes > 0, axis=0)).rename('Non-missing').to_frame().T

lpermno sic naics
Non-missing 3829 3829 3827

# supplement naics and sic with crosswalks in Sectoring class
naics = Sectoring(sql, 'naics', fillna=0) # supplement from crosswalk
sic = Sectoring(sql, 'sic', fillna=0)
nodes['naics'] = nodes['naics'].where(nodes['naics'] > 0, naics[nodes['sic']])
nodes['sic'] = nodes['sic'].where(nodes['sic'] > 0, sic[nodes['naics']])
Series(np.sum(nodes > 0, axis=0)).rename('Non-missing').to_frame().T

lpermno sic naics
Non-missing 3829 3829 3829

21.1.3 Sector groups

Industry taxonomies group detailed classifications into broader sectors for economic analysis:
• Fama and French aggregate 4-digit SIC codes into industry groups consisting of 5, 10, 12, 17, 30, 38, 48, or 49

sectors.
• The Bureau of Economic Analysis (BEA) consolidates 6-digit NAICS codes into summary-level industry groups,

with updates in 1947, 1963, and 1997.

# include sectoring schemes
codes = {'sic': ([f"codes{c}" for c in [5, 10, 12, 17, 30, 38, 48, 49]]

+ ['sic2', 'sic3']),
'naics': ['bea1947', 'bea1963', 'bea1997']}

sectorings = {} # store Sectoring objects
for key, schemes in codes.items():

for scheme in schemes:
if scheme not in sectorings:

# missing value is integer 0 sic2 and sic3 shemes, else string ''
fillna = 0 if scheme.startswith('sic') else ''

# load the sectoring class from SQL

(continues on next page)
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sectorings[scheme] = Sectoring(sql, scheme, fillna=fillna)

# apply the sectoring scheme to partition the nodes
nodes[scheme] = sectorings[scheme][nodes[key]]

# keep nodes with non-missing data
nodes = nodes[nodes[scheme].ne(sectorings[scheme].fillna)]
print(len(nodes), scheme)

nodes

3845 codes5
3845 codes10
3845 codes12
3845 codes17
3845 codes30
3845 codes38
3845 codes48
3845 codes49
3829 sic2
3829 sic3
3561 bea1947
3561 bea1963
3561 bea1997

lpermno sic naics codes5 codes10 codes12 codes17 codes30 codes38 \
gvkey
1004 54594 5080 423860 Cnsmr Shops Shops Machn Whlsl Whlsl
1045 21020 4512 481111 Other Durbl Durbl Trans Trans Trans
1050 11499 3564 333413 Manuf Manuf Manuf Machn FabPr Machn
1076 10517 6141 522220 Other Other Money Finan Fin Money
1078 20482 3845 334510 Hlth Hlth Hlth Other Hlth Instr
... ... ... ... ... ... ... ... ... ...
345980 20333 5961 455110 Cnsmr Shops Shops Rtail Rtail Rtail
347007 15533 2836 325414 Hlth Hlth Hlth Other Hlth Chems
349337 20867 3845 334510 Hlth Hlth Hlth Other Hlth Instr
349972 15642 2836 325414 Hlth Hlth Hlth Other Hlth Chems
351038 16161 2834 325412 Hlth Hlth Hlth Cnsum Hlth Chems

codes48 codes49 sic2 sic3 bea1947 bea1963 bea1997
gvkey
1004 Whlsl Whlsl 50 508 42 42 42
1045 Trans Trans 45 451 48 481 481
1050 Mach Mach 35 356 333 333 333
1076 Banks Banks 61 614 52 521CI 521CI
1078 MedEq MedEq 38 384 334 334 334
... ... ... ... ... ... ... ...
345980 Rtail Rtail 59 596 44RT 44RT 4A0
347007 Drugs Drugs 28 283 325 325 325
349337 MedEq MedEq 38 384 334 334 334
349972 Drugs Drugs 28 283 325 325 325
351038 Drugs Drugs 28 283 325 325 325

[3561 rows x 16 columns]
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21.2 Community structure

In network analysis, community structure refers to the clustering of nodes (firms) into partitions (groups) based on
connectivity patterns. Identifying these communities helps reveal hidden industry relationships and competitive dynamics.

# populate undirected graph with tnic edges
edges = tnic[tnic['gvkey1'].isin(nodes.index) & tnic['gvkey2'].isin(nodes.index)]
edges = list(

edges[['gvkey1', 'gvkey2', 'score']].itertuples(index=False, name=None))
G = nx.Graph()
G.add_weighted_edges_from(edges)
G.remove_edges_from(nx.selfloop_edges(G)) # remove self-loops: not necessary
Series(graph_info(G, fast=True)).rename(year).to_frame()

2023
transitivity 0.877035
average_clustering 0.575643
connected False
connected_components 9
size_largest_component 3523
directed False
weighted True
negatively_weighted False
edges 320352
nodes 3541
selfloops 0
density 0.051113

21.2.1 Measuring partitions

The quality of graph partitions can be evaluated using modularity, a measure that assesses the strength of community
structures by comparing observed connections within clusters to a random network model.

# evaluate modularity of sectoring schemes on TNIC graph
def community_quality(G, communities):

"""helper to measure quality of partitions"""
out = {'communities': len(communities)}
out['modularity'] = nx.community.modularity(G, communities)
(out['coverage'],
out['performance']) = nx.community.partition_quality(G, communities)
return out

modularity = {} # to collect measurements of each scheme
for scheme in sorted(chain(*codes.values())):

communities = nodes.loc[list(G.nodes), scheme]\
.reset_index()\
.groupby(scheme)['gvkey']\
.apply(list)\
.to_list() # list of lists of node labels

modularity[scheme] = community_quality(G, communities)
df = DataFrame.from_dict(modularity, orient='index').sort_index()
print(f"Quality of sectoring schemes on TNIC graph ({year})")
df
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Quality of sectoring schemes on TNIC graph (2023)

communities modularity coverage performance
bea1947 40 0.330481 0.779187 0.925859
bea1963 58 0.324246 0.734745 0.948296
bea1997 61 0.324169 0.734514 0.948689
codes10 10 0.335843 0.940503 0.850069
codes12 12 0.336655 0.938187 0.878268
codes17 17 0.285847 0.766719 0.794675
codes30 30 0.335544 0.934385 0.899115
codes38 36 0.333800 0.793237 0.890785
codes48 48 0.331168 0.752610 0.944559
codes49 49 0.331003 0.751526 0.951096
codes5 5 0.337074 0.945045 0.818984
sic2 67 0.327541 0.743694 0.942476
sic3 226 0.288389 0.690952 0.958297

21.2.2 Detecting partitions

Community detection in graphs can be performed using various algorithms, including:
• Label Propagation Algorithm: This method assigns an initial label to each node and iteratively updates labels

based on the majority of its neighbors’labels, allowing communities to form dynamically. It is fast and works well
for large networks but may produce different results on different runs due to randomness.

• Louvain Method: This hierarchical clustering algorithm optimizes modularity by iteratively merging small com-
munities into larger ones, maximizing intra-community connections while minimizing inter-community edges.

• Greedy Algorithm: This algorithm builds communities by iteratively merging pairs of nodes or groups that result
in the largest modularity gain, prioritizing locally optimal choices.

# Run community detection algorithms
def community_detection(G):

"""Helper to run community detection algorithms on an undirected graph"""
out = {}
out['label'] = nx.community.label_propagation_communities(G)
out['louvain'] = nx.community.louvain_communities(G, resolution=1)
out['greedy'] = nx.community.greedy_modularity_communities(G, resolution=1)
return out

communities = community_detection(G)
quality = {}
for key, community in communities.items():

quality[key] = community_quality(G, community)

df = DataFrame.from_dict(quality, orient='index').sort_index()
print(f"Modularity of community detection algorithms on TNIC graph ({year})")
df

Modularity of community detection algorithms on TNIC graph (2023)
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communities modularity coverage performance
greedy 51 0.323848 0.989711 0.689093
label 101 0.347795 0.990485 0.909486
louvain 19 0.354818 0.824855 0.838868

# Visualize Fama-French 49-industries in the detected communities
key = 'codes49'
for ifig, detection in enumerate(communities.keys()):

# count industries represented in each partition
industry = []
communities_sequence = sorted(communities[detection], key=len, reverse=True)
for i, community in enumerate(communities_sequence):

industry.append(nodes[key][list(community)].value_counts().rename(i+1))
names = sectorings[key].sectors['name'].drop_duplicates(keep='first')
df = pd.concat(industry, axis=1)\

.dropna(axis=0, how='all')\

.fillna(0)\

.astype(int)\

.reindex(names)

# display as heatmap
fig, ax = plt.subplots(num=ifig+1, clear=True, figsize=(6, 8))
sns.heatmap(df.iloc[:,:10],

square=False,
linewidth=.5,
ax=ax,
yticklabels=1,
cmap="YlGnBu",
robust=True)

if scheme.startswith('bea'):
ax.set_yticklabels(Sectoring._bea_industry[df.index], size=10)

else:
ax.set_yticklabels(df.index, size=10)

ax.set_title(f'{detection.capitalize()} Community Detection {year}')
ax.set_xlabel(f"Industry representation in communities")
ax.set_ylabel(f"{key} industry")
fig.subplots_adjust(left=0.4)
plt.tight_layout(pad=0)
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CHAPTER

TWENTYTWO

INPUT-OUTPUT GRAPH CENTRALITY

And so we all matter - maybe less then a lot but always more than none - John Green
Input-output analysis in economics models the interdependencies between sectors by tracking the flow of goods and
services. Graph centrality measures are valuable tools for analyzing the structure and dynamics of such networks. By
representing input-output data published by the Bureau of Economic Analysis (BEA) as a directed graph (with sectors
as nodes and transactions as edges from producers to consumers), we can apply centrality metrics to identify the most
influential sectors driving overall economic activity.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import pandas as pd
from pandas import DataFrame, Series
import networkx as nx
from finds.database import RedisDB
from finds.readers import BEA
from finds.recipes import graph_info, graph_draw
from secret import credentials
# %matplotlib qt
VERBOSE = 0
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', 200)

rdb = RedisDB(**credentials['redis'])
bea = BEA(rdb, **credentials['bea'], verbose=VERBOSE)
years = [1947, 2023]
vintages = [1997, 1963, 1947] # when sectoring schemes were revised
vintage = min(vintages)

22.1 Centrality measures

Graph centrality measures help quantify the importance of nodes within a network, providing insight into their roles and
influence.

• Degree Centrality measures the number of edges connected to a node, indicating its direct level of activity.
• Betweenness Centrality quantifies the extent to which a node lies on the shortest paths between other nodes,

capturing its role in network connectivity.
• Closeness Centrality assesses how close a node is to all other nodes based on shortest path distances, highlighting

its accessibility.
• Eigenvector Centrality evaluates a node’s importance based on the centrality of its neighbors, giving higher

scores to nodes connected to other influential nodes.
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• PageRank Centrality was originally developed to rank web pages and operates as a random walk process, esti-
mating the long-term likelihood of visiting each node by following edges.

• Hubs are nodes with many outgoing edges, acting as facilitators of flow to other parts of the network.
• Authorities are nodes with many incoming edges, representing highly influential entities that are frequently refer-

enced by other nodes.

# Helper to compute centrality measures
def nodes_centrality(G, weight='weight', cost=False, alpha=0.99):

"""Return dict of vertex centrality measures

Args:
G: Graph may be directed or indirected, weighted or unweighted
weight: name of edge attribute for weights, Set to None for unweighted
cost: If True, then weights are costs; else weights are importances

"""
out = {}
# Degree centrality, for directed and undirected graphs
if nx.is_directed(G):

out['in_degree'] = nx.in_degree_centrality(G)
out['out_degree'] = nx.out_degree_centrality(G)

else:
out['degree'] = nx.degree_centrality(G)

# Hubs and Authorities
out['hub'], out['authority'] = nx.hits(G)

# if weights are costs, then Eigenvector and Pagerank ignore weights
if not cost and nx.is_weighted(G):

out['eigenvector'] = nx.eigenvector_centrality(G, weight=weight, max_
↪iter=1000)

out['pagerank'] = nx.pagerank(G, weight=weight, alpha=alpha)
else:

out['eigenvector'] = nx.eigenvector_centrality(G, max_iter=1000)
out['pagerank'] = nx.pagerank(G, alpha=alpha)

# if weights are importances, then Betweeness and Closeness ignore weights
if cost and nx.is_weighted(G):

out['betweenness'] = nx.betweenness_centrality(G, weight=weight)
out['closeness'] = nx.closeness_centrality(G, distance=weight)

else:
out['betweenness'] = nx.betweenness_centrality(G)
out['closeness'] = nx.closeness_centrality(G)

return out

22.2 BEA Input-Output Use Tables

Input-output analysis is an economic modeling technique used to study interdependencies among different sectors. It
involves constructing input-output tables that track the flow of goods and services between industries, quantifying how
changes in one sector impact others.

# Read IOUse tables from BEA website
ioUses = {year: bea.read_ioUse(year=year, vintage=vintage) for year in years}
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To analyze these relationships, we construct a directed graph from the latest BEA input-output flows, where edges flow
from user sectors to make sectors. This allows us to visualize sectoral interactions and determine the most influential
industries.

## Direction of edges point from user industry to maker, i.e. follows the money
tail = 'colcode' # edges follow flow of payments, from column to row
head = 'rowcode'
drop = ('F','T','U','V','Other') # drop these codes

# Display node centrality measures from latest year
ioUse = ioUses[max(years)]
data = ioUse[(~ioUse['rowcode'].str.startswith(drop) &

~ioUse['colcode'].str.startswith(drop))].copy()

# extract cross data; generate and load edges (as tuples) to graph
data = data[(data['colcode'] != data['rowcode'])]
data['weights'] = data['datavalue'] / data['datavalue'].sum()
edges = data.loc[data['weights'] > 0, [tail, head, 'weights']].values.tolist()
G = nx.DiGraph()
G.add_weighted_edges_from(edges, weight='weight')

# Display graph properties
Series(graph_info(G)).rename('Properties').to_frame()

Properties
transitivity 0.903811
average_clustering 0.849259
weakly_connected True
weakly_connected_components 1
size_largest_weak_component 47
strongly_connected False
strongly_connected_components 4
size_largest_strong_component 44
directed True
weighted True
negatively_weighted False
edges 1689
nodes 47
selfloops 0
density 0.781221

Vizualise graphs of input-output flows for the earliest and latest years available, highlighting the top five sectors with the
highest PageRank centrality scores.

colors = ['lightgrey', 'darkgreen', 'lightgreen']

# Populate and plot graph of first and last table years
for ifig, year in enumerate(years):

# keep year, drop invalid rows
ioUse = ioUses[year]
data = ioUse[(~ioUse['rowcode'].str.startswith(drop) &

~ioUse['colcode'].str.startswith(drop))].copy()

# create master table of industries and measurements
master = data[data['rowcode'] == data['colcode']][['rowcode','datavalue']]\

.set_index('rowcode')\

(continues on next page)
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(continued from previous page)

.rename(columns={'datavalue': 'self'})

# extract cross data; generate and load edges (as tuples) to graph
data = data[(data['colcode'] != data['rowcode'])]
data['weights'] = data['datavalue'] / data['datavalue'].sum()
edges = data.loc[data['weights'] > 0, [tail, head, 'weights']]\

.values\

.tolist()

G = nx.DiGraph()
G.add_weighted_edges_from(edges, weight='weight')
nx_labels = BEA.short_desc[list(G.nodes)].to_dict()

# update master table industry flow values
master = master.join(data.groupby(['colcode'])['datavalue'].sum(), how='outer')\

.rename(columns={'datavalue': 'user'})
master = master.join(data.groupby(['rowcode'])['datavalue'].sum(), how='outer')\

.rename(columns={'datavalue': 'maker'})
master = master.fillna(0).astype(int)

# inweight~supply~authority~eigenvector~pagerank, outweight~demand~hub
centrality = DataFrame(nodes_centrality(G)) # compute centrality metrics
master = master.join(centrality, how='left')
master['bea'] = BEA.short_desc[master.index].to_list()

# visualize graph
score = centrality['pagerank']
node_size = score.to_dict()
node_color = {node: colors[0] for node in G.nodes()}
if ifig == 0:

center_name = score.index[score.argmax()]
else:

node_color.update({k: colors[2] for k in top_color})
top_color = list(score.index[score.argsort()[-5:]])
node_color.update(dict.fromkeys(top_color, colors[1]))
pos = graph_draw(G,

num=ifig+1,
figsize=(10, 10),
center_name=center_name,
node_color=node_color,
node_size=node_size,
edge_color='r',
k=3,
pos=(pos if ifig else None),
font_size=10,
font_weight='semibold',
labels=master['bea'].to_dict(),
title=f"Top 5 Nodes By Pagerank in {year} ({vintage}-sectoring␣

↪scheme)")
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Display centrality scores for all BEA sectors based on the latest year’s input-output data:

# show industry flow values and graph centrality measures
master = pd.concat(

(data[data['rowcode'] == data['colcode']][['rowcode', 'datavalue']]\
.set_index('rowcode')\
.rename(columns={'datavalue': 'self'}),
data.groupby(['colcode'])['datavalue'].sum().rename('user'),
data.groupby(['rowcode'])['datavalue'].sum().rename('maker')),
join='outer', axis=1).fillna(0).astype(int)

master = master.join(DataFrame(nodes_centrality(G)), how='left')
master['bea'] = BEA.short_desc[master.index].to_list()

print(f"Node Centrality of BEA Input-Output Use Table {year}")
master.drop(columns=['self']).round(3)
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Node Centrality of BEA Input-Output Use Table 2023

user maker in_degree out_degree hub authority \
111CA 183083 413260 0.478 0.783 0.005 0.008
113FF 4764 83642 0.543 0.652 0.000 0.001
211 189659 491570 0.674 0.674 0.008 0.004
212 43330 125323 0.870 0.804 0.002 0.003
213 29107 23233 0.087 0.652 0.002 0.000
22 148366 426549 1.000 0.717 0.008 0.026
23 1108514 381314 1.000 0.761 0.037 0.027
311FT 610392 378716 0.630 0.804 0.013 0.022
313TT 22726 46617 0.848 0.761 0.001 0.002
315AL 9831 7442 0.435 0.674 0.000 0.000
321 64039 187546 0.957 0.804 0.002 0.010
322 72249 177891 0.978 0.717 0.002 0.007
323 42407 84936 0.739 0.804 0.002 0.007
324 514797 537972 1.000 0.761 0.005 0.026
325 207051 659545 1.000 0.804 0.009 0.031
326 174402 358413 1.000 0.761 0.006 0.018
327 61298 227005 0.957 0.739 0.002 0.010
331 81903 335633 0.891 0.717 0.003 0.004
332 195632 501561 1.000 0.761 0.006 0.017
333 203600 266998 1.000 0.761 0.005 0.009
334 53901 373613 0.978 0.696 0.003 0.020
335 74954 201230 1.000 0.717 0.002 0.008
3361MV 333656 199393 0.978 0.783 0.008 0.010
3364OT 129087 85122 0.391 0.717 0.005 0.003
337 44645 54948 0.522 0.717 0.001 0.003
339 69034 113798 0.935 0.804 0.003 0.010
42 1134476 73996 0.848 0.848 0.085 0.003
44RT 992525 0 0.000 0.913 0.080 -0.000
48 532651 399454 1.000 0.848 0.030 0.031
493 55326 180519 0.913 0.696 0.004 0.014
51 715155 648393 1.000 0.848 0.062 0.043
52 714298 1199853 1.000 0.674 0.070 0.092
531 1209091 1565039 1.000 0.739 0.096 0.113
532RL 275723 508226 1.000 0.696 0.021 0.029
54 772709 2108318 1.000 0.935 0.045 0.152
55 279051 754756 0.891 0.848 0.025 0.051
56 496066 1206168 1.000 0.913 0.033 0.099
61 155822 31243 0.413 0.848 0.013 0.002
62 1211742 24110 0.130 0.848 0.090 0.002
71 182097 135112 1.000 0.913 0.016 0.010
721 127238 104038 0.978 0.826 0.008 0.008
722 614168 322353 1.000 0.826 0.038 0.028
81 350192 348957 1.000 0.913 0.029 0.024
GFE 40482 73578 0.761 0.739 0.002 0.006
GFG 479004 0 0.000 0.848 0.030 0.000
GSLE 296865 42462 0.891 0.783 0.016 0.003
GSLG 1162737 0 0.000 0.870 0.066 -0.000

eigenvector pagerank betweenness closeness \
111CA 0.039 0.015 0.001 0.657
113FF 0.007 0.007 0.001 0.687
211 0.072 0.032 0.004 0.754
212 0.019 0.019 0.008 0.885
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213 0.003 0.005 0.000 0.523
22 0.085 0.029 0.002 1.000
23 0.111 0.020 0.004 1.000
311FT 0.039 0.013 0.002 0.730
313TT 0.004 0.002 0.002 0.868
315AL 0.001 0.000 0.000 0.639
321 0.037 0.007 0.003 0.958
322 0.030 0.012 0.002 0.979
323 0.022 0.004 0.003 0.793
324 0.081 0.028 0.003 1.000
325 0.140 0.051 0.003 1.000
326 0.057 0.019 0.003 1.000
327 0.046 0.010 0.002 0.958
331 0.043 0.039 0.001 0.902
332 0.090 0.034 0.002 1.000
333 0.051 0.021 0.003 1.000
334 0.076 0.022 0.001 0.979
335 0.043 0.013 0.002 1.000
3361MV 0.041 0.014 0.004 0.979
3364OT 0.004 0.001 0.000 0.622
337 0.014 0.002 0.001 0.676
339 0.009 0.003 0.004 0.939
42 0.010 0.007 0.004 0.868
44RT 0.000 0.000 0.000 0.000
48 0.097 0.021 0.005 1.000
493 0.021 0.007 0.001 0.920
51 0.212 0.040 0.005 1.000
52 0.400 0.079 0.002 1.000
531 0.368 0.081 0.003 1.000
532RL 0.147 0.036 0.001 1.000
54 0.531 0.118 0.018 1.000
55 0.172 0.048 0.009 0.902
56 0.449 0.076 0.012 1.000
61 0.002 0.001 0.001 0.630
62 0.000 0.000 0.000 0.535
71 0.053 0.009 0.012 1.000
721 0.052 0.009 0.004 0.979
722 0.118 0.020 0.004 1.000
81 0.099 0.020 0.012 1.000
GFE 0.014 0.003 0.004 0.807
GFG 0.000 0.000 0.000 0.000
GSLE 0.012 0.003 0.004 0.902
GSLG 0.000 0.000 0.000 0.000

bea
111CA Farms
113FF Forestry,fishing
211 Oil, gas
212 Mining
213 Support mining
22 Utilities
23 Construction
311FT Food
313TT Textile
315AL Apparel
321 Wood

(continues on next page)
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322 Paper
323 Printing
324 Petroleum, coal
325 Chemical
326 Plastics, rubber
327 Nonmetallic
331 Metals
332 Fabricated metal
333 Machinery
334 Computer
335 Electrical
3361MV Motor vehicles
3364OT Transport equip
337 Furniture
339 Manufacturing
42 Wholesale
44RT Retail
48 Transportation
493 Warehousing, storage
51 Information
52 Finance,insurance
531 Real estate
532RL Rental
54 Professional services
55 Management
56 Administrative and waste management
61 Educational
62 Healthcare
71 Arts, entertain, rec
721 Accommodation
722 Food services
81 Other services
GFE Federal enterprises
GFG General government
GSLE State local enterprises
GSLG State local general

Compare the 1947 and 1997 sectoring schemes to examine how BEA’s industry groupings have evolved over time.

# Compare 1947 and 1997 sector schemes (BEA "summary"-level industry groups)
v1947 = BEA.sectoring(1947).rename(columns={'description': '1947'})
v1997 = BEA.sectoring(1997).rename(columns={'description': '1997'})
df = v1947[['title', '1947']].join(v1997['1997'])
df[df['1947'] != df['1997']] # changes in the sectoring scheme

␣
↪ title \

code
441000 Motor␣

↪vehicle and parts dealers
442000 ␣

↪ All other retail
443000 ␣

↪ All other retail
444000 Building material and garden␣

(continues on next page)
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↪equipment and supplies dealers
445000 ␣

↪Food and beverage stores
446000 Health␣

↪and personal care stores
447000 ␣

↪ Gasoline stations
448000 Clothing and␣

↪clothing accessories stores
451000 ␣

↪ All other retail
452000 ␣

↪General merchandise stores
453000 ␣

↪ All other retail
454000 ␣

↪ Nonstore retailers
481000 ␣

↪ Air transportation
482000 ␣

↪ Rail transportation
483000 ␣

↪ Water transportation
484000 ␣

↪ Truck transportation
485000 Transit and ground␣

↪passenger transportation
486000 ␣

↪Pipeline transportation
487000 Scenic and sightseeing transportation␣

↪and support activities
488000 Scenic and sightseeing transportation␣

↪and support activities
492000 ␣

↪Couriers and messengers
511000 Publishing industries, except␣

↪internet (includes software)
511110 ␣

↪ Newspaper publishers
511120 ␣

↪Periodical publishers
511130 ␣

↪ Book publishers
511140 Directory, mailing list,

↪ and other publishers
511190 Directory, mailing list,

↪ and other publishers
511210 ␣

↪ Software publishers
512000 Motion picture and␣

↪sound recording industries
512100 Motion␣

↪picture and video industries
512200 ␣

↪Sound recording industries
513000 Broadcasting␣

(continues on next page)
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↪and telecommunications
514000 Data processing, internet publishing, and␣

↪other information services
515100 Radio and␣

↪television broadcasting
515200 Cable and other␣

↪subscription programming
517100 Wired␣

↪telecommunications carriers
517200 Wireless telecommunications␣

↪carriers (except satellite)
517400 Satellite, telecommunications resellers, and all␣

↪other telecommunications
518200 Data processing, hosting,

↪ and related services
519110 News syndicates, libraries, archives and all␣

↪other information services
519130 Internet publishing and broadcasting␣

↪and Web search portals
521000 Monetary authorities and depository␣

↪credit intermediation
522100 Monetary authorities and depository␣

↪credit intermediation
522200 Nondepository credit intermediation␣

↪and related activities
523000 Securities, commodity␣

↪contracts, and investments
523100 Securities and commodity contracts␣

↪intermediation and brokerage
523900 Other financial␣

↪investment activities
524000 Insurance carriers␣

↪and related activities
524113 Direct␣

↪life insurance carriers
524114 Insurance␣

↪carriers, except direct life
524120 Insurance␣

↪carriers, except direct life
524130 Insurance␣

↪carriers, except direct life
524200 Insurance agencies, brokerages,␣

↪and related activities
525000 Funds, trusts, and␣

↪other financial vehicles
541100 ␣

↪ Legal services
541200 Accounting, tax preparation, bookkeeping,

↪ and payroll services
541300 Architectural, engineering,

↪ and related services
541400 ␣

↪Specialized design services
541500 Computer systems␣

↪design and related services
541511 Custom␣

(continues on next page)
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↪computer programming services
541512 Computer␣

↪systems design services
541513 Other computer related services, including␣

↪facilities management
541519 Other computer related services, including␣

↪facilities management
541610 ␣

↪Management consulting services
541620 Environmental and other␣

↪technical consulting services
541690 Environmental and other␣

↪technical consulting services
541700 Scientific research␣

↪and development services
541800 Advertising, public relations,

↪ and related services
541910 All other miscellaneous professional, scientific,␣

↪and technical services
541920 ␣

↪Photographic services
541930 All other miscellaneous professional, scientific,␣

↪and technical services
541940 ␣

↪ Veterinary services
541990 All other miscellaneous professional, scientific,␣

↪and technical services
561000 ␣

↪Administrative and support services
561100 Office␣

↪administrative services
561200 ␣

↪Facilities support services
561300 ␣

↪ Employment services
561400 ␣

↪Business support services
561500 Travel arrangement␣

↪and reservation services
561600 Investigation␣

↪and security services
561700 Services to␣

↪buildings and dwellings
561900 ␣

↪Other support services
562000 Waste management␣

↪and remediation services
621000 ␣

↪Ambulatory health care services
621100 ␣

↪Offices of physicians
621200 ␣

↪ Offices of dentists
621300 Offices of␣

↪other health practitioners
621400 ␣

(continues on next page)
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↪Outpatient care centers
621500 Medical and␣

↪diagnostic laboratories
621600 ␣

↪Home health care services
621900 Other␣

↪ambulatory health care services
622000 ␣

↪ Hospitals
623000 Nursing and␣

↪residential care facilities
623100 Nursing and␣

↪community care facilities
623200 Residential mental health, substance abuse, and other␣

↪residential care facilities
623300 Nursing and␣

↪community care facilities
623900 Residential mental health, substance abuse, and other␣

↪residential care facilities
624000 ␣

↪ Social assistance
624100 ␣

↪Individual and family services
624200 Community food, housing, and other relief services, including vocational␣

↪rehabilitation services
624400 ␣

↪Child day care services
711000 Performing arts, spectator sports, museums,␣

↪and related activities
711100 ␣

↪Performing arts companies
711200 ␣

↪ Spectator sports
711300 Promoters of performing arts and sports and␣

↪agents for public figures
711500 Independent artists,␣

↪writers, and performers
712000 Museums, historical␣

↪sites, zoos, and parks
713000 Amusements, gambling, and␣

↪recreation industries
713100 ␣

↪Amusement parks and arcades
713200 Gambling industries␣

↪(except casino hotels)
713900 Other amusement and␣

↪recreation industries

1947 \
code
441000 RETAIL TRADE
442000 RETAIL TRADE
443000 RETAIL TRADE
444000 RETAIL TRADE
445000 RETAIL TRADE
446000 RETAIL TRADE

(continues on next page)
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447000 RETAIL TRADE
448000 RETAIL TRADE
451000 RETAIL TRADE
452000 RETAIL TRADE
453000 RETAIL TRADE
454000 RETAIL TRADE
481000 Transportation
482000 Transportation
483000 Transportation
484000 Transportation
485000 Transportation
486000 Transportation
487000 Transportation
488000 Transportation
492000 Transportation
511000 INFORMATION
511110 INFORMATION
511120 INFORMATION
511130 INFORMATION
511140 INFORMATION
511190 INFORMATION
511210 INFORMATION
512000 INFORMATION
512100 INFORMATION
512200 INFORMATION
513000 INFORMATION
514000 INFORMATION
515100 INFORMATION
515200 INFORMATION
517100 INFORMATION
517200 INFORMATION
517400 INFORMATION
518200 INFORMATION
519110 INFORMATION
519130 INFORMATION
521000 FINANCE AND INSURANCE
522100 FINANCE AND INSURANCE
522200 FINANCE AND INSURANCE
523000 FINANCE AND INSURANCE
523100 FINANCE AND INSURANCE
523900 FINANCE AND INSURANCE
524000 FINANCE AND INSURANCE
524113 FINANCE AND INSURANCE
524114 FINANCE AND INSURANCE
524120 FINANCE AND INSURANCE
524130 FINANCE AND INSURANCE
524200 FINANCE AND INSURANCE
525000 FINANCE AND INSURANCE
541100 PROFESSIONAL AND TECHNICAL SERVICES
541200 PROFESSIONAL AND TECHNICAL SERVICES
541300 PROFESSIONAL AND TECHNICAL SERVICES
541400 PROFESSIONAL AND TECHNICAL SERVICES
541500 PROFESSIONAL AND TECHNICAL SERVICES
541511 PROFESSIONAL AND TECHNICAL SERVICES
541512 PROFESSIONAL AND TECHNICAL SERVICES
541513 PROFESSIONAL AND TECHNICAL SERVICES

(continues on next page)
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541519 PROFESSIONAL AND TECHNICAL SERVICES
541610 PROFESSIONAL AND TECHNICAL SERVICES
541620 PROFESSIONAL AND TECHNICAL SERVICES
541690 PROFESSIONAL AND TECHNICAL SERVICES
541700 PROFESSIONAL AND TECHNICAL SERVICES
541800 PROFESSIONAL AND TECHNICAL SERVICES
541910 PROFESSIONAL AND TECHNICAL SERVICES
541920 PROFESSIONAL AND TECHNICAL SERVICES
541930 PROFESSIONAL AND TECHNICAL SERVICES
541940 PROFESSIONAL AND TECHNICAL SERVICES
541990 PROFESSIONAL AND TECHNICAL SERVICES
561000 ADMINISTRATIVE AND WASTE SERVICES
561100 ADMINISTRATIVE AND WASTE SERVICES
561200 ADMINISTRATIVE AND WASTE SERVICES
561300 ADMINISTRATIVE AND WASTE SERVICES
561400 ADMINISTRATIVE AND WASTE SERVICES
561500 ADMINISTRATIVE AND WASTE SERVICES
561600 ADMINISTRATIVE AND WASTE SERVICES
561700 ADMINISTRATIVE AND WASTE SERVICES
561900 ADMINISTRATIVE AND WASTE SERVICES
562000 ADMINISTRATIVE AND WASTE SERVICES
621000 HEALTH CARE AND SOCIAL ASSISTANCE
621100 HEALTH CARE AND SOCIAL ASSISTANCE
621200 HEALTH CARE AND SOCIAL ASSISTANCE
621300 HEALTH CARE AND SOCIAL ASSISTANCE
621400 HEALTH CARE AND SOCIAL ASSISTANCE
621500 HEALTH CARE AND SOCIAL ASSISTANCE
621600 HEALTH CARE AND SOCIAL ASSISTANCE
621900 HEALTH CARE AND SOCIAL ASSISTANCE
622000 HEALTH CARE AND SOCIAL ASSISTANCE
623000 HEALTH CARE AND SOCIAL ASSISTANCE
623100 HEALTH CARE AND SOCIAL ASSISTANCE
623200 HEALTH CARE AND SOCIAL ASSISTANCE
623300 HEALTH CARE AND SOCIAL ASSISTANCE
623900 HEALTH CARE AND SOCIAL ASSISTANCE
624000 HEALTH CARE AND SOCIAL ASSISTANCE
624100 HEALTH CARE AND SOCIAL ASSISTANCE
624200 HEALTH CARE AND SOCIAL ASSISTANCE
624400 HEALTH CARE AND SOCIAL ASSISTANCE
711000 ARTS, ENTERTAINMENT, AND RECREATION
711100 ARTS, ENTERTAINMENT, AND RECREATION
711200 ARTS, ENTERTAINMENT, AND RECREATION
711300 ARTS, ENTERTAINMENT, AND RECREATION
711500 ARTS, ENTERTAINMENT, AND RECREATION
712000 ARTS, ENTERTAINMENT, AND RECREATION
713000 ARTS, ENTERTAINMENT, AND RECREATION
713100 ARTS, ENTERTAINMENT, AND RECREATION
713200 ARTS, ENTERTAINMENT, AND RECREATION
713900 ARTS, ENTERTAINMENT, AND RECREATION

1997
code
441000 Motor vehicle and parts dealers
442000 Other retail
443000 Other retail
444000 Other retail

(continues on next page)
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445000 Food and beverage stores
446000 Other retail
447000 Other retail
448000 Other retail
451000 Other retail
452000 General merchandise stores
453000 Other retail
454000 Other retail
481000 Air transportation
482000 Rail transportation
483000 Water transportation
484000 Truck transportation
485000 Transit and ground passenger transportation
486000 Pipeline transportation
487000 Other transportation and support activities
488000 Other transportation and support activities
492000 Other transportation and support activities
511000 Publishing industries, except internet (includes software)
511110 Publishing industries, except internet (includes software)
511120 Publishing industries, except internet (includes software)
511130 Publishing industries, except internet (includes software)
511140 Publishing industries, except internet (includes software)
511190 Publishing industries, except internet (includes software)
511210 Publishing industries, except internet (includes software)
512000 Motion picture and sound recording industries
512100 Motion picture and sound recording industries
512200 Motion picture and sound recording industries
513000 Broadcasting and telecommunications
514000 Data processing, internet publishing, and other information services
515100 Broadcasting and telecommunications
515200 Broadcasting and telecommunications
517100 Broadcasting and telecommunications
517200 Broadcasting and telecommunications
517400 Broadcasting and telecommunications
518200 Data processing, internet publishing, and other information services
519110 Data processing, internet publishing, and other information services
519130 Data processing, internet publishing, and other information services
521000 Federal Reserve banks, credit intermediation, and related activities
522100 Federal Reserve banks, credit intermediation, and related activities
522200 Federal Reserve banks, credit intermediation, and related activities
523000 Securities, commodity contracts, and investments
523100 Securities, commodity contracts, and investments
523900 Securities, commodity contracts, and investments
524000 Insurance carriers and related activities
524113 Insurance carriers and related activities
524114 Insurance carriers and related activities
524120 Insurance carriers and related activities
524130 Insurance carriers and related activities
524200 Insurance carriers and related activities
525000 Funds, trusts, and other financial vehicles
541100 Legal services
541200 Miscellaneous professional, scientific, and technical services
541300 Miscellaneous professional, scientific, and technical services
541400 Miscellaneous professional, scientific, and technical services
541500 Computer systems design and related services
541511 Computer systems design and related services

(continues on next page)
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541512 Computer systems design and related services
541513 Computer systems design and related services
541519 Computer systems design and related services
541610 Miscellaneous professional, scientific, and technical services
541620 Miscellaneous professional, scientific, and technical services
541690 Miscellaneous professional, scientific, and technical services
541700 Miscellaneous professional, scientific, and technical services
541800 Miscellaneous professional, scientific, and technical services
541910 Miscellaneous professional, scientific, and technical services
541920 Miscellaneous professional, scientific, and technical services
541930 Miscellaneous professional, scientific, and technical services
541940 Miscellaneous professional, scientific, and technical services
541990 Miscellaneous professional, scientific, and technical services
561000 Administrative and support services
561100 Administrative and support services
561200 Administrative and support services
561300 Administrative and support services
561400 Administrative and support services
561500 Administrative and support services
561600 Administrative and support services
561700 Administrative and support services
561900 Administrative and support services
562000 Waste management and remediation services
621000 Ambulatory health care services
621100 Ambulatory health care services
621200 Ambulatory health care services
621300 Ambulatory health care services
621400 Ambulatory health care services
621500 Ambulatory health care services
621600 Ambulatory health care services
621900 Ambulatory health care services
622000 Hospitals
623000 Nursing and residential care facilities
623100 Nursing and residential care facilities
623200 Nursing and residential care facilities
623300 Nursing and residential care facilities
623900 Nursing and residential care facilities
624000 Social assistance
624100 Social assistance
624200 Social assistance
624400 Social assistance
711000 Performing arts, spectator sports, museums, and related activities
711100 Performing arts, spectator sports, museums, and related activities
711200 Performing arts, spectator sports, museums, and related activities
711300 Performing arts, spectator sports, museums, and related activities
711500 Performing arts, spectator sports, museums, and related activities
712000 Performing arts, spectator sports, museums, and related activities
713000 Amusements, gambling, and recreation industries
713100 Amusements, gambling, and recreation industries
713200 Amusements, gambling, and recreation industries
713900 Amusements, gambling, and recreation industries

References:
Jason Choi & Andrew T. Foerster, 2017. “The Changing Input-Output Network Structure of the U.S. Economy,”
Economic Review, Federal Reserve Bank of Kansas City, issue Q II, pages 23-49
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CHAPTER

TWENTYTHREE

PRODUCT MARKET LINK PREDICTION

A hidden connection is stronger than an obvious one - Heraclitus
Link prediction in network analysis seeks to infer missing or future connections between nodes based on observed rela-
tionships. In the context of product markets, firms are interconnected through shared product similarities and competitive
interactions. We construct firm networks from text-based product market similarity data, and explore the application of
several link prediction algorithms. Additionally, accuracy metrics such as precision-recall and ROC curves are examined
to assess the performance of these predictions.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import zipfile
import io
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
from sklearn import metrics
import matplotlib.pyplot as plt
import networkx as nx
from finds.database import SQL, RedisDB
from finds.structured import CRSP, BusDay, PSTAT
from finds.readers import requests_get
from finds.recipes import graph_info
from secret import credentials, paths
# %matplotlib qt
VERBOSE = 0

sql = SQL(**credentials['sql'], verbose=VERBOSE)
bd = BusDay(sql, verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
pstat = PSTAT(sql, bd, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)

23.1 Product market linkages

Hoberg and Phillips (2016) developed a text-based measure of firm similarity by analyzing product descriptions in 10-K
filings. Their methodology constructs firm-by-firm similarity scores using word vectors, filtering out common words and
focusing on nouns and proper nouns while excluding geographic terms. This approach captures shifts in product markets
over time, as revealed by their business descriptions in annual company filings.
The TNIC-3 dataset is calibrated to align with the granularity of three-digit SIC codes, providing a structured industry
classification. The TNIC-2 dataset represents a more comprehensive version, including all firm pairs, even those with
weak relationships.
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Source: Hoberg and Phillips Industry Classification
The TNIC-2 and TNIC-3 datasets are retrieved from the Hoberg and Phillips website.

root = 'https://hobergphillips.tuck.dartmouth.edu/idata/'
tnic_data = {}
for scheme in ['tnic2', 'tnic3']:

source = root + scheme + '_data.zip'
if source.startswith('http'):

response = requests_get(source)
source = io.BytesIO(response.content)

with zipfile.ZipFile(source).open(scheme + "_data.txt") as f:
tnic_data[scheme] = pd.read_csv(f, sep='\s+')

for k,v in tnic_data.items():
print(k, v.shape)

tnic2 (52812348, 4)
tnic3 (27161830, 4)

# extract last year of both tnic schemes, merge in permno, and require in univ
year = max(tnic_data['tnic2']['year'])
capsize = 10 # large cap (large than NYSE median)
univ = crsp.get_universe(bd.endyr(year))
univ = univ[univ['decile'] <= capsize]
lookup = pstat.build_lookup('gvkey', 'lpermno', fillna=0)
nodes = {}
tnic = {}
edges = {}
for scheme in ['tnic2', 'tnic3']:

tnic[scheme] = tnic_data[scheme][tnic_data[scheme].year == year].dropna()
gvkeys = sorted(set(tnic[scheme]['gvkey1']).union(tnic[scheme]['gvkey2']))
df = DataFrame(index=gvkeys, data=lookup(gvkeys), columns=['permno'])
nodes[scheme] = df[df['permno'].gt(0)

& df['permno'].isin(univ.index)].drop_duplicates()
nodes['tnic2'] = nodes['tnic2'][nodes['tnic2'].index.isin(nodes['tnic3'].index)]
nodes['tnic3'] = nodes['tnic3'][nodes['tnic3'].index.isin(nodes['tnic2'].index)]

Using the TNIC-2 and TNIC-3 datasets, undirected graphs are constructed where nodes represent firms and edges indicate
product market similarities based on the chosen granularity of the classification schemes.

# create graphs of tnic2 (denser graph) and tnic3 (sparser graph) schemes
for scheme in ['tnic2', 'tnic3']:

e = tnic[scheme][tnic[scheme]['gvkey1'].isin(nodes[scheme].index) &
tnic[scheme]['gvkey2'].isin(nodes[scheme].index)]

edges[scheme] = list(e[['gvkey1', 'gvkey2', 'score']]\
.itertuples(index=False, name=None))

results = {}
G = {}
for (scheme, node), (_, edge) in zip(nodes.items(), edges.items()):

print(scheme, 'nodes =', len(node), 'edges =', len(edge))

# populate graph
g = nx.Graph()
g.add_nodes_from(node.index)

(continues on next page)
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g.add_weighted_edges_from(edge)

# remove self-loops: not necessary
g.remove_edges_from(nx.selfloop_edges(g))

# graph info
results[scheme] = Series(graph_info(g, fast=True))

# Plot degree distribution
fig, ax = plt.subplots(clear=True, figsize=(10, 6))
degree = nx.degree_histogram(g)
degree = DataFrame(data={'degree': degree[1:]}, # exclude degree 0

index=np.arange(1, len(degree)))
degree['bin'] = (degree.index // (2*capsize) + 1) * (2*capsize)
degree.groupby('bin').sum().plot(kind='bar', ax=ax, fontsize=6)
ax.set_title(f'Degree Distribution of {scheme.upper()} links {year}')
plt.tight_layout()

G[scheme] = g

tnic2 nodes = 3296 edges = 819984
tnic3 nodes = 3296 edges = 528012
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print(f"Graph properties of TNIC schemes {year}")
DataFrame(results)

Graph properties of TNIC schemes 2023

tnic2 tnic3
transitivity 0.834713 0.881587
average_clustering 0.592383 0.571318
connected True False
connected_components 1 25
size_largest_component 3296 3255
directed False False
weighted True True
negatively_weighted False False
edges 409992 264006
nodes 3296 3296
selfloops 0 0
density 0.075503 0.048618

23.2 Link prediction algorithms

Link prediction aims to identify missing or future connections between nodes in a network. Given a partially observed
network, these algorithms infer which links are most likely to be added or missing based on existing connections and
network structure.
Common link prediction algorithms include:

• Jaccard Coefficient: Measures the similarity between two nodes by comparing their shared neighbors relative to
their total number of neighbors.
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• Resource Allocation: Assigns a higher likelihood of connection between nodes that share many common neigh-
bors, emphasizing smaller-degree nodes.

• Adamic-Adar: Enhances the Resource Allocation approach by weighting common neighbors based on their overall
connectivity.

• Preferential Attachment: Predicts new links based on the idea that nodes with higher degrees are more likely to
form new connections.

# helper to call link prediction algorithms
def link_prediction(G):

"""Predict link scores for all nonexistent edges in graph"""

def links(links):
"""returns list of edge-score 3-tuples sorted by highest score"""
return sorted(links, key=lambda x: x[2], reverse=True)

resource = links(nx.resource_allocation_index(G))
jaccard = links(nx.jaccard_coefficient(G))
adamic = links(nx.adamic_adar_index(G))
preferential = links(nx.preferential_attachment(G))
return {'resource_allocation': resource,

'jaccard_coefficient': jaccard,
'adamic_adar': adamic,
'preferential_attachment': preferential}

links = link_prediction(G['tnic3'])

23.3 Accuracy metrics

Common metrics to assess the accuracy of link prediction (or any binary classification) models:
• Precision: The fraction of predicted links that are actual links.
• Recall: The fraction of actual links that were correctly predicted.
• Accuracy: The overall correctness of predictions.
• Confusion Matrix: A summary of prediction outcomes.
• F1 Score: A balanced measure between precision and recall, useful for imbalanced datasets. It is calculated as:

2 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + (𝐹𝑃 + 𝐹𝑁)/2
where

• False Positive (FP): Incorrectly predicted links.
• False Negative (FN): Missed actual links.
• True Positive (TP): Correctly predicted links.
• True Negative (TN): Correctly identified non-links.
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23.3.1 ROC Curve

The Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) evaluates model perfor-
mance by measuring the trade-off between true positive and false positive rates at various classification score thresholds.
The ROC curve plots the following metrics on the two axes:

• True Positive Rate (TPR) (or Sensitivity) = 𝑇𝑃
𝑇𝑃+𝐹𝑁  : Measures how many actual positives are correctly iden-

tified.
• False Positive Rate (FPR) = 𝐹𝑃

𝐹𝑃+𝑇𝑁 : Measures how many negative cases are incorrectly classified as positive.
The AUC measures the area under the ROC curve and provides a single number to quantify model performance. A higher
AUC means the model is better at distinguishing between positive and negative classes.

def make_sample(prediction, edges):
"""helper to extract predicted scores and gold labels"""
names = [e[:2] for e in prediction] # node-pairs of nonexistent edges
scores = [e[-1] for e in prediction] # predicted scores (ordered)
gold = [e[:2] in edges for e in prediction] # gold labels of nonexistent edges
return gold, scores, names # actual, predicted score, names

report = {}
for ifig, (method, pred) in enumerate(links.items()):

# extract predicted scores and gold labels of nonexistent edges
# y, scores, names = make_sample(pred, G['tnic2'].edges)

names = [e[:2] for e in pred] # node-pairs of nonexistent edges
scores = [e[-1] for e in pred] # predicted scores of edge
y = [e[:2] in G['tnic2'].edges for e in pred] # gold labels of nonexistent edges

# plot roc curve
metrics.RocCurveDisplay.from_predictions(y_true=y, y_pred=scores,

plot_chance_level=True)
plt.title(f"ROC Curve: {method}")
plt.tight_layout()

# set classification threshold at class proportion
thresh = scores[sum(y)]
y_pred = [score >= thresh for score in scores]

# generate and plot confusion matrix
cm = metrics.confusion_matrix(y_true=y, y_pred=y_pred, normalize='all')
disp = metrics.ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
plt.title(f"Confusion Matrix: {method}")
plt.tight_layout()

# generate classification report
report[method] = metrics.classification_report(y_true=y, y_pred=y_pred)
print(f"Classification Report: {method}")
print(report[method])

Classification Report: resource_allocation
precision recall f1-score support

(continues on next page)
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False 0.99 0.99 0.99 5020168
True 0.62 0.62 0.62 145986

accuracy 0.98 5166154
macro avg 0.80 0.80 0.80 5166154

weighted avg 0.98 0.98 0.98 5166154

Classification Report: jaccard_coefficient
precision recall f1-score support

False 0.99 0.99 0.99 5020168
True 0.60 0.60 0.60 145986

accuracy 0.98 5166154
macro avg 0.79 0.79 0.79 5166154

weighted avg 0.98 0.98 0.98 5166154

Classification Report: adamic_adar
precision recall f1-score support

False 0.99 0.99 0.99 5020168
True 0.60 0.60 0.60 145986

accuracy 0.98 5166154
macro avg 0.79 0.79 0.79 5166154

weighted avg 0.98 0.98 0.98 5166154

Classification Report: preferential_attachment
precision recall f1-score support

False 0.97 0.97 0.97 5020168
True 0.09 0.09 0.09 145986

accuracy 0.95 5166154
macro avg 0.53 0.53 0.53 5166154

weighted avg 0.95 0.95 0.95 5166154
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TWENTYFOUR

EARNINGS SPATIAL REGRESSION

Everything is related to everything else. But near things are more related than distant things - Waldo Tobler
Earnings surprises occur when a company reports earnings that are significantly different from what analysts had predicted.
Spatial regression models help analyze how these surprises propagate through interconnected firms, particularly when firms
operate within related industries. By using text-based firm similarity scores as spatial weights, we examine how earnings
surprises cluster and spread across firms with similar product market characteristics.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from pandas import DataFrame, Series
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import io
import zipfile
from libpysal.weights import W
from esda.moran import Moran
import spreg
import networkx as nx
import statsmodels.formula.api as smf
import warnings
import requests
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, PSTAT
from finds.readers import Alfred
from finds.recipes import remove_outliers
from finds.utils import Store
from secret import credentials, paths, CRSP_DATE
#pd.set_option('display.max_rows', 50)
VERBOSE = 0
#%matplotlib qt

# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
rdb = RedisDB(**credentials['redis'])
bd = BusDay(sql, verbose=VERBOSE)
crsp = CRSP(sql, bd, rdb=rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
store = Store(paths['scratch'])
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LAST_DATE = CRSP_DATE
scheme = 'tnic3'
# fetch NBER recession dates
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
vspans = alf.date_spans('USREC') # to indicate recession periods in the plots

# create table to lookup gvkey by permno
lookup = pstat.build_lookup(source='lpermno', target='gvkey', fillna=0)

24.1 Earnings surprise

An earnings surprise, or unexpected earnings, is the difference between the reported earnings and expected earnings. The
unexpected earnings per share when scaled by the stock price, at the fiscal end date, is more comparable across stocks of
different market size and price levels.

# require and get actual quarterly earnings, reindex by (permno, rebaldate)
df = pstat.get_linked(dataset='quarterly',

fields=['prccq', 'cshoq', 'ibq'],
date_field='datadate',
where=f"datadate <= {LAST_DATE}")

# store['fund'] = df

fund = df.dropna(subset=['ibq'])\
.sort_values(['permno', 'datadate', 'cshoq'])\
.drop_duplicates(['permno', 'datadate'])\
.reset_index()

fund['rebaldate'] = bd.endmo(fund['datadate'])

# calculate sue with lag(4) difference in compustat quarterly and price
lag = fund.shift(4, fill_value=0)
keep = ((lag['permno'] == fund['permno']) &

(fund['prccq'] > 5)).values
fund.loc[keep, 'sue'] = ((fund.loc[keep, 'ibq'] - lag.loc[keep, 'ibq']) /

abs(fund.loc[keep, 'prccq'] * fund.loc[keep, 'cshoq']))
print('with pstat earnings', np.sum(~fund['sue'].isna()))

with pstat earnings 740370

sue = fund.loc[~fund['sue'].isna(), ['permno', 'rebaldate', 'sue']]\
.reset_index(drop=True)

sue['rebaldate'] //= 100
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24.2 Spatial dependence models

24.2.1 Moran’s I

Moran’s I is a statistical measure that quantifies spatial autocorrelation, assessing whether earnings surprises exhibit
clustering across firms. The expected value of Moran’s I under a random distribution is:

𝐸(𝐼) = −1
𝑁 − 1

A positive Moran’s I value suggests earnings surprises tend to cluster among similar firms, while a negative value indi-
cates dispersion. This test provides a conservative benchmark by comparing results to a null hypothesis of zero spatial
dependence, which helps identify significant deviations from randomness.
More details: Moran’s I (Wikipedia)

24.2.2 Spatial lag model

The spatial lag model extends traditional regression analysis by incorporating the influence of neighboring observations.
The model is expressed as:
The spatial lag model extends traditional regression analysis by incorporating the influence of neighboring observations.
The model is expressed as:

𝑌𝑖 = 𝛽𝑋𝑖 + 𝜌𝑊𝑌𝑗 + 𝜖𝑖

where:
• 𝑌𝑖 is the dependent variable (e.g., earnings surprise) for firm 𝑖,
• 𝑌𝑗 represents the corresponding values from other firms,
• 𝑊 is a matrix of spatial weights that assigns higher values to firms that are more closely related to firm 𝑖,
• ℎ𝑜 captures the strength of spatial dependence, and
• 𝜖𝑖 is the error term.

Further reading:
• Spatial Lag Model (Lost Stats)
• spreg.ML_Lag (PySAL)

We use text-based firm similarity scores as spatial weights: the TNIC-3 scores, developed by Hoberg and Phillips (2016),
are derived from product descriptions in 10-K filings. Their methodology constructs firm-by-firm similarity scores using
word vectors while filtering out common words and focusing on nouns and proper nouns, excluding geographic terms.

# Retrieve TNIC linkages from Hoberg and Phillips website
root = 'https://hobergphillips.tuck.dartmouth.edu/idata/'
source = root + scheme + '_data.zip'
if source.startswith('http'):

response = requests.get(source)
source = io.BytesIO(response.content)

with zipfile.ZipFile(source).open(scheme + "_data.txt") as f:
tnic_df = pd.read_csv(f, sep='\s+')

store['spatial'] = (fund, tnic_df)
tnic_df['year'].value_counts().sort_index().to_frame()
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count
year
1988 311616
1989 640221
1990 663746
1991 699152
1992 788029
1993 940368
1994 1027776
1995 1095721
1996 1197991
1997 1138937
1998 1093821
1999 1174065
2000 1121918
2001 956591
2002 843735
2003 781521
2004 719787
2005 699340
2006 709914
2007 683662
2008 615445
2009 532159
2010 509755
2011 499887
2012 484441
2013 513159
2014 579649
2015 597923
2016 580988
2017 591097
2018 644292
2019 669597
2020 700725
2021 861057
2022 823596
2023 670149

# Compute quarterly spatial regression coefficients
out = dict(moran={}, rho={}, beta={})
years = range(1988, 2024)
for year in tqdm(years):

tnic = tnic_df[tnic_df.year == year].dropna() # extract the year's tnic links

# populate graph from tnic edges, with gvkey as nodes
graph = nx.Graph()
graph.add_edges_from(tnic[['gvkey1', 'gvkey2']].values)
graph.remove_edges_from(nx.selfloop_edges(graph)) # not necessary

for qtr in [12, 103, 106, 109]: # loop over next four quarters of sue
rebaldate = year*100 + qtr

# extract sue's with in this fiscal quarter
y = sue[sue['rebaldate'] == rebaldate].set_index('permno')[['sue']]

(continues on next page)
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(continued from previous page)

# lookup gvkeys
y['gvkey'] = lookup(y.index, date=bd.endmo(rebaldate))

# merge in stock returns in the quarter
y = y.join(crsp.get_ret(bd.begmo(rebaldate, months=-2),

bd.endmo(rebaldate)),
how='left')\

.set_index('gvkey')

# require available and not outlier
y = remove_outliers(y[~y.index.duplicated() & (y.index > 0)]).dropna()

# extract subgraph, its nodes and their neighbors
G = graph.subgraph(y.index)
G = G.subgraph(max(nx.connected_components(G), key=len))
neighbors = {node: list(G.neighbors(node)) for node in G.nodes()}
w = W(neighbors)
y = y.loc[sorted(neighbors.keys())]

# compute Moran's I and spatial lag model of sue on past stock returns
mi = Moran(y['sue'].values, w)
with warnings.catch_warnings():

warnings.simplefilter("ignore")
spatial = spreg.ML_Lag(y=y['sue'].values, x=y[['ret']].values, w=w,

name_x=['ret'], name_y='sue', name_w=scheme,
name_ds=str(rebaldate))

out['moran'][rebaldate] = mi.I
out['rho'][rebaldate] = float(spatial.rho)
out['beta'][rebaldate] = float(spatial.betas[1][0])

100%|██████████| 36/36 [17:49<00:00, 29.70s/it]

# Show latest quarter's results
print(spatial.summary)

REGRESSION
----------
SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL)
-----------------------------------------------------------------
Data set : 202409
Weights matrix : tnic3
Dependent Variable : sue Number of Observations: ␣

↪2177
Mean dependent var : -0.0003 Number of Variables : ␣

↪3
S.D. dependent var : 0.0242 Degrees of Freedom : ␣

↪2174
Pseudo R-squared : 0.0204
Spatial Pseudo R-squared: 0.0040
Sigma-square ML : 0.001 Log likelihood : 5026.

↪680
S.E of regression : 0.024 Akaike info criterion : -10047.

↪360
Schwarz criterion : -10030.

(continues on next page)
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(continued from previous page)

↪303

-----------------------------------------------------------------------------------
↪-

Variable Coefficient Std.Error z-Statistic ␣
↪Probability

-----------------------------------------------------------------------------------
↪-

CONSTANT -0.0008998 0.0005767 -1.5602720 0.
↪1186956

ret 0.0067306 0.0022802 2.9516958 0.
↪0031603

W_sue 0.2247160 0.0440540 5.1009164 0.
↪0000003

-----------------------------------------------------------------------------------
↪-

================================ END OF REPORT␣
↪=====================================

# Show spatial regression results
ols = spreg.OLS(y=y['sue'].values, x=y[['ret']].values, w=w,

robust='white', spat_diag=True, moran=True,
name_x=['ret'], name_y='sue', name_w=scheme,
name_ds=str(rebaldate))

print(ols.summary)

REGRESSION
----------
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES
-----------------------------------------
Data set : 202409
Weights matrix : tnic3
Dependent Variable : sue Number of Observations: ␣

↪2177
Mean dependent var : -0.0003 Number of Variables : ␣

↪2
S.D. dependent var : 0.0242 Degrees of Freedom : ␣

↪2175
R-squared : 0.0042
Adjusted R-squared : 0.0037
Sum squared residual: 1.273 F-statistic : 9.

↪0806
Sigma-square : 0.001 Prob(F-statistic) : 0.

↪002613
S.E. of regression : 0.024 Log likelihood : 5014.

↪003
Sigma-square ML : 0.001 Akaike info criterion : -10024.

↪005
S.E of regression ML: 0.0242 Schwarz criterion : -10012.

↪634

White Standard Errors
-----------------------------------------------------------------------------------

↪-
Variable Coefficient Std.Error t-Statistic ␣

(continues on next page)
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(continued from previous page)

↪Probability
-----------------------------------------------------------------------------------

↪-
CONSTANT -0.0011401 0.0006542 -1.7428829 0.

↪0814954
ret 0.0069264 0.0032943 2.1025231 0.

↪0356221
-----------------------------------------------------------------------------------

↪-

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 1.628

TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 4787.738 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 1 63.692 0.0000
Koenker-Bassett test 1 13.760 0.0002

DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST MI/DF VALUE PROB
Moran's I (error) 0.0516 5.283 0.0000
Lagrange Multiplier (lag) 1 26.684 0.0000
Robust LM (lag) 1 0.627 0.4285
Lagrange Multiplier (error) 1 27.229 0.0000
Robust LM (error) 1 1.172 0.2790
Lagrange Multiplier (SARMA) 2 27.856 0.0000

================================ END OF REPORT␣
↪=====================================

# Show Moran's I
print(f"Quarter: {rebaldate}")
DataFrame({"Moran's I": mi.I, "Expected": mi.EI, "p_norm": mi.p_norm},

index=["under assumption of normality"])

Quarter: 202409

Moran's I Expected p_norm
under assumption of normality 0.051519 -0.00046 1.401822e-07

# Show ordinary regression results
results = DataFrame(out)
results.index = bd.to_datetime(bd.endmo(results.index))
summary = dict()
for col in results.columns:

model = smf.ols(f'{col} ~ 1', data=results).fit()
robust = smf.ols(f'{col} ~ 1', data=results)\

.fit(cov_type='HAC', cov_kwds={'maxlags': 6})

(continues on next page)
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(continued from previous page)

summary[col] = dict(mean=float(model.params.iloc[0]),
stderr=float(model.bse.iloc[0]),
t=float(model.tvalues.iloc[0]),
nw_stderr=float(robust.bse.iloc[0]),
nw_t=float(robust.tvalues.iloc[0]))

print("Tests of statistical significance")
DataFrame(summary)

Tests of statistical significance

moran rho beta
mean 0.053146 0.224189 0.011726
stderr 0.002577 0.009331 0.000690
t 20.623401 24.027336 17.006094
nw_stderr 0.004606 0.017202 0.000952
nw_t 11.538987 13.032706 12.323118

To track changes over time, we plot the strength of spatial coefficients on a quarterly basis. Additionally, we highlight
U.S. recession periods in blue, as times of economic stress may amplify the strength of linkages.

# Visualize autoregressive coefficients by quarter
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(results['rho'])
ax.set_title("Spatial autoregressive coefficients, by quarter")
for a,b in vspans:

if a >= min(results.index):
ax.axvspan(a, min(b, max(results.index)), alpha=0.4)

plt.legend(['rho', 'recessions'])
plt.tight_layout()
plt.show()
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CHAPTER

TWENTYFIVE

FOMC TOPIC MODELING

Our discussions of the economy may sometimes ring in the ears of the public with more certainty than is appropriate - Jerome
Powell
The Federal Open Market Committee (FOMC) meeting minutes may reveal the Federal Reserve’s economic outlook,
policy decisions, and potential future actions. Analyzing these minutes can help identify key topics discussed over time,
shedding light on trends in monetary policy and their implications for financial markets. We review methods for accessing
and pre-processing textual data, including the use MongoDB for storing and retrieving unstructured data. Several topic
modeling algorithms, including Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), Non-negative Matrix
Factorization (NMF), and Probabilistic Latent Semantic Indexing (PLSI), are applied to uncover patterns within the
minutes.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import os
import sklearn.feature_extraction, sklearn.decomposition
from sklearn.decomposition import TruncatedSVD, LatentDirichletAllocation, NMF
from sklearn.cluster import KMeans
from scipy.special import softmax
from wordcloud import WordCloud
import wordcloud
import matplotlib.pyplot as plt
from finds.database import MongoDB
from finds.unstructured import Unstructured
from finds.utils import Store
from finds.readers import FOMCReader, Alfred
from pprint import pprint
from secret import credentials, paths
# %matplotlib qt
VERBOSE = 0

## retrieve recessions dates for plotting
alf = Alfred(api_key=credentials['fred']['api_key'])
vspans = alf.date_spans(series_id='USREC')
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25.1 FOMC meeting minutes

The FOMC holds eight scheduled meetings per year, with additional meetings as necessary. The minutes from these
meetings are released three weeks after the policy decision, offering crucial insights into the Federal Reserve’s economic
stance and possible future monetary policy actions. These insights can influence interest rates, inflation expectations, and
overall market conditions.
For official meeting schedules and minutes, visit: Federal Reserve FOMC Calendar.

25.1.1 FinDS fomcreader module

The fomcreader module in the FinDS packages offers functions for searching and retrieving meeting minutes from
the Federal Reserve website.

# Helper class to scrape FOMC meeting minutes from Federal Reserve website
minutes = FOMCReader()

# Show number and date range of minutes available from website
DataFrame({'dates': len(minutes), 'start': min(minutes), 'end': max(minutes)},

index=['FOMC minutes'])

100%|██████████| 27/27 [00:16<00:00, 1.66it/s]

dates start end
FOMC minutes 256 19930203 20250129

25.1.2 MongoDB

MongoDB is a NoSQL (“not only SQL”) document-oriented database designed to efficiently manage unstructured and
semi-structured data. Unlike traditional relational databases, MongoDB does not enforce a fixed schema, allowing for
greater flexibility in handling diverse data formats. Each document (record) within a collection (table equivalent) can
contain different fields and structures, including key-value pairs, arrays, and embedded subdocuments.

# store unstructured minutes text data in MongoDB
from pprint import pprint
mongodb = MongoDB(**credentials['mongodb'], verbose=VERBOSE)
print('uptime:', mongodb.client.admin.command("serverStatus")['uptime'])
fomc = Unstructured(mongodb, 'FOMC')

177.0

# retrieve keys (dates) of minutes previously retrieved and stored locally
dates = fomc['minutes'].distinct('date')

# fetch new minutes from FOMC site
docs = {d: minutes[d] for d in minutes if d not in dates}
print("New minutes:")
pprint([f"{k}: {len(v)} chars" for k,v in docs.items()])
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New minutes:
['20250129: 54324 chars',
'20240612: 43860 chars',
'20240731: 44839 chars',
'20240918: 44372 chars',
'20241107: 49178 chars',
'20241218: 45712 chars']

Preprocessing Meeting Minutes
1. Extract relevant sections of the minutes, starting from:

• “Review of Monetary Policy Strategy, Tools, and Communications”
• “Developments in Financial Markets”
• “Discussion of Guidelines for Policy Normalization”
• “Financial Developments and Open Market Operations”
• “Discussion of the Economic Outlook”
• “The information reviewed at this meeting”
• “The staff presented several briefings”

2. Remove text following the adjournment line or the date scheduled for the next meeting. Exclude:
• Notation votes, approvals of minutes, signatures, and footnotes
• Intermeeting conference call discussions

Once extracted, store and retrieve all meeting minutes from MongoDB for further processing.

# Helper function to trim minutes text
def edit(text: str) -> str:

"""helper to spawn editor and write/edit/read to tempfile"""
import subprocess
import tempfile
with tempfile.NamedTemporaryFile(suffix=".tmp") as f: # save temp file

f.write(text.encode("utf-8"))
f.flush()
subprocess.call([os.environ.get('EDITOR','emacs'), "-nw", f.name])
f.seek(0)
return f.read().decode("utf-8") # keep edited text

if docs:
# to edit out head and tail of each document
results = list()
for date, initial_message in docs.items():

edited_text = edit(initial_message)
results.append({'date': date, 'text' : edited_text})

results = sorted(results, key = lambda x: x['date']) # sort by date

# save edited docs
Store(paths['scratch'] / 'fomc', ext='gz').dump(results, f"{max(docs.keys())}.json

↪")
for doc in results: # store docs for new dates

fomc.insert('minutes', doc, keys=['date'])

Retrieve all minutes that were stored locally in MongoDB
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docs = Series({doc['date']: doc['text'] for doc in fomc.select('minutes')},
name='minutes').sort_index()

DataFrame(docs)

minutes
19930203 The Manager of the System Open Market Account ...
19930323 The Deputy Manager for Domestic Operations rep...
19930518 The Manager of the System Open Market Account ...
19930707 The Deputy Manager for Domestic Operations rep...
19930817 The Deputy Manager for Domestic Operations rep...
... ...
20240731 Developments in Financial Markets and Open Mar...
20240918 Developments in Financial Markets and Open Mar...
20241107 Developments in Financial Markets and Open Mar...
20241218 Developments in Financial Markets and Open Mar...
20250129 Developments in Financial Markets and Open Mar...

[256 rows x 1 columns]

25.2 Text pre-processing

Text preprocessing involves cleaning and preparing raw text data by removing noise, standardizing formats, and converting
text into a structured form suitable for analysis. This process typically includes tokenization, removing stop words, and
vectorizing the text.

25.2.1 Tokenization

Tokenization splits text into smaller units called tokens, typically words, though they may also be phrases or subwords.
The pattern of tokenization is often defined using regular expressions.
The original casing of words may be preserved if it carries meaningful information, such as distinguishing proper nouns,
acronyms, or sentence boundaries. Some models may interpret all uppercase words as organizations.
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25.2.2 Regular expressions

Regular expressions (regex) define search patterns for text processing, often used in tokenization to find word boundaries
and remove unwanted characters.
Basic Regular Expressions

Expression Description
\d Matches a digit (0-9)
\w Matches a word character (ASCII letter, digit, or underscore)
\s Matches a whitespace character (space, tab, newline)
\D Matches a non-digit character
\W Matches a non-word character
\S Matches a non-whitespace character
[ ... ] Matches one of the characters in the brackets
[a-zA-Z] Matches any letter (uppercase or lowercase)
[^a] Matches any character except a
\b Matches a word boundary
. Matches any character except a line break
\. Matches a period character
^ Matches the start of a string
$ Matches the end of a string
+ Matches one or more occurrences
* Matches zero or more occurrences
? Matches zero or one occurrence
| Acts as an OR operator
( ... ) Defines a capturing group

25.2.3 Stopwords

Common, uninformative words (e.g.,“the,”“is,”“and”) can be removed to focus on meaningful content in the analysis.
Corpus-specific uninformative words (such as calendar-related terms in FOMC minutes) can also be excluded.

# ignore these stop words
StopWords = [w for w in set(wordcloud.STOPWORDS) if "'" not in w]
StopWords += ['january', 'february', 'march', 'april', 'may', 'june',

'july', 'august', 'september', 'october', 'november',
'december', 'first', 'second', 'third', 'fourth', 'twelve',
'participants', 'members', 'meeting']

25.2.4 Vectorization

Vectorization transforms text into numerical representations suitable for analysis.
• Bag-of-Words (BoW): Represents a document by the frequency of its words, ignoring grammar and word order.
• N-grams: Treats consecutive words as distinct items rather than isolated words.
• Indexing: Assigns unique integer indexes to words in the corpus.
• TF-IDF (Term Frequency-Inverse Document Frequency): Measures word importance based on its frequency

in a document relative to its occurrence across all documents.
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– The scikit-learn package provides TfidfVectorizer for TF-IDF vectorization and CountVec-
torizer for raw word counts.

# To vectorize the input words
#ngram_range = (1, 1) # unigrams
#ngram_range = (2, 2) # bigrams
ngram_range = (1, 2) # unigrams and bigrams
max_df, min_df, max_features = 0.5, 6, 5000 # some reasonable constraints
tfidf_vectorizer = sklearn.feature_extraction.text.TfidfVectorizer(

strip_accents='unicode',
lowercase=True,
stop_words=StopWords,
ngram_range=ngram_range,
max_df=max_df,
min_df=min_df,
max_features=max_features,
token_pattern=r"\b[^\d\W][^\d\W][^\d\W]+\b") #r'\b[^\d\W]+\b'

tf_vectorizer = sklearn.feature_extraction.text.CountVectorizer(
strip_accents='unicode',
lowercase=True,
stop_words=StopWords,
ngram_range=ngram_range, # (2, 2) for bigrams
max_df=max_df,
min_df=min_df,
max_features=max_features,
token_pattern=r"\b[^\d\W][^\d\W][^\d\W]+\b")

25.3 Topic Modeling

Topic modeling applies statistical techniques to discover latent topics within a collection of documents.

25.3.1 Latent Semantic Analysis (LSA)

LSA uses singular value decomposition (SVD) to analyze relationships between terms and documents. By reducing
dimensionality, it groups terms and documents that frequently co-occur in a lower-dimensional space, revealing underlying
topics.
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25.3.2 Latent Dirichlet Allocation (LDA)

LDA assumes each document is a mixture of topics, and each topic is a mixture of words. It iteratively assigns words to
topics based on probability distributions, refining topic assignments over multiple iterations.

25.3.3 Non-negative Matrix Factorization (NMF)

NMF decomposes a term-document matrix into two non-negative matrices:
• A basis matrix representing topics
• A coefficient matrix representing the distribution of topics in documents

By optimizing these matrices, NMF extracts meaningful topics from the text.

25.3.4 Probabilistic Latent Semantic Indexing (PLSI)

PLSI models documents as mixtures of topics, estimating probability distributions of words and topics iteratively until
convergence. It can be implemented using NMF with generalized Kullback-Leibler divergence as the loss function.

• scikit-learn decomposition documentation
• Example of topic extraction with NMF & LDA

# Define models
n_components = 4 # fix number of latent topics
algos = {

'LSA': (TruncatedSVD(n_components=n_components),
tfidf_vectorizer),

'LDA': (LatentDirichletAllocation(n_components=n_components,
learning_method='batch', #'online',
# learning_offset = 50.0,
max_iter = 40,
random_state = 42),

tf_vectorizer),
'PLSI': (NMF(n_components=n_components,

beta_loss='kullback-leibler',
solver='mu',
alpha_W=0.00005,
alpha_H=0.00005,
l1_ratio=0.5,
max_iter=1000,
random_state = 42),

tfidf_vectorizer),
'NMF': (NMF(n_components=n_components,

random_state=42,
beta_loss='frobenius',
alpha_W=0.00005,
alpha_H=0.00005,
l1_ratio=0.5),

tfidf_vectorizer)}

Once topics are extracted, they can be visualized over time to observe trends in FOMC discussions.
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# Fit and plot models
scores = dict() # to save model coefficients
topics = dict() # to save dates of primary topic
for ifig, (name, (base, vectorizer)) in enumerate(algos.items()):

# vectorize the input words
vectorized = vectorizer.fit_transform(docs.to_list())
feature_names = vectorizer.get_feature_names_out()

# fit model and transform inputs
model = base.fit(vectorized)
transformed = model.transform(vectorized)

# save the model fitted coefficients
if name == 'LSA': # Additional step for LSA

kmeans = KMeans(n_clusters=n_components, n_init=5, random_state=37)\
.fit(transformed) # find centroids of the latent factors

transformed = kmeans.transform(transformed) # distance to centroid
transformed = -(transformed / transformed.sum(axis=1, keepdims=True))
scores[name] = softmax(model.components_, axis=1) # scale word scores

else:
scores[name] = model.components_

# plot topic scores over time
fig, ax = plt.subplots(num=1 + ifig, clear=True, figsize=(10, 6))
dates = pd.DatetimeIndex(docs.index.astype(str))
ax.step(dates, transformed, where='pre')
for a,b in vspans:

if b >= min(dates):
ax.axvspan(a, min(b, max(dates)), alpha=0.3, color='grey')

ax.set_title(name)
ax.legend([f"{i+1}" for i in range(n_components)] + ['Recession'],

loc='center left', title='Topic label')
plt.tight_layout(pad=2)

# save dates of primary topic
for topic in range(transformed.shape[1]):

arg = DataFrame({'t': np.argmax(transformed, axis=1),
'dt': docs.index})

dates = (arg!=arg.shift()).cumsum().groupby('t').agg(['first', 'last']) - 1
dates['topic'] = arg.loc[dates.iloc[:,1], 't'].values
topics[name] = {topic: [(arg['dt'].iloc[row[0]], arg['dt'].iloc[row[1]])

for row in dates.itertuples(index=False, name=None)
if row[2] == topic]

for topic in range(transformed.shape[1])}
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25.3.5 Feature importance

The most significant words for each topic are identified and visualized using the WordCloud package, providing an
intuitive representation of key themes.

# Display word cloud of top n features, by model and topic
figsize = (10, 8)
for ifig, (name, score) in enumerate(scores.items()):

wc = WordCloud(height=300, width=500, colormap='cool')
top_n = 20
fig, axes = plt.subplots(2, 2, num=ifig+5, figsize=figsize, clear=True)
for topic, components in enumerate(score):

words = {feature_names[i].replace(' ','_') : components[i]
for i in components.argsort()[:-top_n - 1:-1]}

#print("Topic", topic+1, topics[name])
#print(list(words.keys()))
ax = axes[topic//2, topic % 2]
ax.imshow(wc.generate_from_frequencies(words))
ax.axes.yaxis.set_visible(False) # make axes ticks invisible
ax.xaxis.set_ticks([])
ax.xaxis.set_ticklabels([])
ax.set_title(f"{name} Topic {topic+1}", fontsize=10)
regime = ", ".join([f"{d[0]}-{d[1]}" if d[0] != d[1] else f"{d[0]}"

for d in topics[name][topic]])
ax.set_xlabel(regime if len(regime) < 75 else '-- many --',

fontsize=8,
loc='left')

plt.tight_layout()
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CHAPTER

TWENTYSIX

MANAGEMENT SENTIMENT ANALYSIS

Life is a math equation. In order to gain the most, you have to know how to convert negatives into positives - Anonymous
Sentiment analysis helps quantify the tone of financial disclosures, revealing whether a company’s management expresses
optimism, caution, or concern. This analysis can be conducted using dictionary-based methods, which rely on predefined
sentiment word lists, or more sophisticated machine learning models, such as large language models (LLMs). We explore
the application of sentiment analysis in financial documents, focusing on the Loughran-MacDonald dictionary and the
SEC’s EDGAR system for retrieving company filings. Specifically, we analyze sentiment trends in 10-K Management
Discussion and Analysis (MD&A) sections and their relationship with stock returns.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, Signals
from finds.unstructured import Edgar
from finds.readers import Alfred
from finds.recipes import weighted_average, fractile_split
from finds.utils import Store
from secret import credentials, paths, CRSP_DATE
# %matplotlib qt
VERBOSE = 0
LAST_YEAR = CRSP_DATE // 10000

sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql=sql, bd=bd, rdb=rdb, verbose=VERBOSE)
signals = Signals(user)
store = Store(paths['scratch'], ext='pkl')
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26.1 Sentiment analysis

Dictionary-based (or lexicon-based) sentiment analysis relies on predefined word lists, where words are assigned sentiment
scores along with intensity levels. While this approach is straightforward and computationally efficient, it struggles with
complex linguistic phenomena such as negations, irony, and sarcasm, which can lead to reduced accuracy. On the other
hand, large language models excel at understanding context, syntax, and semantics, making them more effective for
sentiment analysis of intricate financial texts. However, despite their limitations, dictionary-based methods remain popular
due to their ease of implementation and transparent results.

26.1.1 Loughran-MacDonald dictionary

Loughran and McDonald (2011) found that general-purpose sentiment lexicons were not well-suited for financial statement
analysis. To address this, they developed a dictionary based on company 10-K filings, categorizing words into seven
sentiment-related groups relevant to finance: “negative,”“positive,”“litigious,”“uncertainty,”“constraining,”and
“superfluous.”This domain-specific approach provides a more accurate reflection of sentiment in financial disclosures.

• Loughran-MacDonald Master Dictionary
The dictionary includes:

• A list of positive sentiment words
• A list of negative sentiment words
• A set of stop words to ignore

# to download from google drive, need this prefix and the source file id
_prefix = "https://drive.google.com/uc?export=download&id="
source = _prefix + '1ptUgGVeeUGhCbaKL14Ri3Xi5xOKkPkUD'
# source = "Loughran-McDonald_MasterDictionary_1993-2023.csv"
df = pd.read_csv(source, sep=',')

# sets of positive and negative sentiment words
words = {'positive': set(df.loc[df['Positive'] != 0, 'Word'].str.lower()),

'negative': set(df.loc[df['Negative'] != 0, 'Word'].str.lower())}

Positive sentiment words

DataFrame(words['positive'], columns=['Positive Words'])

Positive Words
0 outperform
1 rebounded
2 efficiency
3 honored
4 leadership
.. ...
349 improves
350 collaborations
351 innovators
352 advantageous
353 honoring

[354 rows x 1 columns]

Negative sentiment words
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DataFrame(words['negative'], columns=['Negative Words'])

Negative Words
0 threatening
1 immature
2 falsifications
3 uncontrolled
4 panic
... ...
2350 objections
2351 coercion
2352 extenuating
2353 lying
2354 contradiction

[2355 rows x 1 columns]

List of stop words to ignore

# stopwords
generic = ['ME', 'MY', 'MYSELF', 'WE', 'OUR', 'OURS', 'OURSELVES',

'YOU', 'YOUR', 'YOURS', 'YOURSELF', 'YOURSELVES',
'HE', 'HIM', 'HIS', 'HIMSELF', 'SHE', 'HER', 'HERS',
'HERSELF', 'IT', 'ITS', 'ITSELF', 'THEY', 'THEM',
'THEIR', 'THEIRS', 'THEMSELVES', 'WHAT', 'WHICH',
'WHO', 'WHOM', 'THIS', 'THAT', 'THESE', 'THOSE',
'AM', 'IS', 'ARE', 'WAS', 'WERE', 'BE', 'BEEN',
'BEING', 'HAVE', 'HAS', 'HAD', 'HAVING', 'DO',
'DOES', 'DID', 'DOING', 'AN', 'THE', 'AND', 'BUT',
'IF', 'OR', 'BECAUSE', 'AS', 'UNTIL', 'WHILE', 'OF',
'AT', 'BY', 'FOR', 'WITH', 'ABOUT', 'BETWEEN',
'INTO', 'THROUGH', 'DURING', 'BEFORE', 'AFTER',
'ABOVE', 'BELOW', 'TO', 'FROM', 'UP', 'DOWN', 'IN',
'OUT', 'ON', 'OFF', 'OVER', 'UNDER', 'AGAIN',
'FURTHER', 'THEN', 'ONCE', 'HERE', 'THERE', 'WHEN',
'WHERE', 'WHY', 'HOW', 'ALL', 'ANY', 'BOTH', 'EACH',
'FEW', 'MORE', 'MOST', 'OTHER', 'SOME', 'SUCH',
'NO', 'NOR', 'NOT', 'ONLY', 'OWN', 'SAME', 'SO',
'THAN', 'TOO', 'VERY', 'CAN', 'JUST', 'SHOULD',
'NOW', 'AMONG']

# CountVectorizer to tokenize and code counts of inputs words
vectorizer = CountVectorizer(strip_accents='unicode',

lowercase=True,
stop_words=generic,
token_pattern=r"\b[^\d\W][^\d\W][^\d\W]+\b")

# vectorizer to encode sentiment dictionary words
sentiment_vectorizer = CountVectorizer(strip_accents='unicode',

lowercase=True,
token_pattern=r"\b[^\d\W][^\d\W][^\d\W]+\b")

sentiment_vectorizer.fit([" ".join(words['positive'].union(words['negative']))])

# create a lookup Series and a score vector for computing net sentiment

(continues on next page)
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features = Series(sentiment_vectorizer.get_feature_names_out())
sentiment_points = (features.isin(words['positive']).astype(int).values

- features.isin(words['negative']).astype(int).values)

26.2 10-K Management discussion and analysis

A 10-K is a comprehensive annual report that publicly traded companies must file with the SEC. It provides an in-depth
view of the company’s financial health and operational performance. Key sections include the business description,
management discussion and analysis (MD&A), risk factors, and financial statements.

26.2.1 SEC Edgar website

The SEC EDGAR (Electronic Data Gathering, Analysis, and Retrieval) system is an online database managed by the U.S.
Securities and Exchange Commission (SEC). It provides public access to financial filings, including annual and quarterly
reports (Forms 10-K and 10-Q), significant event disclosures (Form 8-K), beneficial ownership reports (Schedule 13D),
insider sales reports (Form 144), proxy statements, and registration statements (S-1).

• SEC EDGAR Search and Access
Additionally, the SEC has recently released an EDGAR Application Programming Interface (API): EDGAR API
Loughran and MacDonald have also made SEC EDGAR data files and other textual resources available in their research
repository: SEC EDGAR Data

26.2.2 FinDS edgar module

The edgar module in the FinDS package provides functions for
• Searching and retrieving company filings from the SEC Edgar website
• Storing and indexing data locally
• Identifying and extracting specific sections of text, such as MD&A

Retrieve MD&A section text from 10-K’s:

# open 10-K archive of MD&A text
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
item, form = 'mda10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
Series((rows['date'] // 10000).astype(int)).value_counts().sort_index().to_frame()

count
date
1993 2
1994 1362
1995 1674
1996 2960
1997 4461
1998 4501
1999 4364
2000 4287

(continues on next page)
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2001 4168
2002 4400
2003 5478
2004 5203
2005 5090
2006 4999
2007 4954
2008 5033
2009 5273
2010 5050
2011 4863
2012 4730
2013 4617
2014 4643
2015 4720
2016 4612
2017 4488
2018 4431
2019 4417
2020 4388
2021 4615
2022 4766
2023 4641
2024 4501

For all investment universe stocks between 1993 through the present, compute the average sentiment, and change in
sentiment, of 10-K’s

# retrieve usual universe at end of each year
univs = {year: crsp.get_universe(bd.endyr(year-1)).assign(year=year)

for year in range(1992, LAST_YEAR + 1)}
permnos = rows['permno'].unique().astype(int)
DataFrame({'permnos': len(permnos),

'documents': len(rows),
'first': min(rows['date']),
'last': max(rows['date'])},
index=['10K-mdas'])

permnos documents first last
10K-mdas 14696 137691 19931129 20241231

We assume up to a 3-month lag when the 10-Ks are made available. For example, filings submitted between January and
March of 2024 are assigned to fiscal year 2023.

# Compute average sentiment and change in sentiment for all companies and years
results = []
for permno in tqdm(permnos): # Loop over all permnos

# retrieve all valid mda's for this permno by year
mdas, dates = {}, {} # to collect mdas and doc dates for this permno
docs = rows[rows['permno'].eq(permno)].to_dict('records')
for doc in docs:

year = bd.endmo(doc['date'], -3) // 10000 # assign fiscal year
if (year in univs and (year not in mdas or doc['date'] < dates[year])):

tokens = ed[doc['pathname']]

(continues on next page)
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if len(tokens):
mdas[year] = tokens
dates[year] = doc['date']

# compute sentiment as net sentiment word counts divided by doc length
if len(mdas):

X = sentiment_vectorizer.transform(list(mdas.values()))\
.dot(sentiment_points)

X = np.divide(X, vectorizer.fit_transform(list(mdas.values())).sum())
sentiment = {k:x for k,x in zip(mdas.keys(), X)}

# derive sentiment change and similarity scores by year
for year in sorted(mdas.keys()):

result = {'year': year, 'permno': permno, 'date': dates[year]}
result['mdasent'] = sentiment[year]
result['currlen'] = len(mdas[year])
if year-1 in mdas:

result['prevlen'] = len(mdas[year-1])
result['mdachg'] = sentiment[year] - sentiment[year-1]

corpus = [mdas[year], mdas[year-1]]
results.append(result)

0%| | 0/14696 [00:00<?, ?it/s]/home/terence/env3.11/lib/python3.11/site-
↪packages/sklearn/feature_extraction/text.py:408: UserWarning: Your stop_words␣
↪may be inconsistent with your preprocessing. Tokenizing the stop words generated␣
↪tokens ['about', 'above', 'after', 'again', 'all', 'among', 'and', 'any', 'are',
↪'because', 'been', 'before', 'being', 'below', 'between', 'both', 'but', 'can',
↪'did', 'does', 'doing', 'down', 'during', 'each', 'few', 'for', 'from', 'further
↪', 'had', 'has', 'have', 'having', 'her', 'here', 'hers', 'herself', 'him',
↪'himself', 'his', 'how', 'into', 'its', 'itself', 'just', 'more', 'most', 'myself
↪', 'nor', 'not', 'now', 'off', 'once', 'only', 'other', 'our', 'ours', 'ourselves
↪', 'out', 'over', 'own', 'same', 'she', 'should', 'some', 'such', 'than', 'that',
↪ 'the', 'their', 'theirs', 'them', 'themselves', 'then', 'there', 'these', 'they
↪', 'this', 'those', 'through', 'too', 'under', 'until', 'very', 'was', 'were',
↪'what', 'when', 'where', 'which', 'while', 'who', 'whom', 'why', 'with', 'you',
↪'your', 'yours', 'yourself', 'yourselves'] not in stop_words.
warnings.warn(

100%|██████████| 14696/14696 [13:49<00:00, 17.71it/s]

# save in signals database
data = DataFrame.from_records(results)
data['rebaldate'] = bd.offset(data['date'])
print(signals.write(data, 'mdasent', overwrite=True),

signals.write(data, 'mdachg', overwrite=True))

131045 107665

# right join data with univ, to identify universe companies with missing mda
data = pd.concat([data[data['year']==year]\

.drop(columns=['year'])\

.set_index('permno')\

.join(univ[['year']], how='right')\

(continues on next page)
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.reset_index()
for year, univ in univs.items() if year < LAST_YEAR],

ignore_index=True)
# store temporary
store['sentiment'] = data

data = store['sentiment']

Exploratory analysis
Universe coverage by year:

# Stacked Bar Plot of universe coverage by year
y1 = data[data['mdasent'].notna()].groupby('year')['permno'].count()
y0 = data[data['mdasent'].isna()].groupby('year')['permno']\

.count()\

.reindex(y1.index)
fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 6))
y1.plot(kind='bar', label='matched 10-K MD&As', color='C0', ax=ax, rot=90)
y0.plot(kind='bar', label='10-K MD&As not found', color='C1', ax=ax, rot=90,␣

↪bottom=y1)
ax.set_ylabel('# stocks')
ax.set_xlabel('Fiscal year')
ax.set_title("Universe and matched 10-K MDA's")
ax.legend()
plt.tight_layout()

When are 10-K’s filed?
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# Stacked Bar Plot of filings date, by month and day-of-week
y = DataFrame.from_records([{'date': int(d),

'day': bd.datetime(int(d)).strftime('%A'),
'month': bd.datetime(int(d)).strftime('%B')}

for d in data.loc[data['mdasent'].notna(), 'date']])
z = pd.concat([y['month'].value_counts()/len(y),

y['day'].value_counts()/len(y)])
fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 6))
z.plot(kind='bar', color='C0', ax=ax, rot=90)
ax.set_ylabel('Fraction')
ax.set_title("10-K Filings by Month and Day-of-Week")
plt.tight_layout()

Median sentiment and change in sentiment vs total corporate profits (of all US companies), by year:

alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
series_id = 'CP' # Corporate Profits
econ = alf(series_id).to_frame()
econ = econ.assign(year=econ.index // 10000).groupby('year').sum()

for sent, ylab in {'mdasent': 'sentiment', 'mdachg': 'sentiment change'}.items():
print(sent, ylab)
g = data[data['currlen'].gt(500)].dropna().groupby('year')
iq1, iq2, iq3 = [g[sent].quantile(p) for p in [.25, .5, .75]]
y = iq2.index.astype(int)
fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 6))
ax.step(y, iq2, ls='-', color='C1', where='pre')
ax.fill_between(y, iq1, iq3, alpha=0.2, color='C1', step='pre')
ax.set_title(f"{sent.upper()} by Fiscal Year of 10-K Filing")
ax.set_xlabel("Fiscal Year")
ax.set_ylabel(ylab)
ax.legend([f"{sent.upper()} median", f"inter-quartile range"],

(continues on next page)
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fontsize='small', loc='upper left')

bx = ax.twinx()
econ[(econ.index >= min(y)) & (econ.index <= max(y))].plot(ls='--', ax=bx)
bx.legend([alf.header(series_id)[:27]], fontsize='small', loc='lower right')
bx.set_ylabel(alf.header(series_id)[:27])
bx.set_yscale('log')
plt.tight_layout()

mdasent sentiment
mdachg sentiment change
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26.2.3 Management sentiment and stock returns

We analyze the relationship between sentiment in 10-K filings and subsequent stock returns by constructing cap-weighted
decile-spread returns. These are calculated for two periods:

1. The same calendar year (January–December) to examine contemporaneous relationships between sentiment and
stock performance.

2. The following year (April–March) to explore an investable strategy based on sentiment changes after the release of
10-K reports for the prior fiscal year.

for ifig, key in enumerate(['mdasent', 'mdachg']):
ret1 = {} # to collect year-ahead spread returns
ret0 = {} # to collect current-year spread returns
for year in tqdm(range(1999, max(data['year'])+1)): # loop over years

# compute current year average spread returns
begyr = bd.begyr(year)
endyr = bd.endyr(year)
univ = data[data['year'] == year]\

.dropna(subset=[key])\

.set_index('permno')\

.join(crsp.get_cap(bd.offset(begyr, -1)), how='inner')\

.join(crsp.get_ret(begyr, endyr), how='left')
if len(univ):

sub = fractile_split(univ[key], [10, 90])
pos = weighted_average(univ.loc[sub==1, ['cap', 'ret']], 'cap')['ret']
neg = weighted_average(univ.loc[sub==3, ['cap', 'ret']], 'cap')['ret']
ret0[endyr] = {'ret': pos-neg, 'npos': sum(sub==1), 'nneg': sum(sub==3)}

# compute year ahead average spread returns

(continues on next page)
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beg = bd.begmo(endyr, 4)
end = bd.endmo(endyr, 15)
univ = data[data['year'] == year]\

.dropna(subset=[key])\

.set_index('permno')\

.join(crsp.get_cap(bd.offset(beg, -1)), how='inner')\

.join(crsp.get_ret(beg, end), how='left')
if len(univ):

sub = fractile_split(univ[key], [10, 90])
pos = weighted_average(univ.loc[sub==1, ['cap', 'ret']], 'cap')['ret']
neg = weighted_average(univ.loc[sub==3, ['cap', 'ret']], 'cap')['ret']
ret1[end] = {'ret': pos-neg, 'npos': sum(sub==1), 'nneg': sum(sub==3)}

# collect same-year and year-ahead average spread returns
r0 = DataFrame.from_dict(ret0, orient='index').sort_index()
r0.index = r0.index // 10000
r1 = DataFrame.from_dict(ret1, orient='index').sort_index()
r1.index = (r1.index // 10000) - 2

# plot same-year average spread returns
fig, ax = plt.subplots(nrows=2, clear=True, figsize=(10, 8), sharey=True)
r0['ret'].plot(kind='bar', ax=ax[0], width=.85, color="C0")
ax[0].axhline(r0['ret'].median(), linestyle=':', color='C0')
ax[0].axhline(r0['ret'].mean(), linestyle='-.', color='C0')
ax[0].set_title(f"Same Year (Jan-Dec) Returns")
ax[0].set_ylabel('annual returns')
ax[0].legend(['mean', 'median', 'Annual Spread Returns'])

# plot year-ahead average spread returns
r1['ret'].plot(kind='bar', ax=ax[1], width=.85, color="C1")
ax[1].axhline(r1['ret'].median(), linestyle=':', color='C1')
ax[1].axhline(r1['ret'].mean(), linestyle='-.', color='C1')
ax[1].set_title(f"Next Year (Apr-Mar) Returns")
ax[1].set_ylabel('annual returns')
ax[1].legend(['mean', 'median', 'Annual Spread Returns'])
ax[1].set_xlabel('fiscal year')

plt.suptitle(f"{key.upper()} Annual Cap-weighted Decile Spread Portfolios")
plt.tight_layout()

0%| | 0/25 [00:00<?, ?it/s]

100%|██████████| 25/25 [06:21<00:00, 15.26s/it]
100%|██████████| 25/25 [00:48<00:00, 1.92s/it]
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CHAPTER

TWENTYSEVEN

BUSINESS TEXTUAL ANALYSIS

You shall know a word by the company it keeps - J. R. Firth
Text mining techniques allow new insights to be extracted from unstructured text documents. We retrieve business de-
scriptions text from 10-K filings, and use the SpacyNLP package for syntactic analysis, including part-of-speech tagging,
named entity recognition and dependency parsing. Additionally, we explore dimentionality reduction techniques to visu-
alize and cluster companies based on the relationships between business descriptions, represented as word embeddings,
in a lower-dimensional space.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import re
import numpy as np
from scipy import spatial
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import spacy
from sklearn import cluster
from sklearn.decomposition import PCA
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.structured import CRSP, BusDay
from finds.unstructured import Edgar
from finds.utils import Store, Finder, ColorMap
from secret import credentials, paths
# %matplotlib qt
VERBOSE = 0

sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
store = Store(paths['scratch'])
find = Finder(sql)

begdate, enddate = 20240101, 20241231

Retrieve the usual investment universe and retain only the largest size decile (based on NYSE market cap breakpoints).

# Retrieve universe of stocks
univ = crsp.get_universe(bd.endmo(begdate, -1))

(continues on next page)
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comnam = crsp.build_lookup('permno', 'comnam', fillna="") # company name
univ['comnam'] = comnam(univ.index)
ticker = crsp.build_lookup('permno', 'ticker', fillna="") # tickers
univ['ticker'] = ticker(univ.index)

Extract Business Description text from 10-K filings.

# retrieve business decriptions from 10K's
item, form = 'bus10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
found = rows[rows['permno'].isin(univ.index[univ.decile <= 1]) # largest decile only

& rows['date'].between(begdate, enddate)]\
.drop_duplicates(subset=['permno'], keep='last')\
.set_index('permno')

27.1 Syntactic analysis

Syntactic analysis examines the roles of words in sentences and how they combine to form phrases and larger linguistic
structures. This process helps model relationships such as subject-verb-object dependencies, which are fundamental for
NLP tasks like dependency and constituent parsing.

27.1.1 SpaCy

spaCy is a widely used open-source Python library for advanced NLP tasks, including POS tagging, named entity recog-
nition (NER), and dependency parsing. It provides pre-trained models for various languages and domains, as well as
customizable pipelines for processing text data.

• spaCy Models

# ! python -m spacy download en_core_web_sm
nlp = spacy.load("en_core_web_lg")

27.1.2 Lemmatization

Lemmatization reduces a word to its base or dictionary form (lemma), representing its morphological root.

# Using spaCy pipeline to tokenize NVIDIA's 10-K business description text
nvidia = find('NVIDIA')['permno'].iloc[0]
doc = nlp(ed[found.loc[nvidia, 'pathname']][:nlp.max_length].lower())
tokens = DataFrame.from_records([{'text': token.text,

'lemma': token.lemma_,
'alpha': token.is_alpha,
'stop': token.is_stop,
'punct': token.is_punct}

for token in doc], index=range(len(doc)))
tokens.head(30)
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text lemma alpha stop punct
0 item item True False False
1 1 1 False False False
2 . . False False True
3 business business True False False
4 \n\n \n\n False False False
5 our our True True False
6 company company True False False
7 \n\n \n\n False False False
8 nvidia nvidia True False False
9 pioneered pioneer True False False
10 accelerated accelerate True False False
11 computing computing True False False
12 to to True True False
13 help help True False False
14 solve solve True False False
15 the the True True False
16 most most True True False
17 challenging challenging True False False
18 computational computational True False False
19 problems problem True False False
20 . . False False True
21 nvidia nvidia True False False
22 is be True True False
23 now now True True False
24 a a True True False
25 full full True True False
26 - - False False True
27 stack stack True False False
28 computing computing True False False
29 infrastructure infrastructure True False False

27.1.3 Part-of-speech

Part-of-speech (POS) tagging assigns grammatical categories (e.g., noun, verb, adjective) to words in a text corpus.
This aids in understanding sentence structure and extracting meaning by identifying the roles of words within sentences.

tags = DataFrame.from_records([{'text': token.text,
'pos': token.pos_,
'tag': token.tag_,
'dep': token.dep_}
for token in doc], index=range(len(doc)))

tags.head(30)

text pos tag dep
0 item NOUN NN ROOT
1 1 NUM CD nummod
2 . PUNCT . punct
3 business NOUN NN nsubj
4 \n\n SPACE _SP dep
5 our PRON PRP$ poss
6 company NOUN NN appos
7 \n\n SPACE _SP dep
8 nvidia PROPN NNP appos

(continues on next page)
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9 pioneered VERB VBD ROOT
10 accelerated VERB VBD xcomp
11 computing NOUN NN dobj
12 to PART TO aux
13 help VERB VB advcl
14 solve VERB VB xcomp
15 the DET DT det
16 most ADV RBS advmod
17 challenging ADJ JJ amod
18 computational ADJ JJ amod
19 problems NOUN NNS dobj
20 . PUNCT . punct
21 nvidia PROPN NNP nsubj
22 is AUX VBZ ROOT
23 now ADV RB advmod
24 a DET DT det
25 full ADJ JJ amod
26 - PUNCT HYPH punct
27 stack NOUN NN compound
28 computing NOUN NN compound
29 infrastructure NOUN NN compound

27.1.4 Named entity recognition

NamedEntity Recognition (NER) identifies and categorizes named entities (e.g., people, organizations, locations, dates)
in text. This process helps classify textual data into meaningful categories.

ents = DataFrame.from_records([{'text': ent.text,
'label': ent.label_,
'start': ent.start_char,
'end': ent.end_char}

for ent in doc.ents], index=range(len(doc.ents)))
ents.head(20)

text label start end
0 1 CARDINAL 5 6
1 nvidia PERSON 133 139
2 as well as hundreds CARDINAL 352 371
3 healthcare ORG 853 863
4 tens of thousands CARDINAL 1012 1029
5 gpu ORG 1033 1036
6 gpu ORG 1239 1242
7 today DATE 1347 1352
8 thousands CARDINAL 1498 1507
9 gpu ORG 1771 1774
10 thousands CARDINAL 1819 1828
11 gpus GPE 2594 2598
12 multi-billion-dollar MONEY 2708 2728
13 third ORDINAL 2849 2854
14 over 45.3 billion MONEY 3100 3117
15 gpu ORG 3248 3251
16 1999 DATE 3255 3259
17 2006 DATE 3391 3395

(continues on next page)
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18 gpu ORG 3451 3454
19 2012 DATE 3557 3561

# Entity Visualizer
from spacy import displacy
displacy.render(doc[:300], style="ent", jupyter=True)

<IPython.core.display.HTML object>

27.1.5 Dependency parsing

Dependency parsing determines grammatical relationships between words in a sentence, representing these relationships
as a tree structure where each word (except the root) depends on another word (its head). This technique helps identify
syntactic roles, such as subjects, objects, and modifiers.
Transition-based parsing algorithms uses a set of transition operations (e.g. shift, reduce) to incrementally build a depen-
dency tree from an input sentence.
Unlike dependency parsing, constituent parsing focuses on identifying and representing the hierarchical structure of
phrases in a sentence based on formal grammar rules. It groups words into nested syntactic units (e.noun phrases and
verb phrases) and represents them in a tree structure.
The CKY (Cocke-Kasami-Younger) algorithm is a dynamic programming technique used for parsing sentences and
constructing parse trees.
Probabilistic Context-Free Grammar (PCFG) extends standard Context-Free Grammar (CFG) by assigning probabil-
ities to production rules, indicating the likelihood of specific grammatical structures. Each rule defines how non-terminal
symbols (e.g., NP for noun phrase) expand into words or other non-terminals, guiding sentence generation and parsing.
Models for automatic tagging and parsing rely on labeled datasets known as treebanks, which contain syntactically an-
notated sentences. The Penn Treebank is a widely used treebank for English, providing annotations for POS tags and
parse trees.

sentence_spans = list(doc.sents)
displacy.render(sentence_spans[2:4], style="dep", jupyter=True,

options=dict(compact=False, distance=175))

<IPython.core.display.HTML object>

27.2 Semantic similarity

27.2.1 Word vectors

Word vectors are numerical representations of words in a multidimensional space, learned from their co-occurrence
patterns in large text corpora. Words with similar syntactic and semantic meanings tend to have vector representations
that are close together in this space.
For example, spaCy’s en_core_web_lg model represents over 500,000 words using 300-dimensional vectors.
Extract lemmatized noun forms from business descriptions using spaCy’s POS tagger:
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# Extract nouns
bus = {}
for permno in tqdm(found.index):

doc = nlp(ed[found.loc[permno, 'pathname']][:nlp.max_length].lower())
nouns = " ".join([re.sub("[^a-zA-Z]+", "", token.lemma_) for token in doc

if token.pos_ in ['NOUN'] and len(token.lemma_) > 2])
if len(nouns) > 100:

bus[permno] = nouns
store['business'] = bus

100%|██████████| 192/192 [03:12<00:00, 1.00s/it]

bus = store.load('business')
permnos = list(bus.keys())
tickers = univ.loc[permnos, 'ticker'].to_list()

Compute the average word vector for NVIDIA’s business description text:

# example of word vector
vec1 = nlp(bus[nvidia]).vector
vec1

array([-0.5495549 , 0.0522468 , -0.70095205, 1.1134154 , 2.659689 ,
0.29627848, 1.3154105 , 3.8272932 , -2.232087 , -1.3053178 ,
6.069174 , 2.0604212 , -4.542866 , 2.3177896 , -1.1287518 ,
2.3917935 , 3.1968606 , 1.5996909 , -2.3438275 , 0.03434967,
0.22686806, 1.7824569 , -2.384547 , 0.8608239 , -1.2319311 ,

-1.774604 , -1.8425854 , -1.7403452 , -0.7102895 , 1.0869901 ,
1.2046682 , 1.2530138 , -1.1417824 , -0.4984767 , 0.34321743,

-0.37546915, 1.4804035 , 0.8114897 , 1.3119912 , 0.38791072,
0.25189775, -0.1770816 , 0.1785395 , 1.0146813 , -1.4704382 ,
1.6199547 , 2.021769 , -1.9505422 , 0.4602281 , -1.281002 ,
0.07107421, 2.3507724 , -0.18837918, -3.80177 , -0.54604673,
0.5786306 , -1.7812697 , 1.5003949 , 0.40720284, -1.5742034 ,
2.2474368 , 1.2563457 , -2.2915537 , -1.2388986 , 2.408017 ,
1.9807013 , -2.2583349 , -3.3942797 , 0.5241013 , 3.0477126 ,

-0.97571445, 0.7010974 , -1.2003129 , 0.38448045, -0.30499592,
1.3931054 , -1.3777359 , 0.99693114, -1.8231292 , -0.1508515 ,

-2.595402 , -0.6554817 , 0.96918464, 1.4329529 , -0.2420673 ,
-0.08297056, -1.2713333 , -1.8489853 , 0.77105236, -0.235054 ,
-1.2015461 , 1.0783287 , 1.5740684 , -2.2493582 , 0.43573543,
-0.56152374, 0.58803385, -0.5924455 , 0.8756682 , 1.2502667 ,
3.0838132 , 0.3415912 , 1.887193 , 1.8639498 , 0.2804779 ,
4.218261 , -1.1121116 , -1.805579 , -0.22270828, -2.56832 ,
2.4099169 , -0.22422643, -1.1543158 , 0.06765282, 0.83664316,
1.7835015 , -2.6237123 , -1.3570241 , -0.46247697, -2.476458 ,

-1.9124763 , -2.6474092 , 0.44025388, 1.1519567 , -0.42653838,
-2.8462713 , 0.2980864 , -2.9798195 , 2.9588706 , -1.819657 ,
-2.464192 , 0.32522804, 3.3010955 , 0.7937097 , -0.15216802,
-0.42828757, -0.9942988 , -0.44921628, 1.9312432 , 0.28458852,
-0.6386989 , -0.87969756, -0.13129689, 0.85792863, 1.7823339 ,
0.16759728, -3.5592077 , -0.2112106 , 0.06164274, 3.368905 ,

-0.3132938 , 1.2434231 , 0.21065742, 1.2389091 , -0.66589624,
0.5398899 , 2.8091311 , 1.7358444 , -0.91453594, -2.6195803 ,
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-0.9402572 , -1.2330531 , 0.71588945, 1.699086 , -1.72446 ,
-1.1087135 , -2.044233 , 0.5116665 , 0.7511035 , -1.510701 ,
-1.5667175 , -0.22543517, -0.37966043, 0.95050013, 2.100138 ,
1.966492 , 0.6108724 , -0.31808442, -1.9397378 , -1.2919445 ,

-1.7783433 , 1.7884035 , 1.1175009 , -1.9068832 , -1.0304377 ,
0.6533309 , -0.94094557, -1.4831365 , 1.5252017 , 1.73394 ,
0.05441582, -1.1678139 , 0.10588835, -1.8394533 , 1.820474 ,
0.70712596, -2.8049684 , -0.1084957 , 0.5009497 , -0.05614741,

-0.74415725, -1.0815455 , -0.28300503, -1.0312603 , 3.5577624 ,
0.81285644, -3.4548876 , 1.3007482 , -0.0527516 , -1.5823797 ,
0.94375974, 0.01696876, -1.1761798 , 2.141124 , 0.8728857 ,
1.7190704 , 2.6591263 , -4.227103 , -0.5748424 , 0.36368647,

-1.838823 , 1.3353976 , -1.5363356 , -0.98404247, -0.64337295,
-2.6795921 , 0.4494206 , 2.0296626 , 1.1337993 , -0.15482494,
2.2946403 , -2.6738138 , -1.2725773 , 1.763216 , 2.8063855 ,
0.46778396, -0.36578366, -0.26262623, 0.9403954 , 1.0015386 ,

-2.0167701 , -1.1006184 , -0.1618742 , 0.9444055 , -0.27051136,
0.33339593, -1.7367964 , 1.3408182 , 0.32765946, 1.1382856 ,
0.6616231 , -1.8980618 , -3.5863128 , -2.049999 , 0.11113743,

-2.0100012 , 0.91014284, -1.1377766 , 0.30864185, 0.8823487 ,
-1.5351313 , 4.9388237 , 1.6379622 , 1.251249 , 1.8976227 ,
-0.77638566, -0.17837228, 1.8998926 , -0.8797592 , -0.77389985,
-0.19354557, -0.14190447, 0.15318388, -1.0070832 , 0.3741701 ,
-2.8941076 , 0.9670155 , -1.7984045 , -1.1186454 , 1.0722593 ,
3.4040382 , 0.38004097, 1.4921545 , -0.0391783 , 3.8353264 ,
0.2084171 , 1.266672 , 1.8079621 , -2.3702457 , -0.04794558,
0.3776366 , -0.42777508, -0.809167 , 0.7592459 , -1.5167016 ,
0.2553154 , 1.1878173 , -2.2171407 , -0.76328766, 2.2422533 ],

dtype=float32)

Compute the average word vector for all companies’business descriptions:

# Compute sentence vectors
vecs = np.array([nlp(bus[permno]).vector for permno in bus.keys()])
store['vectors'] = vecs

vecs = store['vectors']

# Distance matrix
n = len(bus)
distances = np.zeros((n, n))
for row in range(n):

for col in range(row, n):
distances[row, col] = spatial.distance.cosine(vecs[row], vecs[col])
distances[col, row] = distances[row, col]

Identify companies with the most similar business descriptions:

def most_similar(p):
dist = distances[permnos.index(p)]
dist[permnos.index(p)] = max(dist) # to ignore own distance
return univ.loc[permnos[np.argmin(dist)]]

for name in ['NVIDIA', 'APPLE COMPUTER', 'JNJ', 'EXXON MOBIL', 'AMERICAN EXPRESS']:
p = find(name)['permno'].iloc[-1]

(continues on next page)
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print(f"{most_similar(p)['comnam']}' is most similar to '{name}'")

QUALCOMM INC' is most similar to 'NVIDIA'
SALESFORCE INC' is most similar to 'APPLE COMPUTER'
PFIZER INC' is most similar to 'JNJ'
PIONEER NATURAL RESOURCES CO' is most similar to 'EXXON MOBIL'
U S BANCORP DEL' is most similar to 'AMERICAN EXPRESS'

27.3 Dimensionality reduction

27.3.1 t-SNE visualization

T-distributed Stochastic Neighbor Embedding (t-SNE) visualizes high-dimensional data by converting similarities
between points into joint probabilities and minimizing the Kullback-Leibler divergence between the high-dimensional
and lower-dimensional representations. t-SNE preserves local structures, making it effective for clustering and uncovering
hidden patterns in business descriptions.
t-SNE in scikit-learn

from sklearn.manifold import TSNE
Z = TSNE(n_components=2, perplexity=10, random_state=42)\

.fit_transform(vecs)

Reduce business description vectors to 2D using t-SNE and label points with ticker symbols:

fig, ax = plt.subplots(figsize=(10, 8))
ax.scatter(Z[:, 0], Z[:, 1], color="C0", alpha=.3)
for text, x, y in zip(tickers, Z[:, 0], Z[:, 1]):

ax.annotate(text=text, xy=(x, y), fontsize='small')
ax.set_title(f"t-SNE visualization of largest decile stocks ({enddate//10000})")
plt.tight_layout()
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27.3.2 DBSCAN clustering

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an unsupervised clustering algorithm
that detects clusters of varying densities and identifies outliers. Unlike k-means, it does not require a predefined number
of clusters. Instead, it uses two parameters: epsilon (ε) and the minimum number of points required to form a dense
region.

# eps is the most important parameter for DBSCAN
eps = 4
db = cluster.DBSCAN(eps=eps) # default eps

db.fit(Z)
n_clusters = len(set(db.labels_).difference({-1}))
n_noise = np.sum(db.labels_ == -1)
DataFrame(dict(clusters=n_clusters, noise=n_noise, eps=eps), index=['DBSCAN'])

clusters noise eps
DBSCAN 12 19 4

Visualize DBSCAN clusters in 2D space. Display outlier ticker symbols with larger font sizes:
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cmap = ColorMap(n_clusters)
fig, ax = plt.subplots(figsize=(10, 8))
# plot core samples with larger marker size
ax.scatter(Z[db.core_sample_indices_, 0],

Z[db.core_sample_indices_, 1],
c=cmap[db.labels_[db.core_sample_indices_]],
alpha=.1, s=100, edgecolors=None)

# plot non-core samples with smaller marker size
non_core = np.ones_like(db.labels_, dtype=bool)
non_core[db.core_sample_indices_] = False
non_core[db.labels_ < 0] = False
ax.scatter(Z[non_core, 0], Z[non_core, 1], c=cmap[db.labels_[non_core]],

alpha=.1, s=20, edgecolors=None)
# plot noise samples
ax.scatter(Z[db.labels_ < 0, 0], Z[db.labels_ < 0, 1], c="darkgrey",

alpha=.5, s=20, edgecolors=None)

# annotate with tickers not in core samples
for i, (t, c, xy) in enumerate(zip(tickers, db.labels_, Z)):

if i in db.core_sample_indices_:
ax.annotate(text=t, xy=xy+.5, color=cmap[c], fontsize='xx-small')

elif c == -1:
ax.annotate(text=t, xy=xy+.5, color='black', fontsize='medium')

else:
ax.annotate(text=t, xy=xy+.5, color=cmap[c], fontsize='medium')

ax.set_title(f"Largest decile stocks ({enddate//10000})")
plt.tight_layout()
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List companies tagged as noisy samples:

print("Samples tagged as noise:")
univ.loc[np.array(permnos)[db.labels_ < 0]].sort_values('naics')

Samples tagged as noise:

cap capco decile nyse siccd prc naics \
permno
75241 5.246653e+07 5.246653e+07 1 True 1311 224.88 211120
21207 4.770164e+07 4.770164e+07 1 True 1041 41.39 212220
81774 6.104440e+07 6.104440e+07 1 True 1021 42.57 212230
82800 6.654158e+07 6.654158e+07 1 True 1021 86.07 212230
69796 4.440053e+07 4.440053e+07 1 True 2084 241.75 312130
11850 4.005332e+08 4.005332e+08 1 True 2911 99.98 324110
78975 1.749684e+08 1.749684e+08 1 False 7370 625.03 513210
26403 1.652592e+08 1.652592e+08 1 True 4833 90.29 516120
44644 9.568078e+07 9.568078e+07 1 False 7374 232.97 518210
47896 4.917605e+08 4.917605e+08 1 True 6021 170.10 522110
90993 7.350871e+07 7.350871e+07 1 True 6231 128.43 523210
89626 7.565405e+07 7.565405e+07 1 False 6200 210.60 523210
17478 1.395567e+08 1.395567e+08 1 True 6282 440.52 523930
61621 4.285840e+07 4.285840e+07 1 False 8700 119.11 541219

(continues on next page)
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13628 5.769654e+07 5.769654e+07 1 False 7372 276.06 541511
48506 7.147248e+07 7.147248e+07 1 True 7323 390.56 561450
92402 4.473782e+07 4.473782e+07 1 True 7389 565.65 561499
85913 6.551968e+07 6.551968e+07 1 False 7011 225.51 721110
14338 4.669516e+07 4.669516e+07 1 True 7011 182.09 721110

comnam ticker
permno
75241 PIONEER NATURAL RESOURCES CO PXD
21207 NEWMONT CORP NEM
81774 FREEPORT MCMORAN INC FCX
82800 SOUTHERN COPPER CORP SCCO
69796 CONSTELLATION BRANDS INC STZ
11850 EXXON MOBIL CORP XOM
78975 INTUIT INC INTU
26403 DISNEY WALT CO DIS
44644 AUTOMATIC DATA PROCESSING INC ADP
47896 JPMORGAN CHASE & CO JPM
90993 INTERCONTINENTALEXCHANGE GRP INC ICE
89626 C M E GROUP INC CME
17478 S & P GLOBAL INC SPGI
61621 PAYCHEX INC PAYX
13628 WORKDAY INC WDAY
48506 MOODYS CORP MCO
92402 M S C I INC MSCI
85913 MARRIOTT INTERNATIONAL INC NEW MAR
14338 HILTON WORLDWIDE HOLDINGS INC HLT

27.3.3 UMAP vizualization

UMAP (Uniform Manifold Approximation and Projection) is a dimensionality reduction technique that constructs
a high-dimensional graph of data points and optimizes a lower-dimensional representation while preserving essential
relationships. Compared to t-SNE, UMAP is faster, scales better for large datasets, and retains more global structure.
UMAP Documentation

import umap
Z = umap.UMAP(n_components=2, n_jobs=1, min_dist=0.0, random_state=42)\

.fit_transform(vecs)

fig, ax = plt.subplots(figsize=(10, 8))
ax.scatter(Z[:, 0], Z[:, 1], color="C0", alpha=.3)
for text, x, y in zip(tickers, Z[:, 0], Z[:, 1]):

ax.annotate(text=text, xy=(x, y), fontsize='small')
ax.set_title(f"UMAP visualization of largest decile stocks ({enddate//10000})")
plt.tight_layout()
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27.3.4 HDBSCAN clustering

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) extends DBSCAN by vary-
ing the epsilon parameter and optimizing cluster stability. This makes it more robust to variations in density and parameter
selection.

# eps is the most important parameter for DBSCAN
hdb = cluster.HDBSCAN()
hdb.fit(Z)
n_clusters = len(set(hdb.labels_).difference({-1}))
n_noise = np.sum(hdb.labels_ == -1)
DataFrame(dict(clusters=n_clusters, noise=n_noise), index=['HDBSCAN'])

clusters noise
HDBSCAN 14 32

Visualize HDBSCAN clusters in 2D space. Display outlier ticker symbols with larger font sizes.

cmap = ColorMap(n_clusters)
fig, ax = plt.subplots(figsize=(10, 8))
# plot core samples with larger marker size

(continues on next page)
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ax.scatter(Z[hdb.labels_ >= 0, 0],
Z[hdb.labels_ >= 0, 1],
c=cmap[hdb.labels_[hdb.labels_ >= 0]],
alpha=.1, s=100, edgecolors=None)

# plot noise samples
ax.scatter(Z[hdb.labels_ < 0, 0], Z[hdb.labels_ < 0, 1], c="darkgrey",

alpha=.5, s=20, edgecolors=None)

# annotate with tickers not in core samples
for i, (t, c, xy) in enumerate(zip(tickers, hdb.labels_, Z)):

if c >= 0:
ax.annotate(text=t, xy=xy+.01, color=cmap[c], fontsize='xx-small')

else:
ax.annotate(text=t, xy=xy+.01, color="black", fontsize='medium')

ax.set_title(f"Largest decile stocks ({enddate//10000})")
plt.tight_layout()

List companies tagged as noisy samples

print("Samples tagged as noise:")
univ.loc[np.array(permnos)[hdb.labels_ < 0]].sort_values('naics')
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Samples tagged as noise:

cap capco decile nyse siccd prc naics \
permno
69796 4.440053e+07 4.440053e+07 1 True 2084 241.75 312130
11850 4.005332e+08 4.005332e+08 1 True 2911 99.98 324110
36468 7.983580e+07 7.983580e+07 1 True 2851 311.90 325510
70578 5.655752e+07 5.655752e+07 1 True 2841 198.35 325611
18163 3.453781e+08 3.453781e+08 1 True 2844 146.54 325620
18729 6.563098e+07 6.563098e+07 1 True 2844 79.71 325620
22103 5.548783e+07 5.548783e+07 1 True 3491 97.33 332911
19350 1.120656e+08 1.120656e+08 1 True 3523 399.87 333111
14702 1.345954e+08 1.345954e+08 1 False 3550 162.07 333248
41355 5.918889e+07 5.918889e+07 1 True 3593 460.70 333995
56573 7.881408e+07 7.881408e+07 1 True 3569 261.94 333999
12490 1.493406e+08 1.493406e+08 1 True 3571 163.55 334111
77338 5.827867e+07 5.827867e+07 1 False 3823 545.17 334513
22592 6.037929e+07 6.037929e+07 1 True 3841 109.32 339112
66181 3.449080e+08 3.449080e+08 1 True 5211 346.55 444110
84788 1.556169e+09 1.556169e+09 1 False 7370 151.94 454110
48725 1.497292e+08 1.497292e+08 1 True 4011 245.62 482111
64311 5.345403e+07 5.345403e+07 1 True 4731 236.38 488510
60628 6.321543e+07 6.321543e+07 1 True 4513 252.97 492110
26403 1.652592e+08 1.652592e+08 1 True 4833 90.29 516120
47896 4.917605e+08 4.917605e+08 1 True 6021 170.10 522110
92108 9.302455e+07 9.302455e+07 1 True 6282 130.92 523940
87842 4.894876e+07 4.894876e+07 1 True 6311 66.13 524113
57904 4.821135e+07 4.821135e+07 1 True 6321 82.50 524114
59459 4.350773e+07 4.350773e+07 1 True 6331 190.49 524126
64390 9.318533e+07 9.318533e+07 1 True 6331 159.28 524126
66800 4.756321e+07 4.756321e+07 1 True 6331 67.75 524126
38093 4.855159e+07 4.855159e+07 1 True 6411 224.88 524210
45751 9.342235e+07 9.342235e+07 1 True 6411 189.47 524210
89393 2.107022e+08 2.107022e+08 1 False 7841 486.88 532282
13511 9.297566e+07 9.297566e+07 1 False 7371 294.88 541511
11955 7.213700e+07 7.213700e+07 1 True 4953 179.10 562219

comnam ticker
permno
69796 CONSTELLATION BRANDS INC STZ
11850 EXXON MOBIL CORP XOM
36468 SHERWIN WILLIAMS CO SHW
70578 ECOLAB INC ECL
18163 PROCTER & GAMBLE CO PG
18729 COLGATE PALMOLIVE CO CL
22103 EMERSON ELECTRIC CO EMR
19350 DEERE & CO DE
14702 APPLIED MATERIALS INC AMAT
41355 PARKER HANNIFIN CORP PH
56573 ILLINOIS TOOL WORKS INC ITW
12490 INTERNATIONAL BUSINESS MACHS COR IBM
77338 ROPER TECHNOLOGIES INC ROP
22592 3M CO MMM
66181 HOME DEPOT INC HD
84788 AMAZON COM INC AMZN
48725 UNION PACIFIC CORP UNP

(continues on next page)
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64311 NORFOLK SOUTHERN CORP NSC
60628 FEDEX CORP FDX
26403 DISNEY WALT CO DIS
47896 JPMORGAN CHASE & CO JPM
92108 BLACKSTONE INC BX
87842 METLIFE INC MET
57904 AFLAC INC AFL
59459 TRAVELERS COMPANIES INC TRV
64390 PROGRESSIVE CORP OH PGR
66800 AMERICAN INTERNATIONAL GROUP INC AIG
38093 GALLAGHER ARTHUR J & CO AJG
45751 MARSH & MCLENNAN COS INC MMC
89393 NETFLIX INC NFLX
13511 PALO ALTO NETWORKS INC PANW
11955 WASTE MANAGEMENT INC DEL WM

References:
Greg Durrett, 2023,“CS388 Natural Language Processing course materisl”, retrieved from https://www.cs.utexas.edu/
~gdurrett/courses/online-course/materials.html
Text-Based Network Industries and Endogenous Product Differentiation. Gerard Hoberg and Gordon Phillips, 2016,
Journal of Political Economy 124 (5), 1423-1465.
Product Market Synergies and Competition in Mergers and Acquisitions: A Text-Based Analysis. Gerard Hoberg and
Gordon Phillips, 2010, Review of Financial Studies 23 (10), 3773-3811.
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CHAPTER

TWENTYEIGHT

MACHINE LEARNING: CLASSIFICATION

When you come to a fork in the road, take it - Yogi Berra
We apply supervised learning models to a text classification task, using natural language processing (NLP) techniques to
analyze business descriptions from the latest 10-K filings. Our goal is to predict firms’industry classifications, evaluating
models such as Naive Bayes, Perceptron, Support Vector Machine (SVM), and Logistic Regression. We assess model
performance using metrics like the confusion matrix and examine interpretability by visualizing feature importances.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import time
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.feature_extraction import text
from sklearn.linear_model import LogisticRegression, Perceptron
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics
from nltk.tag import pos_tag
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.unstructured import Edgar
from finds.structured import BusDay, CRSP, PSTAT
from finds.readers import Sectoring
from finds.utils import Store
from secret import paths, credentials, CRSP_DATE
# %matplotlib qt
VERBOSE = 0
store = Store('assets', ext='pkl')

sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
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28.1 Text classification

Hoberg and Phillips (2016) proposed a system for classifying firms based on their business descriptions in 10-K filings,
using these descriptions to measure firm similarity. We extend their analysis for text-based industry classification, focusing
on U.S.-domiciled common stocks. The text data for each firm is drawn from the most recent year’s Business Description
section of their 10-K filings.

# Retrieve universe of stocks, as of beginning of latest year
univ = crsp.get_universe(bd.endyr(CRSP_DATE, -1))

# Construct table to lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)

# Construct table to lookup ticker symbols
ticker = crsp.build_lookup(source='permno', target='ticker', fillna="")
univ['ticker'] = ticker(univ.index)

# Construct table to lookup sic codes from Compustat, and map to FF 10-sector code
sic = pstat.build_lookup(source='lpermno', target='sic', fillna=0)
industry = Series(sic[univ.index], index=univ.index)
industry = industry.where(industry > 0, univ['siccd'])
sectors = Sectoring(sql, scheme='codes10', fillna='') # supplement from crosswalk
univ['sector'] = sectors[industry]

28.1.1 Text pre-processing

The pre-processing step involves several key operations to clean and prepare the text for analysis. We begin by extracting
the Business Description text from the most recent 10-K filings of all stocks in our dataset.

# retrieve latest year's bus10K's
item, form = 'bus10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
found = rows[rows['date'].between(bd.begyr(CRSP_DATE), bd.endyr(CRSP_DATE))]\

.drop_duplicates(subset=['permno'], keep='last')\

.set_index('permno')

• The text is then lemmatized using WordNet’s built-in morphy function, which reduces words to their base or
root form. This step helps standardize the text by consolidating variations of words into their common form.

# !nltk.download('averaged_perceptron_tagger')
lemmatizer = WordNetLemmatizer()

100%|██████████| 4488/4488 [11:25<00:00, 6.55it/s]

• Next, we apply the part-of-speech (POS) tagger from the nltk library, retaining only nouns, which are the most
informative about for industry classification tasks.

bus = {}
for permno in tqdm(found.index):

(continues on next page)

460 Chapter 28. Machine Learning: Classification



Financial Data Science Python Notebooks

(continued from previous page)

if permno not in univ.index:
continue

doc = word_tokenize(ed[found.loc[permno, 'pathname']].lower())
tags = pos_tag(doc)
nouns = [lemmatizer.lemmatize(w[0]) for w in tags

if w[1] in ['NN', 'NNS'] and w[0].isalpha() and len(w[0]) > 2]
if len(nouns) > 100:

bus[permno] = nouns
store['nouns'] = bus

bus = store.load('nouns')
permnos = list(bus.keys())
labels = univ.loc[permnos, 'sector']
data = [" ".join(list(nouns)) for nouns in bus.values()]
classes = sorted(np.unique(labels))

• Finally, we split the corpus into training and testing samples, stratifying the data is to maintain the distribution of
class labels in both sets.

test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(

data, labels, test_size=test_size, random_state=42, stratify=labels)
summary = Series(y_train).value_counts().rename('n_train').to_frame()
summary['n_test'] = Series(y_test).value_counts()
summary['frac_train'] = summary['n_train'] / summary['n_train'].sum()
summary['frac_test'] = summary['n_test'] / summary['n_test'].sum()
print('Stratified Train/Test Split by Event')
summary.sort_values('n_train', ascending=False).round(2)

Stratified Train/Test Split by Event

n_train n_test frac_train frac_test
sector
Hlth 657 164 0.24 0.24
Other 612 153 0.22 0.22
HiTec 554 139 0.20 0.20
Manuf 275 69 0.10 0.10
Shops 246 62 0.09 0.09
Durbl 131 33 0.05 0.05
NoDur 114 28 0.04 0.04
Enrgy 81 20 0.03 0.03
Utils 72 18 0.03 0.03
Telcm 37 9 0.01 0.01
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28.1.2 Text vectorization

After pre-processing the text, we convert the textual data into numerical features that can be fed into machine learning
models. This is achieved through the Term Frequency-Inverse Document Frequency (TF-IDF) method. TF-IDF
weights terms based on their importance in a document relative to their frequency in a collection of documents (corpus).

• Term Frequency (TF) measures how often a word appears in a document. A higher frequency suggests the word
is more important within that document.

• Inverse Document Frequency (IDF) adjusts the weight of a term based on its rarity across the entire corpus.
Terms that appear frequently across many documents are given less weight, while terms that appear less frequently
are given greater importance.

To focus on the most relevant and informative words, we filter out extremely common words that appear in more than
50% of the documents (using max_df=0.5), exclude rare words that appear in fewer than 200 documents (using
min_df=200), and limist the vocabulary to the 10,000 most frequent remaining terms (max_features=10000).

# Tfidf vectorizor
max_df, min_df, max_features = 0.5, 10, 20000
tfidf_vectorizer = text.TfidfVectorizer(

encoding='latin-1',
strip_accents='unicode',
lowercase=True,
#stop_words=stop_words,
max_df=max_df,
min_df=min_df,
max_features=max_features,
token_pattern=r'\b[a-z_]+\b',

)
x_train = tfidf_vectorizer.fit_transform(X_train) # sparse array
x_test = tfidf_vectorizer.transform(X_test)
feature_names = tfidf_vectorizer.get_feature_names_out()
print("n_sample x n_features")
DataFrame([[x_train.shape, x_test.shape]],

index=['data shape:'],
columns=['train', 'test'])

n_sample x n_features

train test
data shape: (2779, 10060) (695, 10060)

28.2 Classification models

In machine learning, there are generally two types of approaches for classification tasks:
• Generative models estimate a probability distribution and define the classifier based on these estimates. An ex-

ample of this is the Naive Bayes classifier.
• Discriminative models directly define a decision boundary between classes. Examples of discriminative models

include Logistic Regression, Perceptron, and Support Vector Machines (SVM).
Define a helper function to compute and save accuracy scores for both the training and testing samples.
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results = dict()

def update_results(name, clf, elapsed):
"""helper to update results dict with train and test accuracy"""
tic = time.time()
test_score = clf.score(x_test, y_test)
toc = time.time() - tic
results[name] = dict(model=clf,

train_score=clf.score(x_train, y_train),
test_score=test_score,
test_time=toc,
train_time=elapsed)

#store['classification'] = results
print('Accuracy')
return DataFrame.from_dict(results, orient='index').iloc[:, 1:]

28.2.1 Naive Bayes

The Naive Bayes classifier is a simple yet effective method for text classification. It assumes that the features (words)
are conditionally independent given the class, meaning that the occurrence of one word in a document does not affect
the occurrence of another. Despite this strong assumption, Naive Bayes performs surprisingly well on many real-world
classification tasks.

• Binomial Naive Bayes is used for binary classification problems, where each document is assigned to one of two
classes.

• Multinomial Naive Bayes is typically used for multi-class classification, where documents can belong to more
than two classes.

Since Naive Bayes relies on the multiplication of probabilities for each feature, it can encounter problems when a feature
has a zero probability in the training set. This is addressed through Laplace smoothing, which adds a small constant to
all feature counts to avoid zero probabilities.
The basic formula for Naive Bayes classification is: $𝑃(𝑓1, 𝑓2, ..., 𝑓𝑛|𝑐) = 𝑃(𝑓1|𝑐) ⋅ 𝑃 (𝑓2|𝑐) ⋅ ... ⋅ 𝑃 (𝑓𝑛|𝑐)$
where 𝑃(𝑓𝑖|𝑐) is the probability of feature 𝑓𝑖 occurring in class 𝑐. The classification decision is made by selecting the
class that maximizes the likelihood of the observed features, i.e.: $ ̂𝑐 = arg max𝑐 (log 𝑃(𝑐) + ∑𝑛

𝑖=1 log 𝑃(𝑓𝑖|𝑐))$

where the maximum likelihood estimate of the probability of frequency of word 𝑤𝑖 is 𝑃(𝑤𝑖|𝑐) = count(𝑤𝑖,𝑐)
∑𝑤∈𝑉 count(𝑤,𝑐)

clf = MultinomialNB(alpha=1.0)
tic = time.time()
clf.fit(x_train, y_train)
toc = time.time() - tic
update_results('naivebayes', clf, toc)

Accuracy

train_score test_score test_time train_time
naivebayes 0.751709 0.738129 0.002441 0.013695
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28.2.2 Perceptron

The Perceptron is a linear classifier that updates weights based on classification errors. It uses a 0-1 loss function, which
assigns a loss of zero for correct classifications and a loss of one for incorrect ones. The update rule for the Perceptron is
as follows:

• If the predicted label ̂𝑦 is different from the true label 𝑦, the weight vector 𝑤 is updated: $𝑤 ← 𝑤+𝛼𝑥(𝑦− ̂𝑦)𝑊ℎ𝑒𝑟𝑒
\alpha 𝑖𝑠𝑡ℎ𝑒𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒𝑎𝑛𝑑 x $ is the feature vector of the document.

In multiclass classification, the One-vs-Rest (OVR) approach is used, where the Perceptron is trained to distinguish
between each class and the rest of the classes.

clf = Perceptron(penalty='elasticnet',
#n_jobs=4, # -1
random_state=0,
verbose=VERBOSE)

tic = time.time()
clf.fit(x_train, y_train)
toc = time.time() - tic
update_results('perceptron', clf, toc)

Accuracy

train_score test_score test_time train_time
naivebayes 0.751709 0.738129 0.002441 0.013695
perceptron 0.949982 0.761151 0.004099 0.866820

28.2.3 Support Vector Machine

Support Vector Machines (SVM) are powerful classifiers that work by finding the decision boundary that maximizes the
margin between classes. The decision boundary is chosen to minimize classification errors, and SVM uses hinge loss to
penalize misclassifications: $Loss = max(0, 1 − 𝑦(𝑤 ⋅ 𝑥))$
SVM can handle both linear and non-linear decision boundaries by using different kernel functions. In this analysis, we use
the LinearSVC kernel, which optimizes the classification with a linear decision boundary. For multiclass classification,
SVM uses the One-vs-Rest (OVR) method.

clf = LinearSVC(multi_class='ovr',
penalty='l2',
verbose=VERBOSE)

tic = time.time()
clf.fit(x_train, y_train)
toc = time.time() - tic
update_results('linearsvc', clf, toc)

/home/terence/env3.11/lib/python3.11/site-packages/sklearn/svm/_classes.py:31:␣
↪FutureWarning: The default value of `dual` will change from `True` to `'auto'`␣
↪in 1.5. Set the value of `dual` explicitly to suppress the warning.
warnings.warn(

Accuracy
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train_score test_score test_time train_time
naivebayes 0.751709 0.738129 0.002441 0.013695
perceptron 0.949982 0.761151 0.004099 0.866820
linearsvc 0.990284 0.831655 0.002280 0.348787

28.2.4 Logistic Regression

Logistic Regression is a widely used model for binary and multi-class classification tasks. It uses cross-entropy loss
to measure the difference between predicted probabilities and actual class labels. The logistic regression model updates
weights iteratively based on the gradient of the loss function:

• For a binary classification problem, the probability of class 1 is given by: $𝑃(𝑦 = 1|𝑥) = 1
1+𝑒−𝑤𝑥 $

The update step is:
• 𝑃(𝑦 = 1|𝑥) ← 1/(1 + 𝑒−𝑤𝑥)
• 𝑤 ← 𝑤 + 𝛼 𝑥 (1 − 𝑃(𝑦 = 1|𝑥)) if 𝑦 = 1
• 𝑤 ← 𝑤 − 𝛼 𝑥 (1 − 𝑃(𝑦 = 0|𝑥)) if 𝑦 = 0

⇔ 𝑤 ← 𝑤 + 𝛼 𝑥 (𝑦 − 𝑃(𝑦 = 1|𝑥)) where 𝑦 ∈ {0, 1}
In multiclass problems, softmax is used to generalize logistic regression, providing a probability distribution over all
classes. The model’s weights are updated using gradient descent to minimize the cross-entropy loss.

clf = LogisticRegression(verbose=VERBOSE,
penalty='l2',
multi_class='multinomial',
# n_jobs=-1, # when multi_class='ovr'
max_iter=1000)

tic = time.time()
clf.fit(x_train, y_train)
toc = time.time() - tic
update_results('logistic', clf, toc)

Accuracy

train_score test_score test_time train_time
naivebayes 0.751709 0.738129 0.002441 0.013695
perceptron 0.949982 0.761151 0.004099 0.866820
linearsvc 0.990284 0.831655 0.002280 0.348787
logistic 0.896366 0.833094 0.005731 3.705192

28.3 Evaluation

28.3.1 Overfitting

Evidence of overfitting can be observed when a model performs well on the training data but poorly on the test data. In
such cases, the model may have learned to memorize the training data instead of generalizing to new examples. Overfitting
can be mitigated by using techniques like cross-validation and regularization.
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28.3.2 Accuracy Metrics

To evaluate model performance, we consider several metrics:
• Precision: The proportion of true positive predictions among all positive predictions.
• Recall: The proportion of true positive predictions among all actual positive cases.
• F1 Score: The harmonic mean of precision and recall, which balances the two metrics and provides a single score

for model performance.
In multiclass and multilabel scenarios, the F1 score is computed as a weighted average of the F1 scores for each class.

# Compute precision, recall, f1 and confusion matrix
res = DataFrame.from_dict(results, orient='index')
models = {k: v['model'] for k,v in results.items()}

scores, cf_test, cf_train = {}, {}, {}
for ifig, (name, clf) in enumerate(models.items()):

train_pred = clf.predict(x_train)
test_pred = clf.predict(x_test)
scores[name] = {

'train': metrics.precision_recall_fscore_support(
y_train, train_pred, average='macro')[:3],

'test': metrics.precision_recall_fscore_support(
y_test, test_pred, average='macro')[:3]

}
cf = DataFrame(confusion_matrix(y_train, train_pred, labels=classes),

index=pd.MultiIndex.from_product([['Actual'], classes]),
columns=pd.MultiIndex.from_product([['Predicted'], classes]))

cf_train[name] = cf
cf = DataFrame(confusion_matrix(y_test, test_pred, labels=classes),

index=pd.MultiIndex.from_product([['Actual'], classes]),
columns=pd.MultiIndex.from_product([['Predicted'], classes]))

cf_test[name] = cf

/home/terence/env3.11/lib/python3.11/site-packages/sklearn/metrics/_classification.
↪py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0␣
↪in labels with no predicted samples. Use `zero_division` parameter to control␣
↪this behavior.
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

/home/terence/env3.11/lib/python3.11/site-packages/sklearn/metrics/_classification.
↪py:1509: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0␣
↪in labels with no predicted samples. Use `zero_division` parameter to control␣
↪this behavior.
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

caption="Model Accuracy"
DataFrame({(metric, sample): [score[sample][i] for score in scores.values()]

for i, metric in enumerate(['Precision', 'Recall', 'F1-score'])
for sample in ['train', 'test']},
index=scores.keys())

Precision Recall F1-score
train test train test train test

naivebayes 0.758517 0.747060 0.522357 0.498908 0.541932 0.513666

(continues on next page)
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perceptron 0.942079 0.732010 0.953285 0.765879 0.946463 0.741730
linearsvc 0.990133 0.809224 0.993392 0.811619 0.991729 0.806204
logistic 0.901001 0.823311 0.844640 0.793319 0.867906 0.805434

28.3.3 Confusion Matrix

A confusion matrix provides a detailed breakdown of the classification results, showing the true positive, false positive,
true negative, and false negative counts for each class.

for name, model in models.items():
fig, axes = plt.subplots(nrows=2, figsize=(8, 12))
for label, cf, ax in [('Train Set', cf_train[name], axes[0]),

('Test Set', cf_test[name], axes[1])]:
sns.heatmap(cf, ax=ax, annot= False, fmt='d', cmap='viridis', robust=True,

yticklabels=model.classes_,
xticklabels=model.classes_)

ax.set_title(f"{name} {label}")
ax.set_xlabel('Predicted')
ax.set_ylabel('Actual')
ax.yaxis.set_tick_params(labelsize=8, rotation=0)
ax.xaxis.set_tick_params(labelsize=8, rotation=0)
#plt.subplots_adjust(left=0.35, bottom=0.25)
plt.tight_layout()

plt.close()
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28.3.4 Feature importance

Feature importance can be assessed by examining the weights or probabilities assigned to each term in the model, allowing
us to visualize the most important terms for each class. For Naive Bayes, the weights can be exponentiated to probabilities
Word clouds, facilitated by packages such as WordCloud, can help visualize the most frequent and important words in
the dataset, highlighting the key terms that influence classification decisions.

wc = WordCloud(height=500, width=500, prefer_horizontal=1.0, colormap='rainbow')

top_n = 10
for topic in classes: # loop over classes

fig, axes = plt.subplots(ncols=len(models), nrows=1, figsize=(10, 4))
fig.suptitle(topic)
for imodel, (ax, name, clf) in enumerate(zip(

axes, models.keys(), models.values())):
assert hasattr(clf, 'coef_') or hasattr(clf, 'feature_log_prob_')
k = clf.classes_.tolist().index(topic)
#print("Event %d %s:" % (topic, events_[clf.classes_[topic]]))
if hasattr(clf, 'coef_'):

importance = clf.coef_[k, :]
else:

importance = np.exp(clf.feature_log_prob_[k, :])
words = {feature_names[i]: importance[i]

for i in importance.argsort()[-top_n:]}
ax.imshow(wc.generate_from_frequencies(words))
#Series(words).plot(kind='barh', color=f"C{imodel}", ax=ax)
#ax.yaxis.set_tick_params(labelsize=7)
ax.axes.yaxis.set_visible(False) # make axes ticks invisible
ax.xaxis.set_ticks([])
ax.xaxis.set_ticklabels([])
ax.set_title(name, fontdict={'fontsize':10})

fig.tight_layout()
plt.close()

28.3. Evaluation 471



Financial Data Science Python Notebooks

472 Chapter 28. Machine Learning: Classification



Financial Data Science Python Notebooks

28.3. Evaluation 473



Financial Data Science Python Notebooks

References:
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. “An Introduction to Statistical Learning with Appli-
cations in R”. New York, Springer, 2013.
Gerard Hoberg and Gordon Phillips, 2016, Text-Based Network Industries and Endogenous Product Differentia-
tion.Journal of Political Economy 124 (5), 1423-1465.
Gerard Hoberg and Gordon Phillips, 2010, Product Market Synergies and Competition in Mergers and Acquisitions: A
Text-Based Analysis. Review of Financial Studies 23 (10), 3773-3811.

474 Chapter 28. Machine Learning: Classification



CHAPTER

TWENTYNINE

MACHINE LEARNING: REGRESSION

Whereof what’s past is prologue - Shakespeare
We explore supervised machine learning and regression models for macroeconomic forecasting, with a focus on predict-
ing the industrial production index (INDPRO) using a wide range of economic indicators. To improve generalization
and predictive performance, we investigate methods such as subset selection, penalized regression, decision trees, and
ensemble learning, aiming to strike a balance between model complexity and accuracy.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.metrics import mean_squared_error
from finds.readers.alfred import Alfred, fred_md
from finds.utils import plot_date
from secret import credentials
# %matplotlib qt
VERBOSE = 0

29.1 Macroeconomic forecasting

For the candidate regression models, the independent variables consist of up to three lags of each economic indicator.
The objective is to predict the rate of change in the industrial production index (INDPRO) for the following month while
minimizing the mean squared error (MSE) loss function, which is appropriate for continuous-valued targets.
Monthly macroeconomic data is retrieved from FRED-MD, with any missing recent values supplemented from other
public sources. Suggested transformations are applied to each time series to ensure stationarity. The pre-2023 period is
used for training, while the post-2023 period is reserved for testing.

alf = Alfred(api_key=credentials['fred']['api_key'], verbose=-1)

# Get latest FRED-MD data
freq = 'M'
beg = 19640701 # 19620701
df, t = fred_md() #
transforms = t['transform']
end = df.index[-2]
split_date = end - 20000
print("Train/test date ranges:", beg, split_date, end)
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FRED-MD vintage: monthly/current.csv
Train/test date ranges: 19640701 20221231 20241231

# Splice in common updates: source of PE ratio, Commercial Paper
for col in ['S&P PE ratio']:

df[col] = alf.splice(col)
df['COMPAPFF'] = df['COMPAPFF'].ffill() # forward fill 20200430
df['CP3M'] = df['CP3M'].ffill() # forward fill 20200430

# Apply time series transformations according to FRED-MD
transformed = []
for col in df.columns:

transformed.append(alf.transform(df[col], tcode=transforms[col], freq=freq))
data = pd.concat(transformed, axis=1).iloc[2:]
c = list(data.columns)
data = data.loc[(data.index >= beg) & (data.index <= end)]

# Drop columns with missing data
missing = []
for series_id in df.columns:

g = data[series_id].notna()
missing.extend([(date, series_id) for date in data.index[~g]])

missing_per_row = data.isna().sum(axis=1)
missing = DataFrame.from_records(missing, columns=['date', 'series_id'])
print('original:', data.shape, 'dropna:', data.dropna(axis=1).shape)
data = data.dropna(axis=1) # drop columns where missing values
print(missing['series_id'].value_counts())
data

original: (726, 126) dropna: (726, 122)
series_id
ACOGNO 332
UMCSENT 163
TWEXAFEGSMTH 103
ANDENO 44
Name: count, dtype: int64

RPI W875RX1 DPCERA3M086SBEA CMRMTSPL RETAIL INDPRO \
19640731 0.005422 0.005404 0.007343 0.019986 0.004947 0.006552
19640831 0.005644 0.006061 0.005992 -0.020139 0.013974 0.006506
19640930 0.004123 0.004205 -0.004164 0.027173 0.009372 0.003703
19641031 0.000555 0.000650 0.006499 -0.013866 -0.039421 -0.013947
19641130 0.006703 0.007352 -0.009111 -0.009745 0.009335 0.030429
... ... ... ... ... ... ...
20240831 0.000066 -0.000117 0.000711 0.000375 -0.001144 0.004869
20240930 0.001458 0.000240 0.005257 0.007155 0.008903 -0.004205
20241031 0.003690 0.003488 0.001757 -0.001714 0.005575 -0.004547
20241130 0.002184 0.002756 0.004346 0.003993 0.006484 -0.001453
20241231 0.001234 0.001391 0.005441 0.006665 0.007175 0.009853

IPFPNSS IPFINAL IPCONGD IPDCONGD ... DDURRG3M086SBEA \
19640731 0.010342 0.011313 0.014079 0.016438 ... 0.000667
19640831 -0.000936 -0.000939 -0.001865 0.007219 ... -0.002031

(continues on next page)
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19640930 -0.004690 -0.003759 -0.011267 -0.023656 ... 0.000728
19641031 -0.010404 -0.013269 -0.020030 -0.109875 ... -0.001712
19641130 0.029043 0.031929 0.036884 0.128121 ... 0.004137
... ... ... ... ... ... ...
20240831 0.004515 0.007094 0.009218 0.047547 ... 0.000600
20240930 -0.005809 -0.008928 -0.002317 -0.001441 ... 0.005721
20241031 -0.007220 -0.010970 -0.006158 -0.028598 ... -0.002965
20241130 -0.001180 -0.000155 -0.004246 0.018794 ... -0.000986
20241231 0.007300 0.006569 0.003359 -0.013311 ... -0.004215

DNDGRG3M086SBEA DSERRG3M086SBEA CES0600000008 CES2000000008 \
19640731 -0.000369 -0.000090 -0.000016 0.003231
19640831 -0.002398 0.001406 -0.000016 -0.003263
19640930 0.003749 -0.001674 -0.000015 -0.006462
19641031 -0.002344 0.000525 -0.011757 0.016093
19641130 0.000985 -0.000352 0.011772 -0.019272
... ... ... ... ...
20240831 -0.002222 -0.000061 -0.002580 0.001376
20240930 -0.002598 0.000553 0.004137 0.001906
20241031 0.003609 0.000788 -0.003839 -0.005006
20241130 0.000117 -0.002176 -0.000639 -0.002760
20241231 0.004218 0.002086 0.002521 0.005776

CES3000000008 DTCOLNVHFNM DTCTHFNM INVEST VIXCLS
19640731 -0.004158 -0.003798 -0.002430 -0.002831 11.2238
19640831 0.004141 -0.005958 -0.001818 0.011673 13.6898
19640930 0.004090 -0.011142 -0.003802 0.010582 10.5167
19641031 -0.024760 0.005974 -0.000704 -0.003579 11.0924
19641130 0.024828 -0.009946 -0.002806 -0.002694 12.0087
... ... ... ... ... ...
20240831 -0.006110 -0.001974 -0.000766 0.001445 19.6750
20240930 0.004652 -0.002368 -0.001586 -0.001644 17.6597
20241031 -0.002154 -0.000146 0.003227 -0.000473 19.9478
20241130 0.003190 -0.000872 -0.001679 -0.011753 15.9822
20241231 -0.001439 0.002963 0.002748 0.002421 15.6997

[726 rows x 122 columns]

Data beyond the split date is excluded from model training to ensure a proper evaluation of generalization performance.

# Split time series train and test set
def ts_split(X, Y, end=split_date):

"""helper to split train/test time series"""
return X[Y.index<=end], X[Y.index>end], Y[Y.index<=end], Y[Y.index>end]

def columns_map(columns, lag):
"""helper to create lagged column names"""
return {col: col + '_' + str(lag) for col in columns}

def columns_unmap(columns):
"""helper to extract lagged column names"""
cols = [col.split('_') for col in columns]
return [col[0] for col in cols], [int(col[1]) for col in cols]
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target_id = 'INDPRO'
lags = 3 # Include up to 3 lags of exogs
Y = data[target_id].iloc[lags:]
X = pd.concat([data.shift(lag).iloc[lags:]\

.rename(columns=columns_map(data.columns, lag))
for lag in range(1, lags+1)],

axis=1)

# new table to collect final fitted models
test = Series(name='test', dtype=float) # collect test and train errors
train = Series(name='train', dtype=float)
final_models = {}

29.2 Regression models

Complex regression models with numerous features or parameters risk overfitting, capturing noise rather than true pat-
terns. Several techniques help mitigate overfitting and improve model generalization:

• Cross-validation: Hyperparameter tuning using cross-validation helps ensure models generalize well across dif-
ferent data subsets. K-fold Cross-Validation (K-fold CV) divides the dataset into 𝐾 parts, training the model on
𝐾 − 1 sections and testing it on the remaining part, iterating through all folds and averaging results. Leave-One-
Out Cross-Validation (LOOCV) is a special case where each data point serves as the test set once, helping refine
hyperparameter selection.

• Information criteria penalty: TheAkaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) aid model selection by balancing goodness of fit and complexity. AIC, defined as 𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿),
where 𝑘 is the number of parameters and 𝐿 is the likelihood, favors models that explain the data with minimal
complexity. BIC, given by 𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(𝐿), introduces a stronger penalty for sample size 𝑛, preferring
simpler models for large datasets. Lower AIC or BIC values indicate better models.

• Ensemble learning: By combining multiple weak learners, ensemble methods enhance model robustness. Bag-
ging averages predictions from multiple models trained on different data subsets, reducing variance. Boosting
sequentially corrects model errors, improving overall accuracy.

29.2.1 Forward Subset Selection

Forward SubsetRegression is a stepwise variable selection method used in regression modeling to identify the best subset
of predictors. It begins with no variables in the model and iteratively adds the most significant predictor at each step, based
on a chosen criterion, and stops when adding more variables does not significantly improve model performance. Penalized
selection criteria, such as AIC or BIC, helps avoid overfitting. Forward selection is computationally more efficient than
exhaustive search methods but may miss the optimal subset if an initially excluded variable becomes relevant later in
combination with others.

def forward_select(Y, X, selected, ic='aic'):
"""helper to forward select next regressor, using sm.OLS"""
remaining = [x for x in X.columns if x not in selected]
results = []
for x in remaining:

r = sm.OLS(Y, X[selected + [x]]).fit()
results.append({'select': x,

(continues on next page)
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'aic': r.aic,
'bic': r.bic,
'rsquared': r.rsquared,
'rsquared_adj': r.rsquared_adj})

return DataFrame(results).sort_values(by=ic).iloc[0].to_dict()

# find best bic, and show selection criteria scores
ic = 'bic' # select by information criterion
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
selected = []
models = {}
for i in range(1, 32):

select = forward_select(Y_train,
X_train,
selected,
ic=ic)

models[i] = select
selected.append(select['select'])

selected = DataFrame.from_dict(models, orient='index')
best = selected[[ic]].iloc[selected[ic].argmin()]
subset = selected.loc[:best.name].round(3)
subset.index = [alf.header(s.split('_')[0]) for s in subset['select']]
print('Forward Selection Subset')
subset

Forward Selection Subset

select aic \
Initial Claims CLAIMS_1 -4772.162
Real M2 Money Stock M2REAL_2 -4814.414
All Employees, Wholesale Trade USWTRADE_2 -4843.063
All Employees, Service-Providing SRVPRD_2 -4864.114
5-Year Treasury Constant Maturity Minus Federal... T5YFFM_3 -4881.249
Total Business: Inventories to Sales Ratio ISRATIO_2 -4895.191
All Employees, Service-Providing SRVPRD_1 -4911.828
All Employees, Financial Activities USFIRE_2 -4928.888
All Employees, Trade, Transportation, and Utili... USTPU_1 -4945.576
Consumer Motor Vehicle Loans Owned by Finance C... DTCOLNVHFNM_3 -4952.630
Industrial Production: Nondurable Energy Consum... IPB51222S_3 -4960.975
Industrial Production: Nondurable Goods Materials IPNMAT_3 -4974.770
Canadian Dollars to U.S. Dollar Spot Exchange Rate EXCAUS_3 -4983.489
M1 M1SL_3 -4993.678
Nonrevolving consumer credit to Personal Income CONSPI_2 -5001.564
Market Yield on U.S. Treasury Securities at 10-... GS10_1 -5008.976
Capacity Utilization: Manufacturing (SIC) CUMFNS_2 -5014.366
Industrial Production: Manufacturing (SIC) IPMANSICS_2 -5041.837
All Employees, Nondurable Goods NDMANEMP_1 -5056.048
Average Hourly Earnings of Production and Nonsu... CES2000000008_1 -5065.393
Average Weekly Overtime Hours of Production and... AWOTMAN_2 -5075.474
Industrial Production: Equipment: Business Equi... IPBUSEQ_2 -5083.967
Industrial Production: Total Index INDPRO_2 -5091.928
Real Estate Loans, All Commercial Banks REALLN_1 -5096.759
All Employees, Mining, Quarrying, and Oil and G... CES1021000001_2 -5102.029
Moody's Seasoned Baa Corporate Bond Yield BAA_1 -5106.126

(continues on next page)
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Moody's Seasoned Aaa Corporate Bond Yield AAA_1 -5110.792
All Employees, Mining, Quarrying, and Oil and G... CES1021000001_1 -5116.399
Industrial Production: Materials IPMAT_1 -5120.986

bic rsquared \
Initial Claims -4767.612 0.355
Real M2 Money Stock -4805.315 0.394
All Employees, Wholesale Trade -4829.414 0.420
All Employees, Service-Providing -4845.916 0.439
5-Year Treasury Constant Maturity Minus Federal... -4858.500 0.454
Total Business: Inventories to Sales Ratio -4867.893 0.467
All Employees, Service-Providing -4879.981 0.481
All Employees, Financial Activities -4892.490 0.495
All Employees, Trade, Transportation, and Utili... -4904.629 0.508
Consumer Motor Vehicle Loans Owned by Finance C... -4907.133 0.514
Industrial Production: Nondurable Energy Consum... -4910.928 0.521
Industrial Production: Nondurable Goods Materials -4920.175 0.532
Canadian Dollars to U.S. Dollar Spot Exchange Rate -4924.343 0.539
M1 -4929.983 0.547
Nonrevolving consumer credit to Personal Income -4933.319 0.554
Market Yield on U.S. Treasury Securities at 10-... -4936.181 0.560
Capacity Utilization: Manufacturing (SIC) -4937.022 0.564
Industrial Production: Manufacturing (SIC) -4959.943 0.582
All Employees, Nondurable Goods -4969.605 0.592
Average Hourly Earnings of Production and Nonsu... -4974.400 0.598
Average Weekly Overtime Hours of Production and... -4979.931 0.605
Industrial Production: Equipment: Business Equi... -4983.875 0.611
Industrial Production: Total Index -4987.286 0.617
Real Estate Loans, All Commercial Banks -4987.568 0.620
All Employees, Mining, Quarrying, and Oil and G... -4988.288 0.624
Moody's Seasoned Baa Corporate Bond Yield -4987.835 0.627
Moody's Seasoned Aaa Corporate Bond Yield -4987.951 0.631
All Employees, Mining, Quarrying, and Oil and G... -4989.008 0.635
Industrial Production: Materials -4989.046 0.638

rsquared_adj
Initial Claims 0.354
Real M2 Money Stock 0.393
All Employees, Wholesale Trade 0.418
All Employees, Service-Providing 0.436
5-Year Treasury Constant Maturity Minus Federal... 0.450
Total Business: Inventories to Sales Ratio 0.462
All Employees, Service-Providing 0.475
All Employees, Financial Activities 0.489
All Employees, Trade, Transportation, and Utili... 0.502
Consumer Motor Vehicle Loans Owned by Finance C... 0.507
Industrial Production: Nondurable Energy Consum... 0.514
Industrial Production: Nondurable Goods Materials 0.524
Canadian Dollars to U.S. Dollar Spot Exchange Rate 0.531
M1 0.538
Nonrevolving consumer credit to Personal Income 0.544
Market Yield on U.S. Treasury Securities at 10-... 0.549
Capacity Utilization: Manufacturing (SIC) 0.553
Industrial Production: Manufacturing (SIC) 0.571
All Employees, Nondurable Goods 0.580
Average Hourly Earnings of Production and Nonsu... 0.586

(continues on next page)
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Average Weekly Overtime Hours of Production and... 0.593
Industrial Production: Equipment: Business Equi... 0.598
Industrial Production: Total Index 0.604
Real Estate Loans, All Commercial Banks 0.607
All Employees, Mining, Quarrying, and Oil and G... 0.610
Moody's Seasoned Baa Corporate Bond Yield 0.613
Moody's Seasoned Aaa Corporate Bond Yield 0.616
All Employees, Mining, Quarrying, and Oil and G... 0.620
Industrial Production: Materials 0.623

DataFrame.from_dict({n: {'series_id': s.split('_')[0],
'lag' : s.split('_')[1],
'description': alf.header(s.split('_')[0])}

for n, s in selected.loc[:best.name, 'select'].items()},
orient='index').set_index('series_id')

lag description
series_id
CLAIMS 1 Initial Claims
M2REAL 2 Real M2 Money Stock
USWTRADE 2 All Employees, Wholesale Trade
SRVPRD 2 All Employees, Service-Providing
T5YFFM 3 5-Year Treasury Constant Maturity Minus Federa...
ISRATIO 2 Total Business: Inventories to Sales Ratio
SRVPRD 1 All Employees, Service-Providing
USFIRE 2 All Employees, Financial Activities
USTPU 1 All Employees, Trade, Transportation, and Util...
DTCOLNVHFNM 3 Consumer Motor Vehicle Loans Owned by Finance ...
IPB51222S 3 Industrial Production: Nondurable Energy Consu...
IPNMAT 3 Industrial Production: Nondurable Goods Materials
EXCAUS 3 Canadian Dollars to U.S. Dollar Spot Exchange ...
M1SL 3 M1
CONSPI 2 Nonrevolving consumer credit to Personal Income
GS10 1 Market Yield on U.S. Treasury Securities at 10...
CUMFNS 2 Capacity Utilization: Manufacturing (SIC)
IPMANSICS 2 Industrial Production: Manufacturing (SIC)
NDMANEMP 1 All Employees, Nondurable Goods
CES2000000008 1 Average Hourly Earnings of Production and Nons...
AWOTMAN 2 Average Weekly Overtime Hours of Production an...
IPBUSEQ 2 Industrial Production: Equipment: Business Equ...
INDPRO 2 Industrial Production: Total Index
REALLN 1 Real Estate Loans, All Commercial Banks
CES1021000001 2 All Employees, Mining, Quarrying, and Oil and ...
BAA 1 Moody's Seasoned Baa Corporate Bond Yield
AAA 1 Moody's Seasoned Aaa Corporate Bond Yield
CES1021000001 1 All Employees, Mining, Quarrying, and Oil and ...
IPMAT 1 Industrial Production: Materials

# Plot BIC vs number selected
fig, ax = plt.subplots(num=1, figsize=(10, 8))
selected['bic'].plot(ax=ax, c='C0')
selected['aic'].plot(ax=ax, c='C1')
ax.plot(best.name, float(best.iloc[0]), "ob")
ax.legend(['BIC', 'AIC', f"best={best.name}"], loc='upper left')

(continues on next page)
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ax.set_title(f"Forward Subset Selection with {ic.upper()}")
bx = ax.twinx()
selected['rsquared'].plot(ax=bx, c='C2')
selected['rsquared_adj'].plot(ax=bx, c='C3')
bx.legend(['rsquared', 'rsquared_adj'], loc='upper right')
bx.set_xlabel('# Predictors')
plt.tight_layout()

# evaluate train and test mse
X_subset = X_train[subset['select']]
model = sm.OLS(Y_train, X_subset).fit()
name = f"Forward Subset Regression (k={len(subset)})"
Y_pred = model.predict(X_test[subset['select']])
test[name] = mean_squared_error(Y_test, Y_pred)
train[name] = mean_squared_error(Y_train, model.predict(X_subset))
final_models[name] = model

fig, ax = plt.subplots(figsize=(10, 8))
plot_date(pd.concat([Y_test.cumsum(), Y_pred.cumsum()], axis=1),

legend1=[target_id, 'Cumulative Test Prediction'],
title=name,
xlabel='Test Period',

(continues on next page)
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fontsize=8,
ax=ax)

plt.tight_layout()

DataFrame({'name': name,
'train': np.sqrt(train[name]),
'test': np.sqrt(test[name])}, index=['RMSE'])

name train test
RMSE Forward Subset Regression (k=29) 0.005955 0.007674
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29.2.2 Partial Least Squares Regression

Partial Least Squares (PLS) Regression combines features of principal component analysis (PCA) and multiple linear
regression. PLS constructs new latent variables (components) as linear combinations of the original predictors that max-
imize covariance with the response variable. The number of components (n_components) parameter controls the
dimensionality reduction and must be chosen carefully to balance bias-variance tradeoff. This method is particularly
useful when datasets have more predictors than observations and strong multicollinearity.

# split train and test, fit standard scaling using train set
from sklearn.preprocessing import StandardScaler
from sklearn.cross_decomposition import PLSRegression
from sklearn.model_selection import cross_val_score, KFold
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
scale = StandardScaler().fit(X_train)
X_train = scale.transform(X_train)
X_test = scale.transform(X_test)

# fit with 5-fold CV to choose n_components
n_splits=5
kf = KFold(n_splits=n_splits, shuffle=True, random_state=0)
mse = Series(dtype=float)
for i in np.arange(2, 31):

pls = PLSRegression(n_components=i)
score = cross_val_score(estimator=pls,

X=X_train,
y=Y_train,
n_jobs=5,
verbose=VERBOSE,
cv=kf,
scoring='neg_mean_squared_error').mean()

mse.loc[i] = -score

# show cross-validation results and best model
fig, ax = plt.subplots(figsize=(10, 8))
mse.plot(ylabel='Mean Squared Error',

xlabel='Number of Components',
title=f"PLS Regression with {n_splits}-fold CV",
ax=ax)

best = mse.index[mse.argmin()]
ax.plot(best, mse.loc[best], "or")
ax.legend(['MSE', f"best={best}"])
plt.tight_layout()
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### evaluate train and test mse
model = PLSRegression(n_components=best).fit(X_train, Y_train)
name = f"PLS Regression(k={best})"
Y_pred = Series(index=Y_test.index,

data=model.predict(X_test).reshape((-1,)))

test[name] = mean_squared_error(Y_test, Y_pred)
train[name] = mean_squared_error(Y_train, model.predict(X_train))
final_models[name] = model

fig, ax = plt.subplots(figsize=(10, 8))
plot_date(pd.concat([Y_test.cumsum(), Y_pred.cumsum()], axis=1),

legend1=[target_id, 'Cumulative Test Prediction'],
title=name,
xlabel='Test Period',
fontsize=8,
ax=ax)

plt.tight_layout()
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DataFrame({'name': name,
'train': np.sqrt(train[name]),
'test': np.sqrt(test[name])}, index=['RMSE'])

name train test
RMSE PLS Regression(k=11) 0.005306 0.008791

29.2.3 Ridge Regression

Ridge Regression is a linear regression model that includes L2 regularization, which helps prevent overfitting by adding a
penalty term to the loss function. The objective function is modified as follows:

min
𝑤

||𝑦 − 𝑋𝑤||2 + 𝜆||𝑤||2

where ||𝑦 − 𝑋𝑤||2 is the standard least squares error, and 𝜆||𝑤||2 is the penalty term that shrinks the model coefficients
𝑤 towards zero. The 𝜆 parameter (alpha in sklearn’s Ridge) controls the strength of regularization: larger values
reduce model complexity by forcing coefficients to be smaller, while smaller values make Ridge behave like standard
linear regression. Ridge retains all features but reduces their impact, which is useful when dealing with multicollinearity,
without completely eliminating any predictor.
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from sklearn.linear_model import Ridge, RidgeCV
alphas = 10**np.linspace(5, -4, 100)*0.5 # for parameter tuning
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
scale = StandardScaler().fit(X_train)
X_train = scale.transform(X_train)
X_test = scale.transform(X_test)
np.random.seed(42)

# Plot fitted coefficients vs regularization alpha
coefs = [Ridge(alpha, fit_intercept=False)\

.fit(X_subset, Y_train).coef_ for alpha in alphas]
fig, ax = plt.subplots(figsize=(10, 8))
ax.plot(alphas, coefs)
ax.set_xscale('log')
ax.set_xlabel('value of alpha regularization parameter')
ax.set_title('Ridge Regression fitted coefficients')
plt.tight_layout()

# RidgeCV LOOCV
model = RidgeCV(alphas=alphas,

scoring='neg_mean_squared_error',
cv=None, # to use Leave-One-Out cross validation
store_cv_values=True).fit(X_train, Y_train)
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name = f"Ridge (alpha={model.alpha_:.1f})"
Y_pred = Series(index=Y_test.index,

data=model.predict(X_test).reshape((-1,)))
test[name] = mean_squared_error(Y_test, Y_pred)
train[name] = mean_squared_error(Y_train, model.predict(X_train))
final_models[name] = model

fig, ax = plt.subplots(figsize=(10, 8))
plot_date(pd.concat([Y_test.cumsum(), Y_pred.cumsum()], axis=1),

legend1=[target_id, 'Cumulative Test Prediction'],
title=name,
xlabel='Test Period',
fontsize=8,
ax=ax)

plt.tight_layout()

DataFrame({'name': name,
'train': np.sqrt(train[name]),
'test': np.sqrt(test[name])}, index=['RMSE'])

name train test
RMSE Ridge (alpha=1.8) 0.004305 0.009825
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29.2.4 Lasso Regression

Lasso Regression (Least Absolute Shrinkage and Selection Operator) is a linear regression model that includes L1 reg-
ularization, which adds the sum of the absolute values of the coefficients as a penalty term to the loss function. This
encourages sparsity, meaning it shrinks some coefficients to exactly zero, effectively performing feature selection. The
objective function is:

min
𝑤

||𝑦 − 𝑋𝑤||22 + 𝛼||𝑤||1

where 𝛼 is a hyperparameter controlling the strength of regularization: a higher 𝛼 increases shrinkage, leading to more
coefficients being set to zero. Lasso regression is particularly useful when dealing with high-dimensional data where
many features may be irrelevant, by reducing model complexity and improving interpretability. However, with correlated
features, it tends to arbitrarily select one and ignore the others.

from sklearn.linear_model import Lasso, LassoCV
alphas = 10**np.linspace(-2, -9, 100)*0.5 # for parameter tuning
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
scale = StandardScaler().fit(X_train)
X_train = scale.transform(X_train)
X_test = scale.transform(X_test)

# Plot fitted coefficients vs regularization
coefs = [Lasso(max_iter=10000, alpha=alpha)\

.fit(X_subset, Y_train).coef_ for alpha in alphas]
fig, ax = plt.subplots(figsize=(10, 8))
ax.plot(alphas, coefs)
ax.set_xscale('log')
ax.set_xlabel('value of alpha regularization parameter')
ax.set_title('Lasso fitted coefficients')
plt.tight_layout()
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# LassoCV 10-Fold CV
model = LassoCV(alphas=None,

cv=5,
n_jobs=5,
verbose=VERBOSE,
max_iter=20000).fit(X_train, Y_train)

name = f"Lasso (alpha={model.alpha_:.3g})"
Y_pred = Series(index=Y_test.index,

data=model.predict(X_test).reshape((-1,)))
test[name] = mean_squared_error(Y_test, Y_pred)
train[name] = mean_squared_error(Y_train, model.predict(X_train))
final_models[name] = model

fig, ax = plt.subplots(figsize=(10, 8))
plot_date(pd.concat([Y_test.cumsum(), Y_pred.cumsum()], axis=1),

legend1=[target_id, 'Cumulative Test Prediction'],
title=name,
xlabel='Test Period',
fontsize=8,
ax=ax)

plt.tight_layout()
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DataFrame({'name': name,
'train': np.sqrt(train[name]),
'test': np.sqrt(test[name])}, index=['RMSE'])

name train test
RMSE Lasso (alpha=0.000255) 0.006279 0.006808

# Display nonzero coefs
nonzero = np.sum(np.abs(model.coef_) > 0)
argsort = np.flip(np.argsort(np.abs(model.coef_)))[:nonzero]
df = DataFrame({'series_id': columns_unmap(X.columns[argsort])[0],

'lags': columns_unmap(X.columns[argsort])[1],
'desc': [alf.header(s)

for s in columns_unmap(X.columns[argsort])[0]],
'coef': model.coef_[argsort]}).round(6).set_index('series_id')

print("Lasso: Nonzero Coefficients")
df

Lasso: Nonzero Coefficients
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lags desc coef
series_id
CLAIMS 1 Initial Claims -0.005356
SRVPRD 1 All Employees, Service-Providing -0.001268
M2REAL 2 Real M2 Money Stock 0.000893
IPNMAT 3 Industrial Production: Nondurable Goods Materials 0.000751
USGOVT 1 All Employees, Government -0.000716
... ... ... ...
M2SL 3 M2 0.000020
COMPAPFF 3 3-Month Commercial Paper Minus FEDFUNDS -0.000020
UEMPLT5 3 Number Unemployed for Less Than 5 Weeks 0.000019
CUSR0000SAS 3 Consumer Price Index for All Urban Consumers: ... 0.000009
RPI 3 Real Personal Income 0.000002

[82 rows x 3 columns]

29.2.5 Decision Tree

Decision trees partition the predictor space into regions, making predictions based on mean values (for regression) or
mode (for classification).

• A decision tree consists of a sequence of splitting rules that divide observations into different regions. These trees
are typically drawn upside down, with the leaves at the bottom.

• Terminal nodes or leaves represent the final partitions of the predictor space where observations are grouped.
• Internal nodes are points in the tree where the predictor space is split.
• Branches connect the nodes and represent different decision paths.
• A stump refers to a decision tree with only a single split (one internal node).

Decision trees are constructed using recursive binary splitting, a top-down, greedy algorithm. The process begins with
all observations in a single region, and at each step, the predictor space is split into two new branches based on the best
possible split at that moment (without considering future steps). The best split is determined by selecting the predictor and
cutpoint that minimize a chosen cost function, such as the Residual Sum of Squares (RSS) in regression. The process
continues recursively until a stopping criterion is met, such as a minimum number of observations per node.
Growing a tree until all leaves are pure (containing only one class) often leads to overfitting. Tree complexity is measured
by the number of nodes, and controlling this complexity is crucial. If trees are allowed to grow too large, they may fit
the training data well but perform poorly on unseen data. A balance must be found where accuracy on the test set is
maximized before further tree growth begins to decrease performance.
Overfitting can be mitigated by pruning the tree using cost complexity pruning. A fully grown tree is simplified by
removing less important splits to minimize the following function:

|𝑇 |
∑
𝑚=1

∑
𝑥𝑖∈𝑅𝑚

(𝑦𝑖 − ̂𝑦𝑅𝑚
)2 + 𝛼|𝑇 |

where |𝑇 | is the number of terminal nodes, 𝑅𝑚 represents a region in the predictor space, and ̂𝑦𝑅𝑚
is the predicted

response for that region. Pruning is controlled by a tuning parameter 𝛼, where higher values result in smaller trees that
generalize better.
For classification tasks, different impurity measures determine the best binary splits:

• Classification error rate: Measures the proportion of incorrectly classified observations in a node. While intuitive,
it is not sensitive enough for effective tree growth.
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̂𝜌𝑚,𝑐 = 𝑛𝑚,𝑐
𝑛𝑚

where 𝑛𝑚 is the number of observations in node 𝑚 and 𝑛𝑚,𝑐 is the number of observations in node 𝑚 belonging to class
𝑐.

• Gini index: Measures total variance across classes. A lower Gini index indicates that most observations in a node
belong to a single class.

𝐺 =
𝐾

∑
𝑘=1

̂𝜌𝑚𝑘(1 − ̂𝜌𝑚𝑘)

where ̂𝜌𝑚𝑘 represents the proportion of training observations in node 𝑚 that belong to class 𝑘.
• Entropy: Measures node impurity. Lower entropy values indicate purer nodes.

𝐷 = −
𝐾

∑
𝑘=1

̂𝜌𝑚𝑘 log ̂𝜌𝑚𝑘

Deviance is a statistical measure used to assess model performance in classification problems. It is derived from the
likelihood function and is a measure of how well the predicted probabilities match the actual class labels. It is calculated
as:

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = −2
𝑔

∑
𝑚=1

𝑤
∑
𝑐=1

𝑛𝑚,𝑐 ln ̂𝑝𝑚,𝑐

where:
• 𝑔 is the number of terminal nodes (leaf nodes) in the forest.
• 𝑤 is the number of classes.
• 𝑛𝑚,𝑐 is the number of observations in node 𝑚 belonging to class 𝑐.
• ̂𝑝𝑚,𝑐 is the predicted probability of class 𝑐 in node 𝑚.

with the residual mean deviance given by: deviance
𝑛−1

A lower deviance indicates better model performance, meaning the predicted class probabilities align more closely with
the true class labels.
Advantages:

• Easy to interpret and visualize, even for non-experts.
• Often reflect human decision-making processes.
• Can handle qualitative predictors without requiring dummy variables.

Disadvantages:
• Less accurate than some other regression and classification models.
• Highly sensitive to small changes in data, making them non-robust.
• Tend to overfit categorical variables.

Decision tree performance can be significantly improved using ensemble methods such as:
• Bagging (Bootstrap Aggregating): Reduces variance by averaging predictions from multiple decision trees

trained on different bootstrap samples.
• Random Forests: A variant of bagging that introduces additional randomness by selecting a random subset of

features at each split.
• Boosting: Sequentially builds trees where each new tree corrects the errors of the previous ones, reducing bias and

improving predictive performance.
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By aggregating multiple decision trees, these ensemble methods enhance generalization and reduce overfitting, making
decision trees more robust and effective for complex predictive modeling.

29.2.6 Gradient boosting

Gradient Boosting is an ensemble learning technique that builds models sequentially, where each new model corrects
the errors of the previous ones. It uses decision trees as weak learners and minimizes the loss function by optimizing
the model in the direction of the gradient of the loss. Key parameters include n_estimators (number of trees),
learning_rate (step size for updates, controlling how much each tree contributes), and max_depth (tree depth,
preventing overfitting). Gradient Boosting can be computationally expensive and prone to overfitting if not regularized
using techniques like early stopping or shrinkage (learning_rate tuning).

from sklearn.ensemble import GradientBoostingRegressor
X_train, X_test, Y_train, Y_test = ts_split(X, Y)
scale = StandardScaler().fit(X_train)
X_train = scale.transform(X_train)
X_test = scale.transform(X_test)

# tune max_depth with 5-fold CV
n_splits=5
kf = KFold(n_splits=n_splits, shuffle=True, random_state=0)
mse = Series(dtype=float)
for i in range(1, 10): # tune max_depth for best performance

boosted = GradientBoostingRegressor(max_depth=i, random_state=0)
score = cross_val_score(boosted,

X_train,
Y_train,
cv=kf,
n_jobs=5,
verbose=VERBOSE,
scoring='neg_mean_squared_error').mean()

mse.loc[i] = -score

fig, ax = plt.subplots(figsize=(10, 8))
mse.plot(ax=ax, ylabel='Mean Squared Error', xlabel='max depth',

title=f"Gradient Boosting Regressor with {n_splits}-fold CV")
best = mse.index[mse.argmin()]
ax.plot(best, mse.loc[best], "or")
ax.legend(['mse', f"best={best}"])
plt.tight_layout()
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# evaluate train and test MSE
name = f"Boosting (depth={best})"
model = GradientBoostingRegressor(max_depth=best,

random_state=0).fit(X_train, Y_train)

Y_pred = Series(index=Y_test.index,
data=model.predict(X_test).reshape((-1,)))

test[name] = mean_squared_error(Y_test, Y_pred)
train[name] = mean_squared_error(Y_train, model.predict(X_train))
final_models[name] = model

fig, ax = plt.subplots(figsize=(10, 6))
plot_date(pd.concat([Y_test.cumsum(), Y_pred.cumsum()], axis=1),

legend1=[target_id, 'Cumulative Test Prediction'],
title=name,
xlabel='Test Period',
fontsize=8,
ax=ax)

plt.tight_layout()
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DataFrame({'name': name,
'train': np.sqrt(train[name]),
'test': np.sqrt(test[name])}, index=['RMSE'])

name train test
RMSE Boosting (depth=3) 0.002704 0.007407

Feature importances:

# Show feature importance
top_n = 10
imp = Series(model.feature_importances_, index=X.columns).sort_values()
print(f"Gradient Boosting: Top {top_n} Feature Importances")
DataFrame.from_dict({i+1: {'importance': imp[s],

'series_id': s.split('_')[0],
'lags': s.split('_')[1],
'description': alf.header(s.split('_')[0])}

for i, s in enumerate(np.flip(imp.index[-top_n:]))},
orient='index')

Gradient Boosting: Top 10 Feature Importances

importance series_id lags \
1 0.140886 BUSLOANS 1
2 0.136621 CLAIMS 1
3 0.031817 UEMPLT5 3
4 0.030436 M2REAL 3
5 0.029806 USGOOD 1
6 0.027816 M2SL 1
7 0.022606 IPNMAT 1

(continues on next page)
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(continued from previous page)

8 0.020286 DMANEMP 1
9 0.019784 EXCAUS 1
10 0.018134 UNRATE 1

description
1 Commercial and Industrial Loans, All Commercia...
2 Initial Claims
3 Number Unemployed for Less Than 5 Weeks
4 Real M2 Money Stock
5 All Employees, Goods-Producing
6 M2
7 Industrial Production: Nondurable Goods Materials
8 All Employees, Durable Goods
9 Canadian Dollars to U.S. Dollar Spot Exchange ...
10 Unemployment Rate

29.2.7 Random Forest

Random Forest is an ensemble learning method that builds multiple decision trees and combines their predictions to
improve accuracy and reduce overfitting. It operates by randomly selecting subsets of the training data and features
(using bootstrap sampling and feature bagging) to create diverse trees. The final prediction is determined by majority
voting (for classification) or averaging (for regression). Key parameters include n_estimators (number of trees),
max_depth** (maximum depth of each tree), max_features (number of features considered for splitting), and
min_samples_split (minimum samples needed to split a node). Feature importance scores can be extracted to
interpret which variables influence predictions most. Random Forest handles missing data well and mitigates overfitting
through averaging multiple models.

from sklearn.ensemble import RandomForestRegressor
X_train, X_test, Y_train, Y_test = ts_split(X, Y)

# tune max_depth with 5-fold CV
n_splits=5
kf = KFold(n_splits=n_splits,

shuffle=True,
random_state=0)

mse = Series(dtype=float)
for i in range(3, 20): #tune for best performance

model = RandomForestRegressor(max_depth=i, random_state=0)
score = cross_val_score(model,

X_train,
Y_train,
cv=kf,
n_jobs=5,
verbose=VERBOSE,
scoring='neg_mean_squared_error').mean()

mse.loc[i] = -score
#print(i, np.sqrt(abs(score)))

fig, ax = plt.subplots(figsize=(10, 8))
mse.plot(ax=ax, ylabel='MSE', xlabel='max depth',

title=f"Random Forest Regressor with {n_splits}-fold CV")
best = mse.index[mse.argmin()]

(continues on next page)
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(continued from previous page)

ax.plot(best, mse.loc[best], "or")
ax.legend(['Mean Squared Error', f"best={best}"])
plt.tight_layout()

name = f"RandomForest (depth={best})"
model = RandomForestRegressor(max_depth=best,

random_state=0).fit(X_train, Y_train)

Y_pred = Series(index=Y_test.index,
data=model.predict(X_test).reshape((-1,)))

test[name] = mean_squared_error(Y_test, Y_pred)
train[name] = mean_squared_error(Y_train, model.predict(X_train))
final_models[name] = model

fig, ax = plt.subplots(figsize=(10, 8))
plot_date(pd.concat([Y_test.cumsum(), Y_pred.cumsum()], axis=1),

legend1=[target_id, 'Cumulative Test Prediction'],
title=name,
xlabel='Test Period',
fontsize=8,
ax=ax)

(continues on next page)
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plt.tight_layout()

DataFrame({'name': name,
'train': np.sqrt(train[name]),
'test': np.sqrt(test[name])}, index=['RMSE'])

name train test
RMSE RandomForest (depth=15) 0.00376 0.005875

Feature importance scores:

# Feature importance
top_n = 10
imp = Series(model.feature_importances_, index=X.columns).sort_values()
print(f"Random Forest: Top {top_n} Feature Importances")
DataFrame.from_dict({i+1: {'importance': imp[s],

'series_id': s.split('_')[0],
'lags': s.split('_')[1],
'description': alf.header(s.split('_')[0])}

for i, s in enumerate(np.flip(imp.index[-top_n:]))},
orient='index')
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Random Forest: Top 10 Feature Importances

importance series_id lags \
1 0.051226 CLAIMS 1
2 0.046733 BUSLOANS 1
3 0.044055 M2SL 1
4 0.015825 USGOOD 1
5 0.015268 UNRATE 1
6 0.014617 UEMPLT5 3
7 0.014576 IPCONGD 1
8 0.014529 UEMPLT5 1
9 0.014496 M1SL 1
10 0.013855 DMANEMP 1

description
1 Initial Claims
2 Commercial and Industrial Loans, All Commercia...
3 M2
4 All Employees, Goods-Producing
5 Unemployment Rate
6 Number Unemployed for Less Than 5 Weeks
7 Industrial Production: Consumer Goods
8 Number Unemployed for Less Than 5 Weeks
9 M1
10 All Employees, Durable Goods

Summary:
The root mean squared error (RMSE) performance of all the models, based on train and test samples, is summarized
in the following chart:

fig, ax = plt.subplots(figsize=(10, 8))
pd.concat([np.sqrt(r.to_frame()) for r in [train, test]], axis=1)\
.sort_values('test')\
.plot.barh(ax=ax, width=0.85)

ax.yaxis.set_tick_params(labelsize=10)
ax.set_title('Regression RMSE')
ax.figure.subplots_adjust(left=0.35)
plt.tight_layout()
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CHAPTER

THIRTY

DEEP LEARNING

May your choices reflect your hopes, not your fears –Nelson Mandela
We explore the application of deep learning techniques for text classification, specifically focusing on categorizing US
companies based on their industry sectors. Using business description texts extracted from SEC 10-K filings, we apply
natural language processing (NLP) methods and deep averaging networks (DAN) to classify firms according to the Fama-
French 10-sector scheme. The analysis includes preprocessing textual data, leveraging pre-trained word embeddings
for semantic representation, and evaluating various training strategies to optimize predictive accuracy and generalization
performance.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import random
import time
import pandas as pd
from pandas import DataFrame, Series
from collections import Counter
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import seaborn as sns
from tqdm import tqdm
import torch
from torch import nn
import torchinfo
from textblob import TextBlob
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.unstructured import Edgar, Vocab
from finds.structured import BusDay, CRSP, PSTAT
from finds.readers import Sectoring
from finds.utils import Store
from secret import credentials, paths, CRSP_DATE
VERBOSE = 0
outdir = paths['scratch']
store = Store(outdir, ext='pkl')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"{device=}")
print(f"{torch.cuda.is_available()=}") # Should return True
print(f"{torch.cuda.device_count()=}") # Number of available GPUs
print(f"{torch.cuda.current_device()=}") # Current GPU index
print(f"{torch.cuda.get_device_name(0)=}") # Name of the GPU
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device=device(type='cuda')
torch.cuda.is_available()=True
torch.cuda.device_count()=1
torch.cuda.current_device()=0
torch.cuda.get_device_name(0)='NVIDIA GeForce RTX 3080 Laptop GPU'

sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)

30.1 Industry text classification

We begin by extracting a universe of US-domiciled common stocks at the start of the most recent year, along with their
corresponding 10-K business descriptions from SEC filings. The target categories for our text classification task are drawn
from the Fama-French 10-sector classification scheme.

# Retrieve universe of stocks as of start of latest year
univ = crsp.get_universe(bd.endmo(CRSP_DATE-10000))
CRSP_DATE

20241231

# lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)

# lookup ticker symbols
ticker = crsp.build_lookup(source='permno', target='ticker', fillna="")
univ['ticker'] = ticker(univ.index)

# lookup sic codes from Compustat, and map to FF 10-sector code
sic = pstat.build_lookup(source='lpermno', target='sic', fillna=0)
industry = Series(sic[univ.index], index=univ.index)
industry = industry.where(industry > 0, univ['siccd'])
sectors = Sectoring(sql, scheme='codes10', fillna='') # supplement from crosswalk
univ['sector'] = sectors[industry]

# retrieve 2023 10K business descriptions text
item, form = 'bus10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
found = rows[rows['date'].between(bd.begyr(CRSP_DATE), bd.endyr(CRSP_DATE))]\

.drop_duplicates(subset=['permno'], keep='last')\

.set_index('permno')
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30.1.1 Textblob

The TextBlob library simplifies common NLP tasks such as part-of-speech tagging, lemmatization, noun phrase ex-
traction, sentiment analysis, and spelling correction. It provides friendly access to functionalities derived from NLTK and
integrates with WordNet.

• https://textblob.readthedocs.io/en/dev/quickstart.html
For our task, TextBlob is employed to tokenize business descriptions and extract nouns. We filter the documents to retain
only those containing at least 100 valid nouns to ensure robust semantic representation.

bus = {}
for permno in tqdm(found.index):

if permno not in univ.index:
continue

doc = TextBlob(ed[found.loc[permno, 'pathname']].lower()) # tokenize and tag
nouns = [word for word, tag in doc.tags

if tag in ['NN', 'NNS'] and word.isalpha() and len(word) > 2]
if len(nouns) > 100:

bus[permno] = nouns
permnos = list(bus.keys())

100%|██████████| 4488/4488 [17:23<00:00, 4.30it/s]

30.1.2 Word Embeddings

Word embeddings are dense, numerical vector representations capturing semantic and syntactic meanings of words. These
embeddings place words into a continuous vector space, positioning semantically similar or related words closely together.
Word embeddings can be generated through neural network-based approaches or matrix factorization methods.

1. Word2Vec (Mikolov et al., 2013): Word2Vec utilizes shallow neural networks, usually comprising a single hidden
layer, to learn embeddings from textual data. It has two primary training approaches:

• Skip-gram: Predicts context words given a center word, effectively capturing representations of rare words.
• Continuous Bag of Words (CBOW): Predicts a center word from surrounding context words, typically

faster and better for frequent words.
2. GloVe (Global Vectors forWord Representation) (Pennington et al., 2014): GloVe generates embeddings based

on matrix factorization of global word-word co-occurrence statistics. Unlike Word2Vec, which relies on local
context predictions, GloVe considers overall word pair co-occurrences, resulting in globally consistent embeddings.

Pre-trained GloVe vectors (300-dimensional) are utilized to represent the extracted words as embeddings.

# Load GloVe embeddings, source: "https://nlp.stanford.edu/data/glove.6B.zip"
embeddings_dim = 300 # dimension of GloVe embeddings vector

filename = paths['scratch'] / f"glove.6B.{embeddings_dim}d.txt.zip"
embeddings = pd.read_csv(filename, sep=" ", quoting=3,

header=None, index_col=0, low_memory=True)
embeddings.index = embeddings.index.astype(str).str.lower()
print(embeddings.shape)

(400000, 300)
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30.1.3 Word vector arithmetic

Word embeddings reflect linguistic relationships through geometric relationships in vector space. Embeddings can be
arithmetically combined and manipulated to uncover analogies and semantic similarities. However, these mathematical
relationships are generally approximate and can highlight potential biases inherent in training data, such as implicit gender
biases.

from sklearn.neighbors import NearestNeighbors
analogies = ["man king woman", "paris france tokyo", "big bigger cold"]
for analogy in analogies:

words = analogy.lower().split()
vectors = {word: embeddings.loc[word].values for word in words}
vec = vectors[words[1]] - vectors[words[0]] + vectors[words[2]]

sim = NearestNeighbors(n_neighbors=1).fit(embeddings)
neighbors = sim.kneighbors(vec.reshape((1, -1)), n_neighbors=2,

return_distance=False).flatten().tolist()
neighbors = [k for k in neighbors if embeddings.index[k] not in words]
print(f"{words[1]} - {words[0]} + {words[2]} =",

[embeddings.index[k] for k in neighbors])

king - man + woman = ['queen']
france - paris + tokyo = ['japan']
bigger - big + cold = ['colder']

30.1.4 Data preparation

We construct a custom vocabulary (Vocab) mapping each word to an index, encoding each document as a list of these
indices. The pre-trained GloVe embedding matrix is adapted to include only words present in our corpus-specific vocab-
ulary. Sector labels are converted into numerical values using LabelEncoder. The dataset is then stratified and split into
training and testing subsets to maintain balanced class distributions.

words = Counter()
for nouns in bus.values():

words.update(list(nouns))
vocab = Vocab(words.keys())
print('vocab len:', len(vocab))

vocab len: 85891

labels = []
x_all = []
for permno, nouns in bus.items():

x = vocab.get_index([noun for noun in nouns])
if sum(x):

labels.append(univ.loc[permno, 'sector'])
x_all.append(x)

class_encoder = LabelEncoder().fit(labels) # .inverse_transform()
y_all = class_encoder.transform(labels)

store['dan'] = dict(y_all=y_all, x_all=x_all)
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# retrieve from previously stored
y_all, x_all = store['dan'].values()

# relativize embeddings to words in vocab
vocab.set_embeddings(embeddings)
print(vocab.embeddings.shape)

(85891, 300)

vocab.dump(outdir / f"dan{embeddings_dim}.pkl")

# load vocab
vocab.load(outdir / f"dan{embeddings_dim}.pkl")

30.2 Feedforward neural networks

Neural networks are computational models inspired by the human brain. They are built from layers of simple compu-
tational units that transform input data to output predictions. Deep neural networks alternate between linear layers and
non-linear activations, and can approximate any continuous function (Universal Approximation Theorem).

• Neurons are the basic computational units or nodes of a neural network. Each neuron receives input, processes it
using a weighted sum and a bias term, and then applies an activation function to produce an output, which is then
passed to the neurons in the next layer.

• Activation functions are the nonlinear mathematical functions applied to neurons in a neural network. They
introduce non-linearity into the model, enabling it to learn and represent complex patterns in the data. Common
activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh.

• Input Layer is the first layer of a neural network which directly receives the input data. Each neuron in the input
layer represents one feature of the input.

• Hidden Layers, between the input layer and the output layer, take input from the previous layer of neurons, apply
weights, biases, and activation functions, and pass the output to the next layer.

• Output Layer is the final layer of the neural network and it produces the network’s output. Its neurons represent
the predictions or classifications made by the network. The number of neurons in the output layer corresponds
to the number of output classes or the dimensionality of the output. For classification tasks, softmax or sigmoid
functions are often used in the output layer to provide probability distributions of the class predictions.

Feedforward neural networks (FFNNs) are the simplest form of neural networks, where the data flows in one direction
(a forward pass) and the connections do not form a cycle. A Multilayer Perceptron (MLP) is a type of FFNN which
must has at least one hidden layer: MLPs are composed of an input layer, one or more hidden layers, and an output layer,
with non-linear activation functions applied between layers.
Optimization is the process of adjusting model parameters to align its predictions with true targets.

• Loss function measures how well a neural network’s output matches the true label or target. During training, the
goal is to minimize this loss. Common loss functions L1 (Mean Absolute Error) and L2 (Mean Squared Error) for
regression tasks, and Cross-Entropy for classification tasks.

• Stochastic Gradient Descent (SGD) is an optimization method used to train neural networks by updating param-
eters using gradients from a single (or small batch of) data point(s) at each step. It allows efficient updates even on
massive datasets, with the ability to escape local minima due to its noise.
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• Backpropagation is used for training neural networks by updating the weights of neurons based on the error (loss)
of the network’s predictions: it involves calculating the gradient of the loss function with respect to each weight
by using the chain rule of calculus, and propagating these gradients backward from the output layer to the input
layer.

• Computation Graph is a graphical representation of the sequence of operations used to compute the forward pass
and the backward pass for backpropagation. PyTorch’s modules automatically constructs the computation graph
and computes gradients, hence simplifying the implementation of neural networks.

• Initialization refers to the process of setting the initial values of the weights in a neural network before training
begins. Poor initialization can lead to slow convergence or getting stuck in local minima. Common initialization
methods include Xavier (Glorot) and He initialization

Training deep neural networks involves carefully tuning several key components to ensure effective learning and gener-
alization.

• Learning Rate: If too low, training is slow; too high and loss spikes. A learning rate schedules (e.g. cosine
annealing) is more efficient than a fixed learning rate.

• Adam (Adaptive Moment Estimation) is an optimization algorithm for training neural networks which improves on
stochastic gradient descent and achieves good performance on problems with large, high-dimensional data sets. It
adapts the learning rate for each parameter by computing adaptive learning rates from estimates of first and second
moments of the gradients. AdamW improves the performance of Adam in deep networks by applying weight
decay directly to model parameters separately from gradient-based updates.

• Hyperparameters are parameters not learned by the neural network during training. They are set before training
and control how the network learns. Examples include: Learning rate (size of each update step in gradient descent);
Number of epochs (how many times the model sees the entire dataset); and Model size ( number of layers, units
per layer).

• Batching divides the training data into smaller subsets called batches, rather than training the model on the entire
dataset at once, which can be computationally intensive and inefficient. It also gives speedup compared to training
the network one sample at a time due to more efficient matrix operations.

• Dropout is a regularization technique during training, where a random subset of neurons is “dropped out”or
set to zero at each iteration. This reduces overfitting by ensuring that the model does not rely too heavily on any
particular subset of neurons. Geoffrey Hinton, et al. in their 2012 paper that first introduced dropout. They found
that using a simple method of 50% dropout for all hidden units and 20% dropout for input units achieve improved
results with a range of neural networks on different problem types. It is not used on the output layer.

30.2.1 Deep Averaging Networks

Deep Averaging Network (DAN) is a straightforward feedforward neural network architecture used for text classifica-
tion. It averages embeddings of document words and feeds this representation through multiple hidden layers to predict
class labels. Key properties include:

• Embedding Layer: Uses pre-trained GloVe vectors (frozen or fine-tuned).
• Fully Connected Layers: Transform embeddings into classification scores.
• Nonlinear Activations: Employ ReLU for non-linearity.
• Output Layer: Applies LogSoftmax for multi-class predictions.
• Dropout Layers: Prevent overfitting.
• Xavier Initialization: Stabilizes training.

We investigate training strategies, such as frozen embeddings (fast, prevents overfitting on small data), fine-tuned embed-
dings (task-specific optimization but resource-intensive), and dropout regularization (enhances generalization).
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class DAN(nn.Module):
"""Deep Averaging Network for classification"""
def __init__(self,

vocab_dim,
num_classes,
hidden,
embedding,
freeze=True):

super().__init__()
self.embedding = nn.EmbeddingBag.from_pretrained(embedding)
self.embedding.weight.requires_grad = not freeze
D = nn.Dropout(0.0)
V = nn.Linear(vocab_dim, hidden[0])
nn.init.xavier_uniform_(V.weight)
L = [D, V]
self.drops = [D]
for in_dim, out_dim in zip(hidden, hidden[1:] + [num_classes]):

L.append(nn.ReLU()) # nonlinearity layer
D = nn.Dropout(0.0)
self.drops.append(D)
L.append(D) # dropout layer
W = nn.Linear(in_dim, out_dim) # dense linear layer
nn.init.xavier_uniform_(W.weight)
L.append(W)

self.network = nn.Sequential(*L)
self.classifier = nn.LogSoftmax(dim=-1) # output is (N, C) logits

def set_dropout(self, dropout):
if dropout:

self.drops[0].p = 0.2 # input layer
for i in range(1, len(self.drops)): # hidden layers

self.drops[i].p = 0.5
else:

for i in range(len(self.drops)):
self.drops[i].p = 0.0

def set_freeze(self, freeze):
"""To freeze part of the model (embedding layer)"""
self.embedding.weight.requires_grad = not freeze

def forward(self, x):
"""Return tensor of log probabilities"""
return self.classifier(self.network(self.embedding(x)))

def predict(self, x):
"""Return predicted int class of input tensor vector"""
return torch.argmax(self(x), dim=1).int().tolist()

def save(self, filename):
"""save model state to filename"""
return torch.save(self.state_dict(), filename)

def load(self, filename):
"""load model name from filename"""
self.load_state_dict(torch.load(filename, map_location='cpu'))
return self

Split the data into stratified (i.e. equal class proportions) train and test set
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# Stratified train_test split
num_classes = len(np.unique(labels))
train_index, test_index = train_test_split(

np.arange(len(y_all)), stratify=y_all, random_state=42, test_size=0.2)
print(len(x_all), len(y_all), len(train_index), len(test_index), num_classes)
#Series(labels).value_counts().rename('count').to_frame()
pd.concat([Series(np.array(labels)[train_index]).value_counts().rename('Train'),

Series(np.array(labels)[test_index]).value_counts().rename('Test')],
axis=1)

3474 3474 2779 695 10

Train Test
Hlth 657 164
Other 612 153
HiTec 554 139
Manuf 275 69
Shops 246 62
Durbl 131 33
NoDur 114 28
Enrgy 81 20
Utils 72 18
Telcm 37 9

# Specify model and training parameters
layers = 2
hidden_size = 32
model = DAN(embeddings_dim,

num_classes,
hidden=[hidden_size] * layers,
embedding=torch.FloatTensor(vocab.embeddings)).to(device)

torchinfo.summary(model)

=================================================================
Layer (type:depth-idx) Param #
=================================================================
DAN --
├─EmbeddingBag: 1-1 (25,767,300)
├─Sequential: 1-2 --
│ └─Dropout: 2-1 --
│ └─Linear: 2-2 9,632
│ └─ReLU: 2-3 --
│ └─Dropout: 2-4 --
│ └─Linear: 2-5 1,056
│ └─ReLU: 2-6 --
│ └─Dropout: 2-7 --
│ └─Linear: 2-8 330
├─LogSoftmax: 1-3 --
=================================================================
Total params: 25,778,318
Trainable params: 11,018
Non-trainable params: 25,767,300
=================================================================
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30.2.2 Training

Training employs
• Adam optimizer for adaptive learning rates.
• Negative Log Likelihood (NLLLoss) for multi-class classification.
• Batch training with shuffled data to improve generalization.
• Padding of variable-length word index lists to form uniform-length input tensors.
• Evaluation of both training and test performance per epoch.

batch_sz = 16
lr = 0.001
num_epochs = 50
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
loss_function = nn.NLLLoss()

Helper function to batch and form an input for neural network. Pads each sample to have lengths equal to the max, and
convert to Long tensor type.

def form_input(docs):
"""Pad lists of index lists to form batch of equal lengths"""
lengths = [len(doc) for doc in docs] # length of each doc
max_length = max(1, max(lengths)) # to pad so all lengths equal max
out = [doc + ([0] * (max_length-n)) for doc, n in zip(docs, lengths)]
return torch.LongTensor(out)

accuracy = []
for imodel, (freeze, dropout) in enumerate([(True, False), (True, True), (False,␣

↪True)]):
model.set_freeze(freeze=freeze)
model.set_dropout(dropout=dropout)
accuracy.append(dict())

# Loop over epochs
for epoch in tqdm(range(num_epochs)):

tic = time.time()

# Form batches
random.shuffle(train_index)
batches = [train_index[i:(i+batch_sz)]

for i in range(0, len(train_index), batch_sz)]

# Train in batches
total_loss = 0.0
model.train()
for batch in batches: # train by batch

x = form_input([x_all[idx] for idx in batch]).to(device)
y = torch.LongTensor([y_all[idx] for idx in batch]).to(device)
model.zero_grad() # reset model gradient
log_probs = model(x) # run model
loss = loss_function(log_probs, y) # compute loss
total_loss += float(loss)
loss.backward() # loss step
optimizer.step() # optimizer step

(continues on next page)
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model.eval()
model.save(outdir / f"dan{embeddings_dim}.pt")

if VERBOSE:
print(f"Loss {epoch}/{num_epochs} {(freeze, dropout)}:" +

f"{total_loss:.1f}")

with torch.no_grad(): # evaluate test error
test_pred = [model.predict(form_input([x_all[i]]).to(device))[0]

for i in test_index]
test_gold = [y_all[idx] for idx in test_index]
test_correct = (np.array(test_pred) == np.array(test_gold)).sum()
train_pred = [model.predict(form_input([x_all[i]]).to(device))[0]

for i in train_index]
train_gold = [y_all[idx] for idx in train_index]
train_correct = (np.array(train_pred) == np.array(train_gold)).sum()
accuracy[imodel][epoch] = {

'loss': total_loss,
'train': train_correct/len(train_gold),
'test': test_correct/len(test_gold)}

if VERBOSE:
print(freeze,

dropout,
epoch,
int(time.time() - tic),
optimizer.param_groups[0]['lr'],
train_correct/len(train_gold),
test_correct/len(test_gold))

0%| | 0/50 [00:00<?, ?it/s]

100%|██████████| 50/50 [03:51<00:00, 4.62s/it]
100%|██████████| 50/50 [03:51<00:00, 4.64s/it]
100%|██████████| 50/50 [04:02<00:00, 4.85s/it]

30.2.3 Evaluation

Evaluation includes computing confusion matrices of prediction errors for both training and testing data.

classes = class_encoder.classes_
cf_train = DataFrame(confusion_matrix(train_gold, train_pred),

index=pd.MultiIndex.from_product([['Actual'], classes]),
columns=pd.MultiIndex.from_product([['Predicted'], classes]))

cf_test = DataFrame(confusion_matrix(test_gold, test_pred),
index=pd.MultiIndex.from_product([['Actual'], classes]),
columns=pd.MultiIndex.from_product([['Predicted'], classes]))

for num, (title, cf) in enumerate({'Training': cf_train,
'Test': cf_test}.items()):

fig, ax = plt.subplots(num=1+num, clear=True, figsize=(8, 6))
sns.heatmap(cf, ax=ax, annot= False, fmt='d', cmap='viridis', robust=True,

(continues on next page)
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(continued from previous page)

yticklabels=class_encoder.classes_,
xticklabels=class_encoder.classes_)

ax.set_title(f'DAN Tuned GloVe {title} Set Confusion Matrix')
ax.set_xlabel('Predicted')
ax.set_ylabel('Actual')
ax.yaxis.set_tick_params(labelsize=8, rotation=0)
ax.xaxis.set_tick_params(labelsize=8, rotation=0)
plt.subplots_adjust(left=0.35, bottom=0.25)
plt.tight_layout()
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Initially, embeddings are frozen, then fine-tuned, with dropout introduced last, to highlight generalization improvements
and the challenge of overfitting.

train_accuracy = pd.concat([Series([epoch['train'] for epoch in acc.values()])
for acc in accuracy],

ignore_index=True)
test_accuracy = pd.concat([Series([epoch['test'] for epoch in acc.values()])

for acc in accuracy],
ignore_index=True)

fig, ax = plt.subplots(num=1, clear=True, figsize=(10, 6))
train_accuracy.plot(ax=ax)
test_accuracy.plot(ax=ax)
ax.axvline(len(accuracy[0]), c='grey', alpha=0.5)
ax.axvline(len(accuracy[0]) + len(accuracy[1]), c='brown', alpha=0.5)
ax.set_title(f'Accuracy of DAN with GloVe word embeddings')
ax.set_xlabel('Steps')
ax.set_ylabel('Accuracy')
ax.legend(['Train Set', 'Test Set','Dropout', 'Unfrozen'], loc='upper left')
plt.tight_layout()
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When embeddings are frozen, the model overfits the training data, achieving 100% training accuracy. When dropout
regularization is enabled, the test set accuracy slightly improves.

# Accuracy when frozen embeddings, unfrozen and with dropouts
p = (len(accuracy[0]) - 1, len(accuracy[0]) + len(accuracy[1]) - 1, -1)
print("Accuracy")
DataFrame({'frozen': [train_accuracy.iloc[p[0]], test_accuracy.iloc[p[0]]],

'dropout': [train_accuracy.iloc[p[1]], test_accuracy.iloc[p[1]]],
'unfrozen': [train_accuracy.iloc[p[2]], test_accuracy.iloc[p[2]]]},
index=['train', 'test'])

Accuracy

frozen dropout unfrozen
train 0.844908 0.830155 0.999640
test 0.808633 0.810072 0.841727

References:
Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, Ruslan R. Salakhutdinov, July 2012,“Improving
neural networks by preventing co-adaptation of feature detectors”
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representa-
tion.
Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, 2013,“Efficient Estimation of Word Representations in Vector
Space”
Greg Durrett, 2021-2024, “CS388 Natural Language Processing course materials”, retrieved from https://www.cs.
utexas.edu/~gdurrett/courses/online-course/materials.html
Philipp Krähenbühl, 2020-2024,“AI394T Deep Learning course materials”, retrieved from https://www.philkr.net/
dl_class/material and https://ut.philkr.net/deeplearning/
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Philipp Krähenbühl, 2025, “AI395T Advances in Deep Learning course materials”, retrieved from https://ut.philkr.
net/advances_in_deeplearning/
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CHAPTER

THIRTYONE

CONVOLUTIONAL NEURAL NETWORKS

Life can only be understood backwards; but it must be lived forwards. - Søren Kierkegaard
Convolutional Neural Networks (CNNs) are particularly effective for analyzing structured data like images and se-
quences. By leveraging convolutional layers, CNNs extract hierarchical patterns from raw inputs for complex tasks such
as image classification and time series prediction. We explore the application of Temporal Convolutional Networks
(TCNs) for capturing dependencies in economic time series. The results from modeling multiple time series data such
as CPI components are compared with with classical models like Vector Autoregression (VAR).

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import random
import torch
import torch.nn as nn
import torchinfo
from statsmodels.tsa.api import VAR
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from finds.structured import BusDay
from finds.readers import Alfred
from secret import credentials
# %matplotlib qt
VERBOSE = 0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# train-test split date
split_date = '2021-12-01' # training period up to this date

31.1 Convolutions

Convolutional layers are memory-efficient neural network components designed to process spatially structured data, such
as images. Unlike fully connected (linear) layers, which require vast numbers of parameters, convolutional layers use
localized, shared filters called kernels to capture patterns in input data. Mathematically, a convolution operates as follows:

𝑦𝑖,𝑗,𝑘 =
𝐶1

∑
𝑙=1

ℎ−1
∑
𝑚=0

𝑤−1
∑
𝑛=0

𝑥𝑙,𝑗+𝑚,𝑘+𝑛 ⋅ 𝜔𝑖,𝑙,𝑚,𝑛

Here, 𝜔 is a small kernel (e.g., 3×3) that slides over the image, performing element-wise multiplications and summing the
results.
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31.1.1 Image Filters

Convolutions can be interpreted as applying image processing filters, such as:

• Box filter (averaging): $ 1
9

⎡
⎢
⎢
⎢
⎣

1 1 1

1 1 1

1 1 1

⎤
⎥
⎥
⎥
⎦

$

• Edge detection filter: $
⎡
⎢
⎢
⎢
⎣

−1 −1 −1

0 0 0

1 1 1

⎤
⎥
⎥
⎥
⎦

$

Thus, convolutional layers serve as feature extractors, enabling models to detect edges, textures, and patterns crucial for
tasks like image classification and segmentation.

31.1.2 Receptive field and output size

Convolutions operate on local patches of an image, but by stacking multiple layers, they can expand their receptive field,
allowing the network to capture broader context. Several parameters affect the output size and receptive field:

• Padding: Adds extra pixels around the input to control output size and preserve borders.
• Stride: Controls how far the filter moves across the input, affecting downsampling.
• Dilation: Inserts zeros between kernel elements, expanding the receptive field without increasing parameters.
• Transposed convolution (up-convolution): A learnable upsampling method used to increase output size, often em-

ployed in image segmentation models like U-Net.

31.1.3 Computer vision

CNNs process images based on :
• Recurring Patterns: They detect similar structures that appear across different images.
• Multi-Scale Patterns: They recognize features ranging from small edges to large object shapes.
• Local Invariance: They take advantage of the fact that neighboring pixels often have similar values.
• Semantic Grouping: They group together pixels that belong to the same object based on shared patterns.

They excel at computer vision tasks that involve recognizing structured patterns at multiple levels of abstraction. These
tasks include:

• Image Classification: CNNs are highly effective at identifying what object is present in an image by detecting
low-level patterns (like edges and textures) and gradually building up to high-level semantic features (like object
categories).

• Object Detection: By capturing patterns at various scales and identifying object parts, CNNs can localize and label
multiple objects within an image, even if they vary in size or position.

• Semantic Segmentation: CNNs perform well at assigning a class label to each pixel in an image by grouping
together pixels that form the same object or region.
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AlexNet (2012) was the first deep network to outperform non-deep vision systems, winning the ImageNet challenge
competition and kicking off the Deep Learning revolution. Winning the 2015 competition, ResNet introduced shortcut
“residual connections”for gradients in convolutional architectures. The U-Net (2016) model designed a symmetric

hourglass-shaped architecture dsemantic segmentation, combining down-sampling to capture context with up-sampling
to produce higher output resolution. More recently, Vision Transformer (ViT) models have incorporated transformer
encoders by dividing images into patches, treating each patch as a token.

31.2 Temporal convolutional networks (TCN)

Temporal Convolutional Networks (TCNs) are deep convolutional architectures designed for sequence data. They uti-
lize causal and dilated convolutions along with residual connections to model long-range dependencies efficiently. Unlike
CNNs for images, TCNs handle sequential data such as time series, text, and audio.

• Causal Convolutions: Ensure that each output at time 𝑡 only depends on current and past inputs—preserving the
temporal order:

𝑦𝑡 =
𝑘−1
∑
𝑖=0

𝑤𝑖𝑥𝑡−𝑖

• Dilated Convolutions: Introduce gaps between filter (kernel) elements to capture long-range dependencies without
expanding filter size:

𝑦𝑡 =
𝑘−1
∑
𝑖=0

𝑤𝑖𝑥𝑡−𝑑⋅𝑖

• Residual Connections: Allow gradients to flow efficiently through deep networks, mitigating vanishing gradient
issues:

Output = 𝑥 + 𝐹(𝑥)
Key hyperparameters of TCNs include:

• kernel_size: Size of convolutional filter.
• dropout: Regularization to prevent overfitting.
• blocks: Number of stacked convolutional layers.
• dilation: Grows exponentially (e.g., 1, 2, 4,⋯).
• activation: Non-linear activation, typically ReLU.

class TCN(torch.nn.Module):
class CausalConv1dBlock(torch.nn.Module):

"""Conv1d block with ReLU, skip, dropout, dilation and padding"""

def __init__(self, in_channels, out_channels, kernel_size, dilation,
dropout):

super().__init__()

# print('kernel', kernel_size, 'dilation', dilation)
self.network = torch.nn.Sequential(

torch.nn.ConstantPad1d(((kernel_size-1)*dilation, 0), 0),
torch.nn.Conv1d(in_channels, out_channels, kernel_size,

dilation=dilation),
torch.nn.ReLU(),
torch.nn.ConstantPad1d(((kernel_size-1)*dilation, 0), 0),
torch.nn.Conv1d(out_channels, out_channels, kernel_size,

(continues on next page)
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dilation=dilation),
torch.nn.ReLU(),
torch.nn.Dropout(dropout))

self.skip = lambda x: x
if in_channels != out_channels: # downsample for skip if necessary

self.skip = torch.nn.Conv1d(in_channels, out_channels, 1)

def forward(self, x):
return self.network(x) + self.skip(x) # with skip connection

def __init__(self, n_features, blocks, kernel_size, dropout):
"""TCN model by connecting multiple convolution layers"""
super().__init__()
in_channels = n_features
L = []
for dilation, hidden in enumerate(blocks):

L.append(self.CausalConv1dBlock(in_channels=in_channels,
out_channels=hidden,
kernel_size=kernel_size,
dilation=2**dilation,
dropout=dropout))

in_channels = hidden
self.network = torch.nn.Sequential(*L) if L else lambda x: x
if L:

self.classifier = torch.nn.Conv1d(in_channels, n_features, 1)
else:

self.classifier = torch.nn.Sequential(
torch.nn.ConstantPad1d((kernel_size-1, 0), 0),
torch.nn.Conv1d(in_channels, n_features, kernel_size))

def forward(self, x):
"""input is (B, n_features, L)), linear expects (B, * n_features)"""
return self.classifier(self.network(x))

def save(self, filename):
"""save model state to filename"""
return torch.save(self.state_dict(), filename)

def load(self, filename):
"""load model name from filename"""
self.load_state_dict(torch.load(filename, map_location='cpu'))
return self

31.2.1 Data preparation

The dataset comprises economic time series of CPI components obtained from FRED (Federal Reserve Economic Data).
The data, covering various CPI categories (e.g., food, housing, transportation), is log-transformed and differenced for
stationarity and standardized using StandardScaler to mean 0 and variance 1.

alf = Alfred(api_key=credentials['fred']['api_key'], verbose=-1)
vspans = alf.date_spans('USREC') # recession periods for plots
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# CPI for U.S. City Average: Monthly, Seasonally Adjusted
# https://fred.stlouisfed.org/release/tables?rid=10&eid=34483
# 'CUSR0000SEEA'
series_ids = ['CPIFABSL', 'CPIHOSSL', 'CPIAPPSL', 'CPITRNSL', 'CPIMEDSL', 'CPIOGSSL']
df = pd.concat([alf(s, log=1, diff=1) for s in series_ids], axis=1)\

.dropna()\

.sort_index()
df.index = BusDay.to_datetime(df.index)
df.index.freq = 'M' # set index to datetime type and freq = 'M'

/tmp/ipykernel_1025513/4272565358.py:9: FutureWarning: 'M' is deprecated and will␣
↪be removed in a future version, please use 'ME' instead.
df.index.freq = 'M' # set index to datetime type and freq = 'M'

names = [s[s.find(':')+2:s.find(' in ')] for s in alf.header(series_ids)]
names

['Food and Beverages',
'Housing',
'Apparel',
'Transportation',
'Medical Care',
'Other Goods and Services']

# Standardize the data data
scaler = StandardScaler().fit(df)
scaled_data = DataFrame(scaler.transform(df), columns=names, index=df.index)
scaled_data

Food and Beverages Housing Apparel Transportation \
date
1967-02-28 -1.520716 -1.129800 0.533990 0.266586
1967-03-31 -0.805655 -1.129800 0.124553 -0.267488
1967-04-30 -1.522780 -0.063784 0.529140 0.263339
1967-05-31 -0.805655 -0.067262 0.122142 -0.003280
1967-06-30 1.339539 -1.129800 0.524347 -0.267488
... ... ... ... ...
2024-10-31 -0.252031 0.063171 -2.110286 -0.203592
2024-11-30 -0.053379 -0.037266 -0.114479 0.027062
2024-12-31 -0.180743 -0.209529 -0.015224 0.767819
2025-01-31 0.090331 -0.037301 -3.137367 0.794814
2025-02-28 -0.350673 0.133190 0.934107 -0.605692

Medical Care Other Goods and Services
date
1967-02-28 -0.248585 -1.017195
1967-03-31 -0.253160 -0.284868
1967-04-30 0.988995 -1.017195
1967-05-31 -0.266687 -0.286982
1967-06-30 0.962232 -0.289083
... ... ...
2024-10-31 -0.692758 -0.172972
2024-11-30 -0.702581 0.085335
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2024-12-31 -1.058184 -1.113129
2025-01-31 -0.701262 -1.822241
2025-02-28 -0.563596 0.499572

[697 rows x 6 columns]

ntrain = sum(scaled_data.index < split_date)
M = scaled_data.shape[1] # M is number of time series

31.2.2 Training

The TCN is trained to predict the next time step of the CPI components using past observations. Training involves splitting
data into train and test sets, and using the Adam optimizer to minimize mean squared error (MSE) between predictions
and actual values.

# Model training parameters
seq_len = 8 # length of each input sequence for TCN
batch_size = 16
step_size = 30 # learning rate scheduler step size
lr = 0.01 # initial learning rate
num_lr = 3
num_epochs = step_size * num_lr
results = {} # to collect evaluate results
train_loss = {}
test_loss = {}

# Form input data from training set
n_features = scaled_data.shape[1] # number of input planes
train_exs = [scaled_data.iloc[(i - seq_len):(i + 1)].values

for i in range(seq_len, ntrain)]

# train_ex should have dimension (batch size, channels, sequence length+1)
train_ex = torch.tensor(scaled_data.values[:ntrain].T)[None,:,:].float().to(device)

First, a baseline model comprising just a single 1D Conv layer is trained to predict next time step

model = torch.nn.Conv1d(n_features, n_features, kernel_size=1).to(device)
print(model)
print(torchinfo.summary(model))
modelname = "1D-Convolution"
train_loss[modelname] = []
test_loss[modelname] = []
optimizer = torch.optim.Adam(model.parameters())
loss_function = nn.MSELoss()

Conv1d(6, 6, kernel_size=(1,), stride=(1,))
=================================================================
Layer (type:depth-idx) Param #
=================================================================
Conv1d 42

(continues on next page)
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=================================================================
Total params: 42
Trainable params: 42
Non-trainable params: 0
=================================================================

for epoch in range(num_epochs):
for _ in range(batch_size):

total_loss = 0.0
model.train()
model.zero_grad()
X = train_ex[:,:,:-1]
Y = train_ex[:,:,1:]
output = model(X)
loss = loss_function(output, Y) # calculated over all outputs
total_loss += float(loss)
loss.backward()
optimizer.step()

model.eval()
train_loss[modelname].append(total_loss)

X = torch.tensor(scaled_data.values.T)[None,:,:].float().to(device)
pred = model(X).cpu().detach().numpy()[0,:,:].T
test_loss[modelname] = mean_squared_error(scaled_data.values[ntrain:],

pred[ntrain-1:-1])
results[modelname] = {

'Train Error': mean_squared_error(scaled_data.values[1:ntrain],
pred[:ntrain-1]),

'Test Error': mean_squared_error(scaled_data.values[ntrain:],
pred[ntrain-1:-1])

}

Save the fitted weights to compare with classical Vector Autoregression (VAR) models.

conv1d_weights = np.vstack([model.bias.cpu().detach().numpy(),
model.weight.cpu().detach().numpy()[:,:,0].T])

Next, we train various TCN configurations, utilizing StepLR learning rate scheduler and shuffled batches, while varying:
• number of layers (blocks): 1, 2
• different kernel sizes: 1, 2
• dropout rates: 0, 0.5.

# [1,1,0], [1,2,0], [2,1,0], [2,2,0], [1,1,0.5], [1,2,0.5], [2,1,0.5], [2,2,0.5]
for block, kernel_size, dropout in [[1,1,0], [1,2,0], [2,1,0], [2,2,0], [2,2,0.3]]:

modelname = f"TCN(b={block},k={kernel_size},d={dropout:.1f})"
train_loss[modelname] = []
test_loss[modelname] = []

# Set model, optimizer, loss function and learning rate scheduler
model = TCN(n_features=n_features,

blocks=[n_features]*block,
kernel_size=kernel_size,
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dropout=dropout).to(device)
print()
print('******', modelname, '******')
print(model)
print(torchinfo.summary(model))

optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(

optimizer, gamma=0.1, step_size=step_size
)
loss_function = nn.MSELoss()

# Run training loop over num_epochs with batch_size
num_epochs = step_size * num_lr
for epoch in range(num_epochs):

# shuffle indxs into batches
idxs = np.arange(len(train_exs))
random.shuffle(idxs)
batches = [idxs[i:min(len(idxs), i + batch_size)]

for i in range(0, len(idxs), batch_size)]

# train by batch
total_loss = 0.0
model.train()
for batch in batches:

# input has shape (batch_size, n_features, seq_len)
# Creating a tensor from a list of numpy.ndarrays is extremely slow.
nparray = np.array([[train_exs[idx][seq] for idx in batch]

for seq in range(seq_len+1)])
train_ex = torch.tensor(nparray).permute(1, 2, 0).float().to(device)
model.zero_grad()
X = train_ex[:,:,:-1]
Y = train_ex[:,:,1:]
output = model(X)
loss = loss_function(output, Y) # calculated over all outputs
total_loss += float(loss) / len(batches)
loss.backward()
optimizer.step()
scheduler.step()

model.eval()
train_loss[modelname].append(total_loss)
if VERBOSE and (epoch % (step_size//2)) == 0:

print(epoch, num_epochs, optimizer.param_groups[0]['lr'], total_loss)

# Compute MSE of one-period ahead forecast error in train and test sets
X = torch.tensor(scaled_data.values.T)[None,:,:].float().to(device)
pred = model(X).cpu().detach().numpy()[0,:,:].T
test_loss[modelname].append(mean_squared_error(scaled_data.values[ntrain:],

pred[ntrain-1:-1]))

results[modelname] = {
'Train Error': mean_squared_error(scaled_data.values[1:ntrain],

pred[:ntrain-1]),
'Test Error': mean_squared_error(scaled_data.values[ntrain:],

(continues on next page)
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pred[ntrain-1:-1])
}
#print('Blocks:', block, 'Kernel size:', kernel_size, results[modelname])
#print(pd.concat(res, axis=1).T)

****** TCN(b=1,k=1,d=0.0) ******
TCN(
(network): Sequential(

(0): CausalConv1dBlock(
(network): Sequential(
(0): ConstantPad1d(padding=(0, 0), value=0)
(1): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
(2): ReLU()
(3): ConstantPad1d(padding=(0, 0), value=0)
(4): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
(5): ReLU()
(6): Dropout(p=0, inplace=False)

)
)

)
(classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))

)
=================================================================
Layer (type:depth-idx) Param #
=================================================================
TCN --
├─Sequential: 1-1 --
│ └─CausalConv1dBlock: 2-1 --
│ │ └─Sequential: 3-1 84
├─Conv1d: 1-2 42
=================================================================
Total params: 126
Trainable params: 126
Non-trainable params: 0
=================================================================

****** TCN(b=1,k=2,d=0.0) ******
TCN(

(network): Sequential(
(0): CausalConv1dBlock(
(network): Sequential(

(0): ConstantPad1d(padding=(1, 0), value=0)
(1): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
(2): ReLU()
(3): ConstantPad1d(padding=(1, 0), value=0)
(4): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
(5): ReLU()
(6): Dropout(p=0, inplace=False)

)
)

)
(classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))

)
=================================================================
Layer (type:depth-idx) Param #
=================================================================
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TCN --
├─Sequential: 1-1 --
│ └─CausalConv1dBlock: 2-1 --
│ │ └─Sequential: 3-1 156
├─Conv1d: 1-2 42
=================================================================
Total params: 198
Trainable params: 198
Non-trainable params: 0
=================================================================

****** TCN(b=2,k=1,d=0.0) ******
TCN(

(network): Sequential(
(0): CausalConv1dBlock(
(network): Sequential(

(0): ConstantPad1d(padding=(0, 0), value=0)
(1): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
(2): ReLU()
(3): ConstantPad1d(padding=(0, 0), value=0)
(4): Conv1d(6, 6, kernel_size=(1,), stride=(1,))
(5): ReLU()
(6): Dropout(p=0, inplace=False)

)
)
(1): CausalConv1dBlock(
(network): Sequential(

(0): ConstantPad1d(padding=(0, 0), value=0)
(1): Conv1d(6, 6, kernel_size=(1,), stride=(1,), dilation=(2,))
(2): ReLU()
(3): ConstantPad1d(padding=(0, 0), value=0)
(4): Conv1d(6, 6, kernel_size=(1,), stride=(1,), dilation=(2,))
(5): ReLU()
(6): Dropout(p=0, inplace=False)

)
)

)
(classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))

)
=================================================================
Layer (type:depth-idx) Param #
=================================================================
TCN --
├─Sequential: 1-1 --
│ └─CausalConv1dBlock: 2-1 --
│ │ └─Sequential: 3-1 84
│ └─CausalConv1dBlock: 2-2 --
│ │ └─Sequential: 3-2 84
├─Conv1d: 1-2 42
=================================================================
Total params: 210
Trainable params: 210
Non-trainable params: 0
=================================================================

****** TCN(b=2,k=2,d=0.0) ******

(continues on next page)
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TCN(
(network): Sequential(

(0): CausalConv1dBlock(
(network): Sequential(
(0): ConstantPad1d(padding=(1, 0), value=0)
(1): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
(2): ReLU()
(3): ConstantPad1d(padding=(1, 0), value=0)
(4): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
(5): ReLU()
(6): Dropout(p=0, inplace=False)

)
)
(1): CausalConv1dBlock(
(network): Sequential(
(0): ConstantPad1d(padding=(2, 0), value=0)
(1): Conv1d(6, 6, kernel_size=(2,), stride=(1,), dilation=(2,))
(2): ReLU()
(3): ConstantPad1d(padding=(2, 0), value=0)
(4): Conv1d(6, 6, kernel_size=(2,), stride=(1,), dilation=(2,))
(5): ReLU()
(6): Dropout(p=0, inplace=False)

)
)

)
(classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))

)
=================================================================
Layer (type:depth-idx) Param #
=================================================================
TCN --
├─Sequential: 1-1 --
│ └─CausalConv1dBlock: 2-1 --
│ │ └─Sequential: 3-1 156
│ └─CausalConv1dBlock: 2-2 --
│ │ └─Sequential: 3-2 156
├─Conv1d: 1-2 42
=================================================================
Total params: 354
Trainable params: 354
Non-trainable params: 0
=================================================================

****** TCN(b=2,k=2,d=0.3) ******
TCN(

(network): Sequential(
(0): CausalConv1dBlock(
(network): Sequential(

(0): ConstantPad1d(padding=(1, 0), value=0)
(1): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
(2): ReLU()
(3): ConstantPad1d(padding=(1, 0), value=0)
(4): Conv1d(6, 6, kernel_size=(2,), stride=(1,))
(5): ReLU()
(6): Dropout(p=0.3, inplace=False)

)
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)
(1): CausalConv1dBlock(
(network): Sequential(
(0): ConstantPad1d(padding=(2, 0), value=0)
(1): Conv1d(6, 6, kernel_size=(2,), stride=(1,), dilation=(2,))
(2): ReLU()
(3): ConstantPad1d(padding=(2, 0), value=0)
(4): Conv1d(6, 6, kernel_size=(2,), stride=(1,), dilation=(2,))
(5): ReLU()
(6): Dropout(p=0.3, inplace=False)

)
)

)
(classifier): Conv1d(6, 6, kernel_size=(1,), stride=(1,))

)
=================================================================
Layer (type:depth-idx) Param #
=================================================================
TCN --
├─Sequential: 1-1 --
│ └─CausalConv1dBlock: 2-1 --
│ │ └─Sequential: 3-1 156
│ └─CausalConv1dBlock: 2-2 --
│ │ └─Sequential: 3-2 156
├─Conv1d: 1-2 42
=================================================================
Total params: 354
Trainable params: 354
Non-trainable params: 0
=================================================================

31.2.3 Evaluation

Training and test errors (MSE) from one-step-ahead forecasting are collected across models. Additionally, training and
testing loss curves are plotted to analyze convergence and overfitting tendencies of different configurations.

fig, ax = plt.subplots(figsize=(10, 6))
DataFrame(train_loss).plot(ax=ax)
ax.set_ylim(top=1.0)
ax.set_title(f"TCN Models Training Loss by Epoch")
ax.set_xlabel('Epoch')
ax.legend(title='Model Size (blocks, kernel)')
plt.tight_layout()
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fig, ax = plt.subplots(figsize=(10, 6))
DataFrame(test_loss).plot(ax=ax)
ax.set_ylim(top=1.0)
ax.set_title(f"TCN Models Test Loss by Epoch")
ax.set_xlabel('Epoch')
ax.legend(title='Model Size (blocks, kernel)')
plt.tight_layout()
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print('Sorted by Test Error')
DataFrame(results).T.sort_values('Test Error')

Sorted by Test Error

Train Error Test Error
1D-Convolution 0.736907 0.753075
TCN(b=2,k=2,d=0.0) 0.786185 0.788295
TCN(b=2,k=1,d=0.0) 0.788457 0.792443
TCN(b=1,k=2,d=0.0) 0.775419 0.809113
TCN(b=1,k=1,d=0.0) 0.832984 0.845615
TCN(b=2,k=2,d=0.3) 0.790285 0.956657

31.3 Vector Autoregression

Vector Autoregression (VAR) is a statistical time series model that captures linear interdependencies across multiple
time series.

var_model = VAR(scaled_data.iloc[:ntrain], freq='ME')

31.3.1 Lag order

The lagged coefficients estimated from the Vector Autoregression help predict multi-step future outcomes. The optimal
lag order (p) can be selected using infomation criteria such as AIC, BIC, HQIC, or FPE.

# up to max number p of VAR(p) lags
maxlags = 6

print("Optimal number of VAR(p) lags selected by various IC")
DataFrame({ic: var_model.fit(maxlags=maxlags, ic=ic).k_ar

for ic in ['aic', 'fpe', 'hqic', 'bic']},
index=['optimal p:'])\
.rename_axis(columns='IC:')

Optimal number of VAR(p) lags selected by various IC

IC: aic fpe hqic bic
optimal p: 3 3 2 2

# Fit VAR(p) models
var_models = {p: var_model.fit(p) for p in range(1, maxlags+1)} # fit models

# Show model summary for VAR(1)
print(var_models[1].summary())
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Summary of Regression Results
==================================
Model: VAR
Method: OLS
Date: Sat, 15, Mar, 2025
Time: 04:58:13
--------------------------------------------------------------------
No. of Equations: 6.00000 BIC: -1.67401
Nobs: 657.000 HQIC: -1.84967
Log likelihood: -4907.30 FPE: 0.140733
AIC: -1.96089 Det(Omega_mle): 0.132063
--------------------------------------------------------------------
Results for equation Food and Beverages
==============================================================================================

coefficient std. error t-stat ␣
↪ prob

-----------------------------------------------------------------------------------
↪-----------

const -0.000685 0.035822 -0.019 ␣
↪ 0.985

L1.Food and Beverages 0.309512 0.037889 8.169 ␣
↪ 0.000

L1.Housing 0.212849 0.043404 4.904 ␣
↪ 0.000

L1.Apparel -0.002978 0.038364 -0.078 ␣
↪ 0.938

L1.Transportation -0.006074 0.038082 -0.159 ␣
↪ 0.873

L1.Medical Care -0.007239 0.042771 -0.169 ␣
↪ 0.866

L1.Other Goods and Services 0.010009 0.037379 0.268 ␣
↪ 0.789

==============================================================================================

Results for equation Housing
==============================================================================================

coefficient std. error t-stat ␣
↪ prob

-----------------------------------------------------------------------------------
↪-----------

const -0.016126 0.027926 -0.577 ␣
↪ 0.564

L1.Food and Beverages 0.163358 0.029537 5.531 ␣
↪ 0.000

L1.Housing 0.494378 0.033836 14.611 ␣
↪ 0.000

L1.Apparel 0.038625 0.029907 1.291 ␣
↪ 0.197

L1.Transportation 0.074603 0.029687 2.513 ␣
↪ 0.012

L1.Medical Care 0.211794 0.033342 6.352 ␣
↪ 0.000

L1.Other Goods and Services -0.022649 0.029139 -0.777 ␣
↪ 0.437

==============================================================================================

Results for equation Apparel
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==============================================================================================
coefficient std. error t-stat ␣

↪ prob
-----------------------------------------------------------------------------------

↪-----------
const -0.004137 0.036418 -0.114 ␣

↪ 0.910
L1.Food and Beverages 0.032202 0.038519 0.836 ␣

↪ 0.403
L1.Housing 0.108030 0.044125 2.448 ␣

↪ 0.014
L1.Apparel 0.137027 0.039002 3.513 ␣

↪ 0.000
L1.Transportation 0.187727 0.038715 4.849 ␣

↪ 0.000
L1.Medical Care 0.116103 0.043482 2.670 ␣

↪ 0.008
L1.Other Goods and Services 0.007090 0.038000 0.187 ␣

↪ 0.852
==============================================================================================

Results for equation Transportation
==============================================================================================

coefficient std. error t-stat ␣
↪ prob

-----------------------------------------------------------------------------------
↪-----------

const 0.001347 0.034599 0.039 ␣
↪ 0.969

L1.Food and Beverages 0.021051 0.036595 0.575 ␣
↪ 0.565

L1.Housing 0.070974 0.041921 1.693 ␣
↪ 0.090

L1.Apparel 0.032549 0.037054 0.878 ␣
↪ 0.380

L1.Transportation 0.425719 0.036782 11.574 ␣
↪ 0.000

L1.Medical Care 0.050082 0.041310 1.212 ␣
↪ 0.225

L1.Other Goods and Services -0.035207 0.036103 -0.975 ␣
↪ 0.329

==============================================================================================

Results for equation Medical Care
==============================================================================================

coefficient std. error t-stat ␣
↪ prob

-----------------------------------------------------------------------------------
↪-----------

const 0.033077 0.029060 1.138 ␣
↪ 0.255

L1.Food and Beverages 0.024634 0.030737 0.801 ␣
↪ 0.423

L1.Housing 0.232885 0.035211 6.614 ␣
↪ 0.000

L1.Apparel 0.044440 0.031122 1.428 ␣
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↪ 0.153
L1.Transportation 0.005782 0.030893 0.187 ␣

↪ 0.852
L1.Medical Care 0.431033 0.034697 12.423 ␣

↪ 0.000
L1.Other Goods and Services 0.114476 0.030323 3.775 ␣

↪ 0.000
==============================================================================================

Results for equation Other Goods and Services
==============================================================================================

coefficient std. error t-stat ␣
↪ prob

-----------------------------------------------------------------------------------
↪-----------

const -0.009490 0.037496 -0.253 ␣
↪ 0.800

L1.Food and Beverages 0.026291 0.039660 0.663 ␣
↪ 0.507

L1.Housing 0.076689 0.045432 1.688 ␣
↪ 0.091

L1.Apparel 0.094758 0.040157 2.360 ␣
↪ 0.018

L1.Transportation 0.018115 0.039861 0.454 ␣
↪ 0.649

L1.Medical Care 0.260564 0.044769 5.820 ␣
↪ 0.000

L1.Other Goods and Services 0.009675 0.039126 0.247 ␣
↪ 0.805

==============================================================================================

Correlation matrix of residuals
Food and Beverages Housing Apparel Transportation␣

↪ Medical Care Other Goods and Services
Food and Beverages 1.000000 0.147358 0.085820 -0.000563␣

↪ 0.014162 -0.010059
Housing 0.147358 1.000000 0.093314 0.132546␣

↪ 0.094535 0.019075
Apparel 0.085820 0.093314 1.000000 0.126653␣

↪ 0.037713 0.025531
Transportation -0.000563 0.132546 0.126653 1.000000␣

↪ -0.054420 -0.012936
Medical Care 0.014162 0.094535 0.037713 -0.054420␣

↪ 1.000000 0.153701
Other Goods and Services -0.010059 0.019075 0.025531 -0.012936␣

↪ 0.153701 1.000000
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31.3.2 Var(1) and Conv1d

The coefficients learned by VAR(1) models are compared to the learned weights of Conv1D layers, illustrating how
classical linear models relate to convolution-based neural approaches in time series forecasting.

print('Coefficients of VAR(1) model')
DataFrame(np.vstack([var_models[1].intercept, var_models[1].coefs[0].T]),

columns=var_models[1].names, index=var_models[1].exog_names).round(4)

Coefficients of VAR(1) model

Food and Beverages Housing Apparel \
const -0.0007 -0.0161 -0.0041
L1.Food and Beverages 0.3095 0.1634 0.0322
L1.Housing 0.2128 0.4944 0.1080
L1.Apparel -0.0030 0.0386 0.1370
L1.Transportation -0.0061 0.0746 0.1877
L1.Medical Care -0.0072 0.2118 0.1161
L1.Other Goods and Services 0.0100 -0.0226 0.0071

Transportation Medical Care \
const 0.0013 0.0331
L1.Food and Beverages 0.0211 0.0246
L1.Housing 0.0710 0.2329
L1.Apparel 0.0325 0.0444
L1.Transportation 0.4257 0.0058
L1.Medical Care 0.0501 0.4310
L1.Other Goods and Services -0.0352 0.1145

Other Goods and Services
const -0.0095
L1.Food and Beverages 0.0263
L1.Housing 0.0767
L1.Apparel 0.0948
L1.Transportation 0.0181
L1.Medical Care 0.2606
L1.Other Goods and Services 0.0097

print('Tensor weights of Conv1D')
DataFrame(conv1d_weights, columns=names, index=['bias'] + names).round(4)

Tensor weights of Conv1D

Food and Beverages Housing Apparel \
bias -0.0011 -0.0167 -0.0041
Food and Beverages 0.3154 0.1677 0.0322
Housing 0.1997 0.4808 0.1080
Apparel -0.0014 0.0396 0.1370
Transportation -0.0037 0.0773 0.1877
Medical Care -0.0018 0.2197 0.1160
Other Goods and Services 0.0105 -0.0227 0.0072

Transportation Medical Care \
bias 0.0014 0.0330

(continues on next page)
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Food and Beverages 0.0210 0.0253
Housing 0.0713 0.2302
Apparel 0.0326 0.0447
Transportation 0.4256 0.0063
Medical Care 0.0493 0.4323
Other Goods and Services -0.0349 0.1146

Other Goods and Services
bias -0.0086
Food and Beverages 0.0233
Housing 0.0861
Apparel 0.0936
Transportation 0.0166
Medical Care 0.2514
Other Goods and Services 0.0115

31.3.3 Evaluation

The forecasting accuracy of VAR models, measured by train and test MSE, is compared across different lag orders.

# Calculate forecast errors for each observation and model
test_errors = {p: list() for p in range(maxlags+1)}
train_errors = {p: list() for p in range(maxlags+1)}

for i in range(maxlags, len(scaled_data)-1):
data = scaled_data.iloc[i].values

# test or train sample
var_errors = train_errors if i < ntrain else test_errors

# error of unconditional mean forecast
var_errors[0].append(mean_squared_error(data, scaled_data.iloc[:ntrain].mean()))

# accumulate to error of VAR(p) model forecasts
for p in range(1, maxlags+1):

pred = var_models[p].forecast(scaled_data.iloc[:i].values, 1)
var_errors[p].append(mean_squared_error(data.reshape(1, -1), pred))

# Collect mean test and train set errors of all VAR(p) models
print('VAR models train and test set errors')
out = DataFrame({'Train Error': {f"VAR({p})" : np.mean(errors)

for p, errors in train_errors.items()},
'Test Error': {f"VAR({p})" : np.mean(errors)

for p, errors in test_errors.items()}})
out

VAR models train and test set errors

Train Error Test Error
VAR(0) 1.009966 0.936672
VAR(1) 0.739496 0.757588

(continues on next page)
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VAR(2) 0.696483 0.754189
VAR(3) 0.680224 0.739767
VAR(4) 0.671862 0.750212
VAR(5) 0.657304 0.739927
VAR(6) 0.647010 0.744329

Error plots are generated to determine the optimal lag order for best predictive performance.

# Plot Errors
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
ax.plot(np.arange(len(out)), out['Train Error'], color="C0")
ax.plot(np.arange(len(out)), out['Test Error'], color="C1")
ax.plot([], [], color="C2") # dummy for legend labels
argmin = out['Test Error'].argmin()
ax.plot(argmin, out.iloc[argmin]['Test Error'], 'o', color="C2")
ax.set_title(f'Var(p) Forecast Errors')
ax.set_xlabel('lag order of VAR(p)')
ax.legend(['Train Error', 'Test Error',

f'Min Test Error = {out.iloc[argmin]["Test Error"]:.4f}'],
loc='upper right')

plt.tight_layout()

References:
Philipp Krähenbühl, 2020-2024,“AI394T Deep Learning course materials”, retrieved from https://www.philkr.net/
dl_class/material and https://ut.philkr.net/deeplearning/
Philipp Krähenbühl, 2025, “AI395T Advances in Deep Learning course materials”, retrieved from https://ut.philkr.
net/advances_in_deeplearning/
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CHAPTER

THIRTYTWO

RECURRENT NEURAL NETWORKS

History doesn’t repeat itself, but it often rhymes - Mark Twain
We analyze the application of Recurrent Neural Networks (RNNs) for forecasting multivariate time series data, focus-
ing on U.S. Consumer Price Index (CPI) components. RNN models are trained under different configurations to compare
their predictive performance and investigate the behavior of their hidden states. Additionally, we examine how the tem-
poral patterns learned by RNNs relate to the latent factors uncovered by Dynamic Factor Models (DFMs), a classical
econometric approach for modeling co-movements in time series data.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
import gc
import statsmodels.api as sm
import torch
import torch.nn as nn
import torchinfo
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from tqdm import tqdm
from finds.structured import BusDay
from finds.readers import Alfred
from secret import credentials
import warnings

# %matplotlib qt
VERBOSE = 0
if not VERBOSE: # Suppress FutureWarning messages

warnings.simplefilter(action='ignore', category=FutureWarning)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# train-test split date
split_date = '2021-12-01'
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32.1 Sequence modeling

Recurrent Neural Networks (RNNs) are powerful models for learning from sequential data, enabling tasks such as
language modeling, translation, and time series forecasting by maintaining a memory of past inpformation. Unlike feed-
forward networks, RNNs process sequences one step at a time, using a hidden state that carries information across time
steps to capture temporal dependencies. Variants like Elman and Jordan networks provide basic feedback mechanisms,
while more advanced models such as LSTMs and GRUs address training challenges like vanishing gradients. However,
RNNs remain inherently sequential, making them slower to train and less parallelizable compared to modern architectures
like convolutional or transformer models.

32.1.1 Recurrent units

RNNs retain temporal information through recurrent connections, applying the same computation repeatedly at each time
step while maintaining a hidden state (memory). The hidden state ℎ𝑡 is updated based on the current input 𝑥𝑡 and the
previous hidden state ℎ𝑡−1:

ℎ𝑡 = 𝑓ℎ(𝑥𝑡, ℎ𝑡−1, 𝜃ℎ)

ℎ𝑡 = 𝑓ℎ(𝑥𝑡, ℎ𝑡−1, 𝜃ℎ)
where the initial hidden state ℎ0 is typically initialized to zero, 𝜃ℎ are learnable parameters, and 𝑓ℎ is the recurrent function
(e.g., tanh, ReLU, GRU, LSTM).
Training RNNs is more complex than training feedforward neural networks due to dependencies across time steps.
RNNs are unfolded through time, applying the same parameters (shared weights) at each step, and trained using standard
backpropogation, known as Backpropagation Through Time (BPTT) when applied over multiple time steps. This
makes training computationally expensive, and prone to vanishing gradients (gradients shrink) and exploding gradients
(gradients blow up), which respectively limit the model’s ability to learn long-range dependencies and cause unstable
updates.

32.1.2 LSTM networks

Long Short-Term Memory (LSTM) networks mitigate the vanishing gradient problem by introducing a cell state and
multiple gating mechanisms that regulate information flow. Key components include:

• Cell state 𝑐𝑡: A“memory”that runs through the network, modified by gates.
• Hidden state ℎ𝑡: Output of the LSTM at each time step.
• Input 𝑥𝑡: Current input at time 𝑡.
• Previous state ℎ𝑡−1, 𝑐𝑡−1: From the last time step.
• Gates:

– Forget gate 𝑓𝑡: Decides what information to discard from the cell state.
– Input gate 𝑖𝑡: Controls how much new information flows into the cell state.
– Output gate 𝑜𝑡: Determines what part of the cell state should be output as ℎ𝑡.

A cell update combines the past cell state and new input to update 𝑐𝑡. The ℎ𝑡 output is updated from 𝑐𝑡 and previous its
previous state ℎ𝑡−1.
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32.1.3 GRU networks

Gated Recurrent Unit (GRU) networks are a simplified version of LSTMs that combine cell state and hidden state into
a single vector, using fewer gates:

• Update gate (similar to combined forget/input gate): Controls what part of the past state to keep.
• Reset gate: Controls how to combine new input with the previous memory.
• Single hidden state ℎ𝑡: Serves as both memory and output.

GRUs are computationally more efficient than LSTM, and perform comparably on many tasks.

32.2 Elman network

An Elman network is a basic RNN where recurrence occurs within the hidden layer:

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1)

Multiple Elman layers can be stacked to capture longer-term dependencies and more complex temporal patterns. For
every element in the input sequence, each layer computes the following function:

ℎ𝑡 = tanh(𝑥𝑡 𝑊𝑇
𝑖ℎ + 𝑏𝑖ℎ + ℎ𝑡−1 𝑊𝑇

ℎℎ + 𝑏ℎℎ )

where
• ℎ𝑡 is the hidden state at time 𝑡,
• 𝑥𝑡 is the input at time 𝑡,
• ℎ𝑡−1 is the hidden state of the previous layer at time 𝑡 − 1 or the initial hidden state at time 0, and
• 𝑏’s and 𝑊’s are the learnable bias and weights

We implement a single-layer Elman RNN using PyTorch’s standard RNN module to process sequential data, with
Dropout regularization to reduce overfitting.

class Elman(nn.Module):
def __init__(self, n_features, hidden_size, dropout, num_layers=1):

super().__init__()
self.hidden_size = hidden_size
self.output_size = n_features
self.num_layers = num_layers
self.dropout = nn.Dropout(dropout)
self.rnn = nn.RNN(input_size=n_features,

hidden_size=hidden_size,
num_layers=num_layers)

self.o2o = nn.Linear(hidden_size, n_features)

def forward(self, x, hidden):
x = self.dropout(x) # drop out input layer
output, hidden = self.rnn(x, hidden)
output = self.o2o(output[-1:, :])
return output, hidden

def init_hidden(self):
return torch.zeros(self.num_layers, self.hidden_size)
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32.2.1 Data preparation

CPI time series data for multiple components (e.g., food, housing) are collected from FRED. The data are log-transformed
and differenced to ensure stationarity, then standardized (using StandardScaler) to have mean 0 and variance 1. The
time series data are split into training followed by testing sets using a defined cutoff date.

# Max number of hidden states (RNN) or factors (Dynamic Model)
K = 2

# number of out-of-sample forecasts to predict
nforecast = 3

# Load time series from FRED
alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
vspans = alf.date_spans('USREC') # recession periods

# CPI for U.S. City Average: Monthly, Seasonally Adjusted
# https://fred.stlouisfed.org/release/tables?rid=10&eid=34483
# 'CUSR0000SEEA'
series_ids = ['CPIFABSL', 'CPIHOSSL', 'CPIAPPSL', 'CPITRNSL', 'CPIMEDSL', 'CPIOGSSL']
df = pd.concat([alf(s, log=1, diff=1) for s in series_ids], axis=1)\

.dropna()\

.sort_index()
df.index = BusDay.to_datetime(df.index)
df.index.freq = 'ME' # set index to datetime type and freq = 'M'

names = [s[s.find(':')+2:s.find(' in ')] for s in alf.header(series_ids)]
names

['Food and Beverages',
'Housing',
'Apparel',
'Transportation',
'Medical Care',
'Other Goods and Services']

# Standardize the data data
scaler = StandardScaler().fit(df)
scaled_data = DataFrame(scaler.transform(df), columns=names, index=df.index)
scaled_data

Food and Beverages Housing Apparel Transportation \
date
1967-02-28 -1.520716 -1.129800 0.533990 0.266586
1967-03-31 -0.805655 -1.129800 0.124553 -0.267488
1967-04-30 -1.522780 -0.063784 0.529140 0.263339
1967-05-31 -0.805655 -0.067262 0.122142 -0.003280
1967-06-30 1.339539 -1.129800 0.524347 -0.267488
... ... ... ... ...
2024-10-31 -0.252031 0.063171 -2.110286 -0.203592
2024-11-30 -0.053379 -0.037266 -0.114479 0.027062
2024-12-31 -0.180743 -0.209529 -0.015224 0.767819

(continues on next page)
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2025-01-31 0.090331 -0.037301 -3.137367 0.794814
2025-02-28 -0.350673 0.133190 0.934107 -0.605692

Medical Care Other Goods and Services
date
1967-02-28 -0.248585 -1.017195
1967-03-31 -0.253160 -0.284868
1967-04-30 0.988995 -1.017195
1967-05-31 -0.266687 -0.286982
1967-06-30 0.962232 -0.289083
... ... ...
2024-10-31 -0.692758 -0.172972
2024-11-30 -0.702581 0.085335
2024-12-31 -1.058184 -1.113129
2025-01-31 -0.701262 -1.822241
2025-02-28 -0.563596 0.499572

[697 rows x 6 columns]

# Create input data for RNN
ntrain = sum(scaled_data.index < split_date)
ntest = len(scaled_data.index) - ntrain - 1
n_features = scaled_data.shape[1]
data = scaled_data.values

32.2.2 Training

RNN models with different hidden sizes (𝐾 = 1, 2) are trained using an Adam optimizer and a StepLR learning rate
scheduler, which reduces the learning rate during training for better convergence.

# Train model
num_layers = 1
dropout = 0.0
lr = 0.01 # starting learning rate
step_size = 100 # number of steps per learning rate
num_lr = 3 # number of learning rate periods
num_epochs = step_size * num_lr

train_loss = {}
hidden_states = {}
for hidden_size in range(1, K+1):

torch.manual_seed(0)
model = Elman(n_features=n_features,

hidden_size=hidden_size,
dropout=dropout,
num_layers=num_layers).to(device)

print(model)
torchinfo.summary(model)

# Set optimizer and learning rate scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,

step_size=step_size,

(continues on next page)
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gamma=0.1)
loss_function = nn.MSELoss()
train_loss[hidden_size] = []
for epoch in tqdm(range(num_epochs)): # Run training loop per epoch

model.train()
model.zero_grad()
hidden = model.init_hidden().to(device)
loss = torch.FloatTensor([0]).to(device)
for i in range(ntrain):

x = torch.FloatTensor(data[[i], :]).to(device)
y = torch.FloatTensor(data[[i+1], :]).to(device)
output, hidden = model(x, hidden)
l = loss_function(output, y)
loss += l

loss.backward()
optimizer.step()
scheduler.step()

model.eval()
train_loss[hidden_size].append(float(loss)/ntrain)
#if VERBOSE:
# print(epoch, train_loss[hidden_size][-1], scheduler.get_last_lr())

# collect predictions and hidden states, and compute mse
with torch.no_grad(): # reduce memory consumption for eval

loss_function = nn.MSELoss()
hidden = model.init_hidden().to(device)
hidden_states[hidden_size] = [hidden.cpu().numpy().flatten()]
y_pred = [np.zeros(n_features)]
for i in range(ntrain + ntest):

x = torch.FloatTensor(data[[i], :]).to(device)
y = torch.FloatTensor(data[[i+1], :]).to(device)
output, hidden = model(x, hidden)
hidden_states[hidden_size].append(hidden.cpu().numpy().flatten())
y_pred.append(output.cpu().numpy().flatten())

# k-step ahead forecast at end of period
for i in range(nforecast):

x = y
y, hidden = model(x, hidden)
y_pred.append(y.cpu().numpy().flatten())

print(f"train MSE (hidden={hidden_size}):",
mean_squared_error(data[1:ntrain+1, :], y_pred[1:ntrain+1]))

print(f"test MSE (hidden={hidden_size}):",
mean_squared_error(data[ntrain+1:ntrain+ntest+1, :],

y_pred[ntrain+1:ntrain+ntest+1]))

Elman(
(dropout): Dropout(p=0.0, inplace=False)
(rnn): RNN(6, 1)
(o2o): Linear(in_features=1, out_features=6, bias=True)

)

100%|██████████| 300/300 [01:42<00:00, 2.93it/s]
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train MSE (hidden=1): 0.8150888820868842
test MSE (hidden=1): 0.7845472493024133
Elman(
(dropout): Dropout(p=0.0, inplace=False)
(rnn): RNN(6, 2)
(o2o): Linear(in_features=2, out_features=6, bias=True)

)

100%|██████████| 300/300 [01:38<00:00, 3.04it/s]

train MSE (hidden=2): 0.757587880335504
test MSE (hidden=2): 0.7211778265327311

32.2.3 Evaluation

The training and testing MSE for each RNN model are calculated for performance comparison. Training loss curves
across epochs are plotted to assess convergence, and out-of-sample forecasts for 3 time steps ahead, after the end of the
sample period, are visualized.

fig, ax = plt.subplots(figsize=(10, 6))
DataFrame(train_loss).plot(ax=ax)
ax.set_title(f"Elman Models Training Loss by Epoch")
ax.set_xlabel('Epoch')
ax.legend(title='Model Size')
plt.tight_layout()
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# Show forecasts of last model
pred = scaler.inverse_transform(y_pred) # undo standardization
t = [scaled_data.index[-1] + pd.DateOffset(months=i) for i in range(nforecast + 1)]
forecasts = DataFrame(np.vstack((np.zeros(n_features), pred[-nforecast:])),

index=pd.PeriodIndex(t, freq='M'), columns=scaled_data.columns)
print("Monthly forecasts from RNN Model")
forecasts

Monthly forecasts from RNN Model

Food and Beverages Housing Apparel Transportation Medical Care \
2025-02 0.000000 0.000000 0.000000 0.000000 0.000000
2025-03 0.002727 0.002439 0.000359 0.001873 0.003255
2025-04 0.002429 0.002219 0.000304 0.001803 0.003247
2025-05 0.002214 0.002026 0.000220 0.001723 0.003180

Other Goods and Services
2025-02 0.000000
2025-03 0.003144
2025-04 0.003125
2025-05 0.003065

# Plot forecasts
fig, ax = plt.subplots(figsize=(10, 6))
forecasts.cumsum().plot(ax=ax, marker='*')
ax.set_title(f"Elman Model (with {K} hidden states) cumulative forecasts")
plt.tight_layout()
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32.2.4 Hidden states

Hidden states from the last training epoch are collected, and their cumulative sums are plotted to illustrate how the internal
memory of the Elman RNN evolves over time.

# Plot RNN hidden states values
for k, hidden in hidden_states.items():

fig, ax = plt.subplots(figsize=(10, 6))
hidden = DataFrame(np.array(hidden), index=scaled_data.index,

columns=[f"{i+1}" for i in range(k)])
hidden.cumsum().plot(ax=ax, style='-')
for a,b in vspans:

if a >= min(hidden.index):
ax.axvspan(a, min(b, max(hidden.index)), alpha=0.4)

ax.legend(title='Hidden State')
ax.set_title(f"Elman Model (size {k}): hidden states cumulative values")
plt.tight_layout()
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32.3 Dynamic Factor Models

This statistical model captures co-movements in time series using latent factors:
The basic model is:

𝑦𝑡 = Λ𝑓𝑡 + 𝜖𝑡

𝑓𝑡 = 𝐴1𝑓𝑡−1 + ⋯ + 𝐴2𝑓𝑡−2 + 𝑢𝑡

where:
• 𝑦𝑡 is observed data at time t
• 𝜖𝑡 is idiosyncratic disturbance at time t
• 𝑓𝑡 is the unobserved factor at time t
• 𝑢𝑡 ∼ 𝑁(0, 𝑄) is the factor disturbance at time t
• Λ is referred to as the matrix of factor loadings
• 𝐴𝑖 are matrices of autoregression coefficients

We use DynamicFactorMQ from statsmodels, which employs an Expectation-Maximization (EM) algorithm
for fitting, and so can accommodate a large number of observed variables. This can handle any collection of blocks of
factors, including different factor autoregression orders, and AR(1) processes for idiosyncratic disturbances. The model
allows incorporate monthly/quarterly mixed frequency data, making it suitable for nowcasting.

• https://www.statsmodels.org/dev/examples/notebooks/generated/statespace_dfm_coincident.html
We fit models with varying lag orders (p) to find an optimal autoregressive structure.
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# Fit ar lags with best BIC
dynamic_factors = dict()
models = {}
K = 2
for ar in range(1, 5):

mod = sm.tsa.DynamicFactorMQ(endog=scaled_data,
factors=1, # num factor blocks
factor_multiplicities=K, # num factors in block
factor_orders=ar, # order of factor VAR
idiosyncratic_ar1=True)

fitted = mod.fit(disp=20 * bool(VERBOSE),
maxiter=1000,
full_output=True)

models[ar] = dict(bic=fitted.bic,
mse=fitted.mse,
summary=fitted.summary().tables[0],
predict=fitted.predict(),
forecast=fitted.forecast(nforecast),
params=len(fitted.param_names))

dynamic_factors[ar] = DataFrame(fitted.factors.filtered)
dynamic_factors[ar].columns = np.arange(1, K+1)
print(DataFrame(dict(bic=fitted.bic,

mse=fitted.mse,
parameters=len(fitted.param_names)),

index=[ar]))
del fitted
del mod
gc.collect()

bic mse parameters
1 10478.491794 4.275815 31

bic mse parameters
2 10499.374971 4.272672 35

bic mse parameters
3 10506.462669 4.243688 39

bic mse parameters
4 10517.472768 4.231597 43

32.3.1 Lag order

Bayesian Information Criterion (BIC) is used to select the optimal lag order

# dynamic model with best bic
best, model = min(models.items(), key=lambda item: item[1]['bic'])
mse = mean_squared_error(scaled_data, model['predict'])
print('Best lag:', best, ' bic:', model['bic'])
print(model['summary'])

Best lag: 1 bic: 10478.49179401509
Dynamic Factor Results

============================================================================================
Dep. Variable: "Food and Beverages", and 5 more No. Observations: ␣

↪ 697

(continues on next page)
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Model: Dynamic Factor Model Log Likelihood ␣
↪-5137.771

+ 2 factors in 1 blocks AIC ␣
↪10337.541

+ AR(1) idiosyncratic BIC ␣
↪10478.492

Date: Sat, 15 Mar 2025 HQIC ␣
↪10392.038

Time: 05:18:21 EM Iterations ␣
↪ 182

Sample: 02-28-1967
- 02-28-2025

Covariance Type: Not computed
============================================================================================

32.3.2 Evaluation

The models are evaluated based on train/test MSE. The 3-step-ahead forecasts, as of the end of the sample period, are
also plotted.

# Show prediction errors
print('Dynamic Factor Model Train MSE:',

mean_squared_error(scaled_data.iloc[1:ntrain+1],
model['predict'].iloc[1:ntrain+1]))

print('Dynamic Factor Model Test MSE:',
mean_squared_error(scaled_data.iloc[ntrain+1:],

model['predict'].iloc[ntrain+1:]))
print('Number of parameters:', model['params'])

Dynamic Factor Model Train MSE: 0.7131933696697343
Dynamic Factor Model Test MSE: 0.7405157478690289
Number of parameters: 31

model_out = scaler.inverse_transform(model['forecast'].iloc[:nforecast])
model_out = DataFrame(np.vstack((np.zeros(n_features), model_out)),

index=pd.PeriodIndex(t, freq='M'), columns=scaled_data.columns)
print("Monthly forecasts from Dynamic Factor Model")
model_out

Monthly forecasts from Dynamic Factor Model

Food and Beverages Housing Apparel Transportation Medical Care \
2025-02 0.000000 0.000000 0.000000 0.000000 0.000000
2025-03 0.002508 0.002980 0.001488 0.000141 0.002883
2025-04 0.002666 0.002714 0.000947 0.001794 0.002942
2025-05 0.002714 0.002649 0.000894 0.002477 0.002987

Other Goods and Services
2025-02 0.000000
2025-03 0.002253
2025-04 0.002512
2025-05 0.002546
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# Plot forecasts
fig, ax = plt.subplots(figsize=(10, 6))
model_out.cumsum().plot(ax=ax, marker='*')
ax.set_title(f"Dynamic Factor Model cumulative forecasts")
plt.tight_layout()

32.3.3 Dynamic factors

Dynamic factors represent unobserved common drivers of the time series, and their cumulative sums highlight underlying
trends or cycles. In macroeconomic datasets, these latent factors often correspond to broad economic forces or business
cycles. These cumulative factors are plotted to visualize their temporal patterns.

# Plot dynamic factors
dynamic_factor = dynamic_factors[best]
fig, ax = plt.subplots(figsize=(10, 6))
dynamic_factor.cumsum().plot(ax=ax, style='-')
ax.legend(title='Dynamic Factor')
for a,b in vspans:

if a >= min(dynamic_factor.index):
ax.axvspan(a, min(b, max(dynamic_factor.index)), alpha=0.4)

plt.suptitle(f"Cumulative Dynamic Factors Values")
plt.tight_layout()
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The hidden states from the simple Elman RNN are compared to DFM latent factors, and with R-squared (R²) statistics
reported to measure the degree of overlap.

# RNN hidden state values explained by dynamic factors
rsq = dict()
for k, hidden_state in enumerate(np.array(hidden_states[2]).T):

rsq[k+1] = sm.OLS(hidden_state, sm.add_constant(dynamic_factor).fillna(0))\
.fit()

print('Proportion of variance of RNN hidden state values '
'explained by dynamic factors:',
np.mean([r.rsquared for r in rsq.values()]).round(4))

DataFrame({k: [r.rsquared, r.f_pvalue] for k, r in rsq.items()},
index=['R-square', 'pvalue'])\
.rename_axis(columns='Hidden State')\
.round(4)

Proportion of variance of RNN hidden state values explained by dynamic factors: 0.
↪7471

Hidden State 1 2
R-square 0.7494 0.7447
pvalue 0.0000 0.0000

References:
Philipp Krähenbühl, 2020-2024,“AI394T Deep Learning course materials”, retrieved from https://www.philkr.net/
dl_class/material
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CHAPTER

THIRTYTHREE

REINFORCEMENT LEARNING

I have not failed. I’ve just found 10,000 ways that won’t work - Thomas A. Edison
We combine financial modeling with reinforcement learning (RL) to evaluate static and adaptive retirement spending
strategies. Traditional approaches, such as the 4% rule, assume fixed withdrawal rates and asset allocations, that may not
adapt well to changing market conditions. Leveraging historical economic data, simulations, and deep learning techniques,
we apply RL to learn dynamic strategies which adjust asset allocations based on financial conditions, minimizing the risk
of retirees outliving their savings.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from pandas import DataFrame, Series
import pandas as pd
import numpy as np
import math
import random
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import numpy as np
import gymnasium as gym
from gymnasium import spaces
from stable_baselines3 import DQN
from typing import List, Tuple
from finds.database import SQL
from finds.structured import BusDay
from finds.utils import Store, subplots, set_xticks
import torch
from secret import credentials, paths
store = Store(paths['scratch'])
#pd.set_option('display.max_rows', None)
VERBOSE = 0
gym.logger.min_level = gym.logger.ERROR # Suppress warnings

# open connections
sql = SQL(**credentials['sql'], verbose=VERBOSE)
bd = BusDay(sql, verbose=VERBOSE)
outdir = paths['scratch'] / 'RL'
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33.1 Retirement spending policy

A retirement spending policy guides how retirees withdraw funds from their savings to sustain their lifestyle while
minimizing the risk of depleting assets. The key elements include the withdrawal strategy, which defines the initial
withdrawal rate (e.g., the 4% rule) and its adjustments over time (e.g., inflation-linked or dynamic withdrawals); asset
allocation, which balances stocks, bonds, and other investments to optimize growth and risk; time horizon, representing
the expected duration of withdrawals, typically spanning 20-30 years or more; and market conditions, including interest
rates, inflation, and asset returns, which influence portfolio sustainability. Effective policies seek to balance spending
needs, longevity risk, and market fluctuations to minimize the risk of outliving their assets.
Benz, Ptak and Rekenthaler (2022) found that “For retirees who seek a fixed real withdrawal from their portfolio in
retirement, a starting withdrawal rate of 3.8% is safe in Morningstar’s model over a 30-year time horizon, assuming a
90% success rate (defined here as a 90% likelihood of not running out of funds) and a balanced portfolio.”

33.1.1 SBBI data

The Stocks, Bonds, Bills, and Inflation (SBBI) dataset provides historical monthly, quarterly, and yearly total returns
and yields for major U.S. asset classes, including large-cap stocks, small-cap stocks, corporate bonds, government bonds,
and inflation. This data, which dates back to 1926, is commonly used for retirement portfolio simulations.

# Read sbbi data
sbbi_file = paths['data'] / 'SBBI/stocks-bonds-bills-and-inflation-data.xlsx'
df = pd.read_excel(sbbi_file,

sheet_name=0,
skiprows=list(range(9)) + [10],
header=0,
usecols='A,B,G,P',
index_col=0)

columns_official = df.columns.tolist()
df.columns = ['stocks', 'bonds', 'inflation']
df.index = bd.to_date(df.index)
df

stocks bonds inflation
19260131 0.000000 0.013756 0.000000
19260228 -0.038462 0.006313 0.000000
19260331 -0.057471 0.004129 -0.005587
19260430 0.025305 0.007589 0.005618
19260531 0.017918 0.001412 -0.005587
... ... ... ...
20240831 0.024257 NaN 0.000814
20240930 0.021357 0.100107 0.001604
20241031 -0.009069 -0.046509 0.001151
20241130 0.058701 0.068325 -0.000542
20241231 -0.023838 -0.044901 0.000355

[1188 rows x 3 columns]
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33.1.2 Scenario generator

To create realistic economic simulations, we extract different 30-year retirement periods from the 100-year span of
historical data. These scenarios help model how varying economic conditions impact retirement outcomes.

# Scenario generator: episode, backtest a sample path
class Episodes:

def __init__(self, data: DataFrame, T: int, num_loops: int = 1):
self.data = np.log(1 + data)
self.high = list(self.data.max() + self.data.std()*.1)
self.low = list(self.data.min() - self.data.std()*.1)
self.T = T # number of years per episode
self.M = (T + 1) * 12 # number of monthly observations per episode
self.num_loops = num_loops

def __len__(self):
return (len(self.data) - self.M + 1) * self.num_loops

def __iter__(self):
rows = []
for i in range(self.num_loops):

rows += np.random.permutation(len(self.data) - self.M + 1).tolist()
for t in rows:

df = self.data.iloc[t:(t + self.M), :].reset_index(drop=True)
yield df.groupby(df.index // 12)\

.sum()\

.set_index(self.data.index[(t + 11):(t + self.M):12])

Summary statistics of all 30-year episodes:

T = 30
means = {s: [] for s in df.columns}
episodes = Episodes(df, T=T)
for episode in iter(episodes):

for s in df.columns:
means[s].append(episode[s].mean())

print('30-year sample periods:')
DataFrame({s: np.mean(x) for s, x in means.items()} | {'N': len(episodes)},

index=['annualized mean'])

30-year sample periods:

stocks bonds inflation N
annualized mean 0.105185 0.05502 0.03604 817

We assess the effectiveness of a fixed annual withdrawal strategy by analyzing its performance under different conditions.
Key inputs for such strategies include: ortfolio asset allocation (e.g., stock/bond mix); market environment (e.g., past
returns and inflation rates); and expected duration of withdrawals.
For example, a typical rule of a fixed 4% withdrawal rate (adjusted for inflation) for a 50% stock / 50% bond portfolio can
be evaluated across rolling 30-year periods to estimate the likelihood that a retiree’s savings will last the full duration.
The Basemodel is a simple buy-and-hold strategy where funds are invested in a fixed allocation at the start of retirement
and are not rebalanced, even if allocation weights drift over time. Withdrawals remain fixed as a percentage of initial
wealth, adjusted for inflation.
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class BaseModel:
"""Buy-and-hold allocation model where assets weights drift from initial"""

name = 'Buy-and-Hold'
def __init__(self, T: int, W: List[float]):

assert W[-1] > 0 # spend must be positive
self.initial = dict(T=int(T), W=np.array(W))

def reset(self, market_changes: List[float]):
self.T = int(self.initial["T"])
self.W = np.array(self.initial["W"])
return list(market_changes)

def step(self, action: List, market_changes: List) -> Tuple:
assert self.T > 0
self.W[:-1] = np.array(action).flatten() * self.W[:-1].sum() # rebalance
self.W = self.W * np.exp(np.array(market_changes)) # price changes
self.T = self.T - 1
wealth = sum(self.W[:-1]) # remaining wealth
if wealth < self.W[-1]:

truncated = True # is not enough for spend
self.W[:-1] = 0.0

else:
truncated = False # is sufficient for spend
spend = self.W[-1] * self.W[:-1] / wealth # allocate and deduct spending
self.W[:-1] = self.W[:-1] - spend

terminated = not self.T or truncated
return terminated, truncated

def predict(self, obs: List) -> List:
"""Allow initial asset allocation to drift"""
return self.W[:-1] / sum(self.W[:-1])

The Fixed model adds annual rebalancing, ensuring that the portfolio maintains a constant stock/bond allocation
throughout retirement.

class FixedModel(BaseModel):
"""Allocation model where assets are rebalanced to fixed weights"""

name = 'Annual-Rebalance'
def predict(self, obs: List) -> List:

"""Action to rebalance asset allocation to fixed initial weight"""
return self.initial['W'][:-1] / sum(self.initial['W'][:-1])

To assess the risk of retirees running out of money, we simulate rolling 30-year periods and track shortfalls. Our starting
scenarios assume a 50/50 stock-bond allocation and a 4% inflation-adjusted withdrawal rule. The probability of shortfall
measures the fraction of simulations where assets were depleted before reaching 30 years.

alloc = 50 # 50-50 stocks/bonds initial allocation
rule = 4.0 # 4 percent spending policy
model = BaseModel(T=T, W=[alloc, 100-alloc, rule])

result = {}
for n, episode in enumerate(iter(episodes)):

obs = model.reset(episode.iloc[0])

(continues on next page)
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(continued from previous page)

for year in episode.index[1:]:
obs = episode.loc[year].to_list()
action = model.predict(obs)
terminated, truncated = model.step(action, obs)
if truncated:

break
result[episode.index[0]] = model.T

prob = np.mean(np.array(list(result.values())) != 0)
print('Number of 30-year scenerios:', len(episodes))
print('Probability of shortfall: ', round(prob, 4))

Number of 30-year scenerios: 817
Probability of shortfall: 0.0747

The graph illustrates the years in which retirees ran out of money, with bar heights representing the number of years their
assets fell short of the goal. Additionally, plots of compounded asset returns and inflation highlight how periods of lower
investment returns and higher inflation increased the risk of shortfall.

fails = Series(result).sort_index().rename('shortfall_years')
market = df.reindex(fails.index).cumsum()
fails.index = fails.index.astype(str).str.slice(0,4)
market.index = fails.index
ax = market.plot()
ax.set_title(f"Retirement Shortfalls: {alloc}/{100-alloc} allocation, {rule}% spend")
ax.set_ylabel('cumulative returns of asset classes and CPI')
ax.set_xlabel('Year of retirement')
ax.legend(loc='upper left')
##
bx = ax.twinx()
fails.plot(kind='bar', width=1.0, color='C4', ax=bx)
bx.set_ylabel('Number of shortfall years')
bx.legend(['shortfall years'], loc='lower right')
set_xticks(ax=ax, nskip=23, rotation=90)

plt.tight_layout()
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33.1.3 Historical simulations

Next, we expanded the analysis to include a broader range of asset allocations (0% to 100% in stocks) and withdrawal
rates (3% to 5%) to evaluate their impact on portfolio longevity.

# range of spending policy rules
rules = np.arange(3, 5.1, 0.1)

# simulate fixed and initial equity allocations from 0 to 100%
allocs = np.arange(0, 105, 5)

TAIL = 0.95
tail = int(100 * (1 - TAIL))
def compute_shortfall(x, q):

"""Compute average number of years of shortfall given tail probability level, q"""
x = sorted(x) # each simulation's results (years of shortfall)
q = int(q * len(x))
return x[q], np.mean(x[q:])

for num, Model in enumerate([BaseModel, FixedModel]):
fail = DataFrame(columns=rules, index=allocs, dtype=float)
shortfall = DataFrame(columns=rules, index=allocs, dtype=float)
quantile = DataFrame(columns=rules, index=allocs, dtype=float)

(continues on next page)
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(continued from previous page)

for alloc in tqdm(allocs):
for rule in rules:

# Evaluate for this allocation strategy and spending policy
model = Model(T=T, W=[alloc, 100-alloc, rule])
result = []
for n, episode in enumerate(iter(episodes)): # for every 30-year sample

obs = model.reset(episode.iloc[0])
for year in episode.index[1:]:

obs = episode.loc[year].to_list()
action = model.predict(obs)
terminated, truncated = model.step(action, obs)
if truncated:

break
result.append(model.T)

fail.loc[alloc, rule] = np.mean(np.array(result) != 0)
quantile.loc[alloc, rule], shortfall.loc[alloc, rule] = compute_

↪shortfall(result, TAIL)
store[model.name] = dict(fail=fail, shortfall=shortfall)

100%|██████████| 21/21 [07:33<00:00, 21.57s/it]
100%|██████████| 21/21 [07:32<00:00, 21.57s/it]

We compare the proportion of scenarios where the Base buy-and-hold strategy performed better or worse than the
Fixed strategy with annual rebalancing.

#for model in [BaseModel, FixedModel]:
# fail = store[model.name]['fail']
# print(f"Probability of Shortfall: with {model.name} allocation")
# print(fail.iloc[::-1, :].round(2).to_string())
print('Buy-and-hold outperformed Annual-Rebalance:',

round(np.mean(store[FixedModel.name]['fail'] > store[BaseModel.name]['fail']),␣
↪3))

print('Annual-Rebalance outperformed Buy-and-Hold:',
round(np.mean(store[FixedModel.name]['fail'] < store[BaseModel.name]['fail']),␣

↪3))

Buy-and-hold outperformed Annual-Rebalance: 0.374
Annual-Rebalance outperformed Buy-and-Hold: 0.297

33.1.4 Risk of spending shortfall

To measure the likelihood and severity of depleting funds before the end of retirement, we use two key metrics:
• Probability of shortfall: The percentage of simulations where retirees outlived their assets.
• Expected shortfall period: This metric quantifies the severity of shortfalls by estimating how many years retirees

would be without funds in the worst-case scenarios (e.g., the worst 5% of simulations).

for model in [BaseModel, FixedModel]:
fail = store[model.name]['fail'].iloc[::-1, :]
plt.figure(figsize=(8, 6))

(continues on next page)
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(continued from previous page)

sns.heatmap(fail, annot=True, cbar=True, fmt='.2f', annot_kws=dict(fontsize='xx-
↪small'),

xticklabels=np.round(fail.columns, 1), yticklabels=fail.index)

# Labels and title
plt.xlabel("Spending Rule")
plt.ylabel("Allocation to Stocks")
plt.title(f"Probability of Shortfall: with {model.name} strategy")
plt.show()
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Probability of shortfall:
Contour lines in the probability of shortfall graph show the combinations of asset allocation and withdrawal rates that
result in the same likelihood of running out of money.

def plot_contour(Z, levels, title, label):
"""Helper to plot contour lines at given levels"""
X, Y = np.meshgrid(rules, allocs)
fig, ax = plt.subplots(figsize=(10, 6))
cp = ax.contour(X, Y, Z, levels=levels, cmap='cool')
ax.set_title(f"{title} with {model.name} strategy")
ax.set_xticks(rules)
ax.set_xlabel('spending policy (%)')
ax.set_yticks(allocs)
ax.set_ylabel(f'{model.name} equity allocation (%)')
ax.grid(which='both')
fig.colorbar(cp, label=label)
plt.tight_layout()

for model in [BaseModel, FixedModel]:
fail = store[model.name]['fail']
plot_contour(fail, levels=[0.0, .01,.05,.1,.15],

(continues on next page)
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(continued from previous page)

title="Probability of Shortfall",
label="countour levels: probability of shortfall")

Expected shortfall period:
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This metric estimates the potential duration of financial shortfalls, which helps retirees plan for worst-case scenarios.

#for model in [BaseModel, FixedModel]:
# shortfall = store[model.name]['shortfall']
# print(f"Expected Years of Shortfall in {tail}% tail: (model.name) allocation")
# print(shortfall.iloc[::-1, :].round(1).to_string())
print('Buy-and-hold outperformed Annual-Rebalance:',

round(np.mean(store[FixedModel.name]['shortfall'] > store[BaseModel.name][
↪'shortfall']), 3))

print('Annual-Rebalance outperformed Buy-and-Hold:',
round(np.mean(store[FixedModel.name]['shortfall'] < store[BaseModel.name][

↪'shortfall']), 3))

Buy-and-hold outperformed Annual-Rebalance: 0.059
Annual-Rebalance outperformed Buy-and-Hold: 0.61

for model in [BaseModel, FixedModel]:
shortfall = store[model.name]['shortfall']
plot_contour(shortfall, levels=[0, 1, 2, 3, 4, 6, 8, 10],

title=f"Expected Years of Shortfall in {tail}% tail",
label="contour levels: number of years")
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33.2 Deep reinforcement learning

Unlike static asset allocation models, reinforcement learning (RL) can learn optimal strategies that adapt to market
conditions and remaining wealth.

33.2.1 Gymnasium environment

The Gymnasium (formerly OpenAI Gym) library provides a Pythonic interface for reinforcement learning problems.
Stable Baselines3 (SB3) implements a set of RL algorithms in PyTorchf OpenAI’s Gym library.
https://gymnasium.farama.org/index.html
https://github.com/DLR-RM/stable-baselines3

33.2.2 State space

During training, the RL model learns to predict optimal spending actions based on the current financial state. The state
space includes:

• current wealth and allocation,
• recent market (equity and bonds) and inflation changes
• spending amount
• years since retirement
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33.2.3 Actions

Exploitation: Selects the action with the highest expected value, based on past training data (e.g., Q-learning, SARSA).
Exploration: Tries alternative strategies to discover better long-term policies.

33.2.4 Reward function

• If assets are depleted, the model applies a severe penalty of −100 times the square of remaining years: −(100𝑇 2)

• If wealth is positive, the reward is proportional to the wealth-to-spending coverage ratio: √ 𝑊
𝑆(𝑇+1)

FAIL = 100 # failure reward factor
class CustomEnv(gym.Env):

"""Custom gymnasium environment, using Episodes scenario generator"""
def __init__(self, model: BaseModel, episodes: Episodes):

super().__init__()
self.model = model # for stepping through a 30-year episode
self.episodes = episodes # for generating a sample 30-year episode
self.iterator = iter(self.episodes) # iterator to reset a 30-year sample
T = self.model.initial['T']
W = self.model.initial['W']
low = np.array([0] + episodes.low + [0]*len(W))
high = np.array([T] + episodes.high + [T]*len(W))
self.observation_space = spaces.Box(low=low, high=high)
self.action_space = spaces.Discrete(21)
#self.action_space = spaces.Box(low=0.0, high=1.0)

def reset(self, seed=0):
super().reset(seed=seed)

# generate a fresh 30-year episode
self.episode = next(self.iterator, None)
if self.episode is None:

self.iterator = iter(self.episodes)
self.episode = next(self.iterator)

self.n = 0

# return initial observations
deltas = self.model.reset(self.episode.iloc[self.n])
obs = [self.model.T] + list(deltas) + self.model.W.tolist()
return obs, {}

def step(self, action):
S = self.model.W[-1] # amount to spend at t-1
W = np.sum(self.model.W[:-1]) # wealth at t-1
T = self.model.T # year remaining till termination

# Convert action to asset allocation weights
action = action * 0.05
action = np.array([action, 1-action])

# Grab next market move at time t
self.n = self.n + 1
deltas = self.episode.iloc[self.n].tolist()

(continues on next page)
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# Apply rebalance wealth and market move (t=1)
terminated, truncated = self.model.step(action, deltas)

# Calculate reward (t=1)
reward = -(T*T*FAIL) if truncated else math.sqrt(W / (S*T))

# Return as next observation
obs = [T] + list(deltas) + self.model.W.tolist()
return obs, reward, terminated, truncated, {}

Helpers to evaluate trained model

def evaluate(env, model, episodes):
"""Return success likelihood, shortfalls and asset allocation actions"""
result = []
actions = {t: [] for t in range(episodes.T + 1)} # to store predicted actions
for n, episode in enumerate(iter(episodes)):

obs, info = env.reset()
terminated = False
while not terminated:

action, _states = model.predict(np.array(obs))
actions[env.model.T].append(float(action))
obs, rewards, terminated, truncated, info = env.step(action)

result.append(env.model.T if truncated else 0)
#print(n, truncated, action, rewards, env.model.W)
return np.mean(np.array(result) != 0), *compute_shortfall(result, TAIL), actions

33.2.5 Deep Q-Network (DQN)

We use Deep Q-Networks (DQN) from Stable Baselines3, which is designed for discrete action spaces. This
approach employs deep reinforcement learning to maximize wealth longevity while adapting asset allocation strategies
dynamically.

TIMESTEPS = int(5e5)
initial_alloc = 50
fail, actions, shortfall, quantile = {}, {}, {}, {}
for rule in tqdm(rules): # train a model for each spending rule

# define and train model for this spending rule
name = str(round(rule, 1))
W = [initial_alloc, 100-initial_alloc, rule]
env = CustomEnv(model=BaseModel(T=T, W=W), episodes=episodes)
clf = DQN('MlpPolicy', env, verbose=VERBOSE)
clf.learn(total_timesteps=TIMESTEPS)
clf.save(f"{outdir}/{name}")

# evaluate model
test_clf = clf.load(f"{outdir}/{name}", env=None)
fail[name], quantile[name], shortfall[name], actions[name] =\

evaluate(env, test_clf, episodes)

store['dqn'] = dict(fail=fail, shortfall=shortfall,
quantile=quantile, actions=actions)

564 Chapter 33. Reinforcement Learning



Financial Data Science Python Notebooks

100%|██████████| 21/21 [2:00:19<00:00, 343.79s/it]

print(DataFrame(fail, index=["Deep RL"]).round(2).to_string())

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 ␣
↪4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

Deep RL 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.01 0.02 0.02 0.03 0.06 0.06 0.
↪08 0.1 0.11 0.14 0.12 0.16 0.21 0.19

# Plot average allocations over time
labels = list(np.arange(T) + 1)
fig, axs = subplots(nrows=2, ncols=2, figsize=(10, 8), sharex=True, sharey=True)
plt.suptitle('Deep RL average equity allocations, by year after retirement')
for ax, rule in zip(axs, ["3.5", "4.0", "4.5", "5.0"]):

y = [[a*5 for a in actions[rule][i]] for i in labels]
mean = [np.mean(a) for a in y]
median = [np.median(a) for a in y]
ax.plot(labels, mean, label='mean')
ax.plot(labels, median, label='median')
ax.set_title(f"Spending policy: {rule}%")
ax.set_xlabel('years after retirement')
ax.set_ylabel('equity allocation (%)')
ax.legend()

plt.tight_layout()
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Richard S. Sutton and Andrew G. Barto, 2018,“Reinforcement Learning: An Introduction”, MIT Press.
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higher bond yields, lower equity valuations, and inflation affect starting safe withdrawal rates”, Morningstar Portfolio
and Planning Research.
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LANGUAGE MODELING

Attention is all you need - Vaswani et al
Transformers, built on the attention mechanism, are neural network models designed to process variable-length se-
quences and capture complex dependencies in language without relying on recurrence or convolution. By leveraging
self-attention, multi-head attention, and positional encodings, transformers can model long-range relationships between
words for tasks like text generation, translation, and summarization. We apply transformer-based models to language
modeling of Federal Reserve meeting minutes, introducing perplexity as a key evaluation metric and exploring decoding
strategies such as nucleus sampling to generate coherent and diverse text.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
from typing import Callable, List
import math
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import bisect
import matplotlib.pyplot as plt
from nltk.tokenize import wordpunct_tokenize as tokenize
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Dataset, DataLoader
import torchinfo
from tqdm import tqdm
from finds.database.mongodb import MongoDB
from finds.unstructured import Unstructured, Vocab
from secret import credentials, paths
# %matplotlib qt
VERBOSE = 0

mongodb = MongoDB(**credentials['mongodb'], verbose=VERBOSE)
fomc = Unstructured(mongodb, 'FOMC')
outdir = paths['scratch']
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Device:', device)

Device: cuda
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34.1 Transformers

Transformers are a neural network architecture built entirely on attention mechanisms, designed to process variable-length
sequential data without relying on recurrence (as in RNNs) or convolution (as in CNNs). They are especially effective for
natural language processing (NLP) tasks such as language modeling, translation, and text generation.
Traditional models like RNNs and CNNs face limitations when processing language data. RNNs are sequential, mak-
ing them slow to train and difficult to parallelize, and they suffer from vanishing gradients. CNNs, while powerful for
structured patterns like images, are less suited for variable-length, syntactically complex language sequences.
Because language involves variable lengths, hierarchical syntax, and long-range dependencies, attention allows the model
to focus on relevant parts of the input when generating outputs. To introduce positional information, since Transformers
lack an inherent sense of sequential order, positional encodings to provide information about work positions are added
to the token embeddings. In autoregressive tasks, causal masks are applied to ensure that each token only attends to
previous tokens, not future ones.

34.1.1 Attention mechanism

Attention is a mechanism that enables models to reason about a set of elements and their relationships, dynamically
weighting the importance of different parts of the input.
Attention is essentially a set operator designed to reason about a set of elements and their relationships, dynamically
weighting the importance of different parts of the input when producing each element of the output sequence. Unlike
RNNs, attention does not require sequential processing, making it highly parallelizable and efficient for sequence model-
ing.
The inputs to the attention operator are called:

• Queries (Q): What we’re looking for.
• Keys (K): Labels that help identify relevant content.
• Values (V): The actual content or information to aggregate.

In self-attention, these inputs are all derived from the same input, allowing each input element to attend to every other
element. Each input token is represented by three vectors: query, key, and value. Attention scores are computed as a scaled
dot product between queries and keys, and these scores weight the values to produce a contextualized representation:

Attention(𝑄, 𝐾, 𝑉 ) = Softmax (𝑄𝐾⊤
√

𝐶
)𝑉

Learnable weight matrices 𝑊𝑄,𝑊𝐾,𝑊𝑉 enable queries, keys, and values, respectively, to adapt to different input pat-
terns:

Attention(𝑋; 𝑊𝑄,𝑊𝐾,𝑊𝑉 ) = Attention(𝑋𝑊𝑄, 𝑋𝑊𝐾, 𝑋𝑊𝑉 )

where 𝑋 is the embedded input.
Cross-attention is a mechanism used in encoder-decoder transformer architectures for tasks such as machine translation,
where queries (Q) come from one source (typically the decoder) and keys (K) and values (V) come from another source
(typically the encoder output)..
Multi-head attention runs multiple independent attention layers (heads) in parallel. Each head learns different ways of
attending to the input, capturing different aspects of the relationships. Heads are concatenated and linearly projected back
to the output dimension.
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34.1.2 Masked attention

Auto-regressive prediction is used for sequence generation tasks such as text completion and translation. To ensure
predictions are causal (based only on past and current information), causal masks hide future tokens when computing
attention, The mask is just a upper-triangular matrix applied to the attention scores to block future tokens, ensuring that
each word can only attend to itself and earlier words. This prevents the model from“cheating”by looking at future tokens
when generating or predicting a sequence, preserving the causal structure required for tasks like language modeling and
text completion.

34.1.3 Positional encoding

Since Transformers treat inputs as sets of tokens without inherent order, positional encodings provide sequence infor-
mation. These are added to token embeddings to enable the model to understand word positions.
Types of positional encodings include:

• Absolute Positional Embeddings: Add a fixed position index to each input token. Although simple and straightfor-
ward, this method is not generalizable to longer sequences than seen during training.

• Relative Positional Embeddings: encode pairwise distances between tokens. These relative distances are bounded
and reusable, hence independent of the total length of the sequence.

• Sinusoidal Positional Embeddings: Predefined using sine and cosine functions of different frequencies. This
can capture relative position information which generalizes to sequences longer than trained on. $PE(𝑛, 2𝑖) =
sin ( 𝑛

100002𝑖/𝐶 ) , PE(𝑛, 2𝑖 + 1) = cos ( 𝑛
100002𝑖/𝐶 )$

• Rotary Positional Embeddings (RoPE): Combines both absolute and relative positional information through a rota-
tion operation, which extrapolates well to longer contexts and is widely adopted in large language models (LLMs).

• Learnable Positional Embeddings: Initialized randomly and learned during training like token embeddings. This
fully flexible, but performance may degrade if sequence length varies significantly between training and testing.

class PositionalEncoding(nn.Module):
"""Positional encoder, learned with an embeddings layer"""
def __init__(self, d_model: int, max_len: int, dropout: float= 0.0):

super().__init__()
self.dropout = nn.Dropout(dropout)
self.emb = nn.Embedding(num_embeddings=max_len, embedding_dim=d_model)

def forward(self, x):
"""
Args:

x: Tensor, shape [seq_len, batch_size, embedding_dim]
"""
to_embed = torch.LongTensor(np.asarray(range(0, x.size(1))))\

.to(x.device)
embedded = self.emb(to_embed)
embedded = self.dropout(embedded)
return x + embedded.unsqueeze(0)

""" Alternate positional encodings with sine function
def __init__(self, d_model: int, max_len: int, dropout: float = 0.1):

super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2)

* (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, d_model)

(continues on next page)
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pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe[:, None, :]
self.register_buffer('pe', pe)

def forward(self, x):
x = x + self.pe[:x.size(1), 0, :]
return self.dropout(x)

"""

34.1.4 Transformer layers

A transformer-based neural network is built from repeated blocks of Transformer layers, each consisting of:
• Multi-Head Attention: Combines several attention“heads”that learn different relationships between tokens. Each

head performs: $Attention(𝑄,𝐾, 𝑉 ) = softmax (𝑄𝐾⊤√
𝐶 ) 𝑉 $ and the final output is concatenated and linearly

projected back to match input dimensions.
• Feedforward Neural Network: Applies a two-layer fully connected network (MLP) with non-linearity (typically

ReLU) in between: $MLP(𝑥) = ReLU(Linear1(𝑥)) → Linear2$
• Residual Connections: Directly connect input and output of each sub-layer.
• Layer Normalization: Normalizes inputs within each layer.

The input sentence is split into parts (characters, words, or“tokens”). The model takes token embeddings with positional
encodings, applies layers of attention and MLPs, and outputs contextualized representations of each token.

class Transformer(nn.Module):
"""Transformer neural network"""
def __init__(self, seq_len: int, vocab_size: int, d_model: int, nhead: int,

num_layers: int, dim_feedforward: int, dropout: float):
super().__init__()

# model dimensions
self.seq_len = seq_len
self.vocab_size = vocab_size
self.d_model = d_model

# define layers
self.embedding = nn.Embedding(num_embeddings=vocab_size,

embedding_dim=d_model)
self.positional = PositionalEncoding(max_len=seq_len,

d_model=d_model,
dropout=dropout)

layer = nn.TransformerEncoderLayer(d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout,
batch_first=True)

self.encoder = nn.TransformerEncoder(encoder_layer=layer,
num_layers=num_layers)

self.decoder = nn.Linear(in_features=d_model,
out_features=vocab_size)

(continues on next page)
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# initialize weights
self.embedding.weight.data.uniform_(-0.1, 0.1)
self.decoder.weight.data.uniform_(-0.1, 0.1)
self.decoder.bias.data.zero_()

def causal_mask(self, sz: int, device: str = 'cpu'):
"""returns upper triu set to -inf"""
return nn.Transformer.generate_square_subsequent_mask(sz=self.seq_len,

device=device)

def forward(self, x):
if len(x.shape) == 1:

x = x[None, :]
assert x.size(-1) == self.seq_len
x = self.embedding(x) * math.sqrt(self.d_model) # embedding
x = self.positional(x) # position encoding
x = self.encoder(x, mask=self.causal_mask(sz=len(x), device=x.device))
x = self.decoder(x) # linear layer
x = F.log_softmax(x, dim=-1) # classify
return x

def save(self, filename):
"""save model state to filename"""
return torch.save(self.state_dict(), filename)

def load(self, filename):
"""load model name from filename"""
self.load_state_dict(torch.load(filename, map_location='cpu'))
return self

34.2 Language modeling

Language modeling is the task of estimating the probability distribution over word sequences. By learning this distri-
bution from large text corpora, models capture linguistic structure, enabling downstream tasks like translation and text
generation.

34.2.1 Perplexity

Accuracy (measuring whether the predicted word is exactly correct) is not a meaningful metric for language models.
Predicting the exact next word in a sequence is highly uncertain and difficult, so accuracy would be very low even for
strong models. Instead, we care about how well the language model assigns probability distributions over possible next
words. Perplexity quantifies how well the it predicts the test set, calculated as the exponential of the average negative log
likelihood over the test set:

Perplexity = exp (− 1
𝑁

𝑁
∑
𝑖=1

log 𝑃(𝑤𝑖|𝑤𝑖−1,… , 𝑤𝑖−𝑛+1))

• 𝑁 is the total number of words in the test set.
• 𝑃(𝑤𝑖|𝑤𝑖−1, … , 𝑤𝑖−𝑛+1) is the probability assigned by the language model to the word 𝑤𝑖 given its context

𝑤𝑖−1,… , 𝑤𝑖−𝑛+1.
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Intuitively, perplexity measures how surprised the model is by the text. It can be interpreted as the geometric mean of the
inverse probabilities assigned by the model, hence lower perplexity indicates better model performance and generalization.

def get_next_log_probs(model, context: List[str], unk=UNK):
"""log P(word | context) where word ranges over the vocab"""
# pad to length seq_len
if len(context) > model.seq_len:

context = context[-model.seq_len:]
elif len(context) < model.seq_len:

context = ([unk] * (model.seq_len - len(context))) + context
context = torch.LongTensor(vocab.get_index(context))\

.to(device)\

.unsqueeze(0)
output = model(context)
logits = output[0, -1, :]
return logits.cpu().detach().numpy()

def get_perplexity(model, sentence: List[str]) -> float:
"""Compute perpexlity score"""

context = [UNK] + sentence
log_probs = 0
for i in range(len(context) - len(sentence), len(context)):

log_probs += get_next_log_probs(model=model, context=context[:i])[vocab.get_
↪index(context[i])]

return np.exp(-log_probs / len(sentence))

34.2.2 Fedspeak

The Fed has a jargon all of its own, with Alan Blinder coining the term Fedspeak to describe the “turgid dialect of
English”used by Federal Reserve Board chairs. We explore language modeling of minutes text from all FOMC meetings
since 1993.
The text data are tokenized and converted into indices in a Vocab object. PyTorch Dataset and DataLoader tools
simplify the processing of chunks and batches of the data. The most recent document is held-out from training to serve
as the test set for perplexity evaluation.

# Retrieve and preprocess FOMC minutes text
dates = fomc['minutes'].distinct('date') # check dates stored in MongoDB
docs = Series({doc['date']: [w.lower() for w in tokenize(doc['text'])]

for doc in fomc.select('minutes')},
name='minutes').sort_index()

UNK = " "
vocab = Vocab(set().union(*docs.tolist()), unk=UNK)
print(f"{len(vocab)=}, {len(docs)=}: {min(dates)}-{max(dates)}")

len(vocab)=8675, len(docs)=256: 19930203-20250129

# Pytorch Dataset and DataLoader
class FOMCDataset(Dataset):

"""Subclass of torch Dataset

Notes:

(continues on next page)
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All subclasses should overwrite __getitem__(),
supporting fetching a data sample for a given key. Subclasses
could also optionally overwrite __len__(), which is expected to
return the size of the dataset

"""
def __init__(self, text: Series, seq_len: int, get_index: Callable[[str], int]):

self.text = text
self.seq_len = seq_len
self.get_index = get_index
self.counts = np.cumsum([len(s) // seq_len for s in text])

def __len__(self):
return self.counts[-1]

def __getitem__(self, idx):
assert 0 <= idx < len(self), "idx out of range"
doc = bisect.bisect_right(self.counts, idx)

start = (idx - (self.counts[doc-1] if doc > 0 else 0)) * self.seq_len
end = start + self.seq_len
chunk = self.text.iloc[doc][start:end]
return (torch.LongTensor([0] + self.get_index(chunk[:-1])),

torch.LongTensor(self.get_index(chunk)))

# length of input sequence
seq_len = 30

# split last document to be test set
test_len = 1
test_set = docs.iloc[-test_len:].tolist()
train_set = FOMCDataset(docs.iloc[:-test_len], seq_len, vocab.get_index)
dataloader = DataLoader(train_set, batch_size=32, shuffle=True)
DataFrame({'docs': len(docs)-test_len, 'chunks': len(train_set)}, index=['Train'])

docs chunks
Train 255 54877

Create the model:

# Create the model
lr = 0.0001
step_size = 30
num_epochs = 100 #step_size * 1

d_model = 512 #512
nhead = 4 # 4
num_layers = 3 # 2
dim_feedforward = 2048 # 512 #1024
dropout = 0.3 # 0.3 # 0.2

model = Transformer(seq_len=seq_len,
vocab_size=len(vocab),
d_model=d_model,
nhead=nhead,

(continues on next page)
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num_layers=num_layers,
dim_feedforward=dim_feedforward,
dropout=dropout).to(device)

torchinfo.summary(model)

==========================================================================================
Layer (type:depth-idx) Param #
==========================================================================================
Transformer --
├─Embedding: 1-1 4,441,600
├─PositionalEncoding: 1-2 --
│ └─Dropout: 2-1 --
│ └─Embedding: 2-2 15,360
├─TransformerEncoder: 1-3 --
│ └─ModuleList: 2-3 --
│ │ └─TransformerEncoderLayer: 3-1 3,152,384
│ │ └─TransformerEncoderLayer: 3-2 3,152,384
│ │ └─TransformerEncoderLayer: 3-3 3,152,384
├─Linear: 1-4 4,450,275
==========================================================================================
Total params: 18,364,387
Trainable params: 18,364,387
Non-trainable params: 0
==========================================================================================

Train the model:

# Specify training parameters
criterion = nn.NLLLoss().to(device)
optimizer = Adam(model.parameters(), lr=lr)
scheduler = StepLR(optimizer, step_size=step_size, gamma=0.1)

perplexity = []
losses = []
for epoch in tqdm(range(num_epochs)):

model.train()
for train_ex, target_ex in dataloader:

optimizer.zero_grad()
train_ex, target_ex = train_ex.to(device), target_ex.to(device)
output = model(train_ex)
loss = criterion(output.view(-1, len(vocab)), target_ex.view(-1))
loss.backward()
optimizer.step()

scheduler.step()

# Evaluate perplexity on test set
model.eval()
perplexity.append(np.mean([get_perplexity(model, s) for s in test_set]))
losses.append(loss.item())
if VERBOSE:

print(f"Epoch: {epoch}, Loss: {loss.item()}, Perplexity: {perplexity[-1]}")
model.save(outdir / f"transformer{nhead}_{dim_feedforward}.pt")
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100%|██████████| 100/100 [1:03:53<00:00, 38.33s/it]

# save model checkpoint
import warnings
with warnings.catch_warnings():

warnings.filterwarnings('ignore') ## ignore the weights_only=True future warning
model.load(outdir / f"transformer{nhead}_{dim_feedforward}.pt")

Evaluate the model:

# Plot perplexity
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(perplexity, color="C0")
ax.set_ylabel('Perplexity on test set', color="C0")
bx = ax.twinx()
bx.plot(losses, color="C1")
bx.set_ylabel('Training error', color="C1")
plt.title('Training a transformer language model on FOMC minutes')
print('Perplexity:', perplexity[-1], ' Loss:', losses[-1])

Perplexity: 10.185370762878241 Loss: 2.0497496128082275
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34.2.3 Decoding

Decoding refers to the process of generating a sequence of words based on learned probabilities. Language models
generate text by sampling from a probability distribution over the next word 𝑃(𝑦𝑖|𝑦1, ..., 𝑦𝑖−1), given previous words:

• Greedy approach: At each step of generation, the word with the highest probability according to the model is
selected as the next word. While simple and computationally efficient, this results in repetitive or less diverse
outputs.

• Beam search maintains a fixed number (beam width) of partial candidate sequences of words.At each step, it
expands all possible next words for each candidate, keeping the top 𝑘 based on their joint probabilities. This allows
exploration of multiple promising paths, but can be computationally expensive, and may still produce suboptimal
outputs due to early pruning.

• Nucleus Sampling samples from the smallest set of 𝑘 words whose cumulative probability mass exceeds a pre-
defined threshold 𝑝. This approach promotes diversity in generated text by allowing for the possibility of sampling
from a larger set of words.

def get_nucleus_sequence(model, n: int, p: float, context: List[str] = []):
"""Sample sequence of words given context using nucleus sampling"""
if not context:

context = [UNK]

for i in range(n):
probs = np.exp(get_next_log_probs(model, context))
probs_sorted = sorted(probs, reverse=True)
probs_cum = np.cumsum(probs_sorted)
num_drop = sum(probs_cum > p)
threshold = probs_sorted[-num_drop]
probs[probs < threshold] = 0.
probs /= sum(probs)
choice = vocab.get_word(np.random.choice(len(probs), p=probs))
context.append(choice)
#print(i, drop, len(probs), len(probs_sorted))

return context

import textwrap
wrapper = textwrap.TextWrapper(width=80, fix_sentence_endings=True)

Finally, nucleus sampling with 𝑝 = 0.95 is used to generate new text conditioned on starting contexts, balancing diversity
and coherence.

n, p = seq_len * 4, 0.95
for context in ['the financial markets' , 'participants noted that']:

# generate from context with nuclear sampling
words = get_nucleus_sequence(model, n=n, p=p, context=context.split())

# pretty-print the output
out = ''
is_end = True
is_space = ''
for w in words:

if not w.isalnum():
out += w

else:
if is_end:

(continues on next page)
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w = w.capitalize()
out += is_space + w

is_end = w in ['!', '?', '.']
is_space = ' '*bool(w not in ["'", '-', '–'])

print(f"{context.upper()}...")
print(wrapper.fill(out))
print()

THE FINANCIAL MARKETS...
The financial markets. In addition, the tga and the resulting decline in the
soma portfolio would result in a combination of shifts in the composition of
reserve liabilities, and a waning volume of credit allocation liquidity. In
that regard, the appropriate course of monetary policy, a number of participants
noted that purchases of longer-term securities were faced by the likely onset of
the financial crisis in mid-december. Labor market conditions improved further
in january but expanded modestly on balance over the intermeeting period.
Consumer price inflation— as measured by the 12-month percentage change in the
price index for personal consumption expenditures( pce)— was elevated in march

PARTICIPANTS NOTED THAT...
Participants noted that recent indicators and orders pointed to somewhat more
moderate expansion of spending for equipment and software. The nominal deficit
on u. S. Trade in goods and services was significantly larger in the third
quarter than in the previous quarter. The value of exports of goods and
services also increased considerably in july, with increases widespread by
categories. Imports of services rose more than exports. The increase in
imports was concentrated in consumer goods, however, consumer goods, and
services, which decreased exports of capital goods. Imports of services in july
and august were expanding briskly; the gains were concentrated in industrial
supplies, semiconductors, and services.

References:
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
Jay Alammar, The Illustrated Transformer, retrieved from https://jalammar.github.io/illustrated-transformer/
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention Is All You Need. https://arxiv.org/abs/1706.03762
Greg Durrett, 2021-2024, “CS388 Natural Language Processing course materials”, retrieved from https://www.cs.
utexas.edu/~gdurrett/courses/online-course/materials.html
Philipp Krähenbühl, 2020-2024,“AI394T Deep Learning course materials”, retrieved from https://www.philkr.net/
dl_class/material and https://ut.philkr.net/deeplearning/
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THIRTYFIVE

LARGE LANGUAGE MODELS

I didn’t have time to write a short letter, so I wrote a long one instead - Mark Twain
We introduce large language models (LLMs) through a financial natural language processing (NLP) task: summarizing
the Quantitative and Qualitative Disclosures About Market Risk sections of 10-K reports. To assess performance, we
compare the overlap and readability of summaries generated by GPT-4o-mini, a proprietary closed-source model, and
DeepSeek-R1-14B, an open-source model that can be downloaded and run locally. Small language models, particularly
those trained using techniques like distillation, can closely approximate the performance of larger models while offering
lower latency and reduced memory requirements.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import textwrap
from pprint import pprint
from rouge_score import rouge_scorer
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.unstructured import Edgar
from finds.structured import BusDay, CRSP, PSTAT
from finds.readers import Sectoring
from secret import paths, credentials
VERBOSE = 0

sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
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35.1 OpenAI GPT models

Large language models are built using transformer-based deep learning architectures and pre-trained on massive text
corpora. GPT models, short for Generative Pre-trained Transformers, use an autoregressive approach to learn the structure
of language by predicting the next token given the previous ones. The transformer architectures allows these models to
capture long-range dependencies in text, making them particularly powerful for understanding context and generating
fluent text. Modern LLMs extend this base with techniques like instruction tuning and reinforcement learning from
human feedback (RLHF), which improve their usability and alignment with human intent.

• Pre-training teaches the model general language patterns from large amounts of raw text data. This process builds
a foundational base that can be fine-tuned for specific tasks later.

• Instruction tuning guides the model to follow specific types of tasks or instructions.
• RLHF improves output quality by training the model to reflect human preferences.

BERT (Bidirectional Encoder Representations from Transformers), released by Google in October 2018 not long after
the seminal“Attention is All You Need”paper, pioneered transformers-based models for NLP tasks.
OpenAI’s GPT series, from GPT-2 to GPT-o3, demonstrated increasingly powerful capabilities due to the scale of their
parameters and training data, containing billions and now trillions of adjustable weights in their deep neural networks.
GPT-3 represented a fundamental shift in AI, demonstrating how scaling models alone could achieve generalization. It
also introduced In-Context Learning, allowing models to learn from examples in the prompt without fine-tuning. GPT-4
expanded the context length to 128K tokens (which are how LLMs represent the fundamental units of text, which can be
as small as single characters or as large as whole words), significantly improving its ability to understand and summarize
long documents. These models, however, are only available through proprietary APIs.

LLM Number of Parameters Context Length
BERT-Base 110 million 512
BERT-Large 340 million 512
GPT-2 1.5 billion 1K
GPT-3.5 175 billion 4K
GPT-4 ~1 trillion 128K

gpt_name = "gpt-4o-mini"

35.1.1 LangChain framework

A modular framework for building applications with language models, such as LanChain simplifies the process of in-
tegrating language models with external data sources and other AI tools. It abstracts over the underlying LLM API
(OpenAI, Ollama, etc.) and allows users to create chains of prompts, tools, and logic for custom NLP workflows.

# Initializes an OpenAI model using LangChain. temperature=0 ensures deterministic␣
↪outputs

from langchain_openai import ChatOpenAI
gpt_model = ChatOpenAI(model_name=gpt_name, temperature=0, **credentials['openai'])
pprint(gpt_model.to_json())

{'id': ['langchain', 'chat_models', 'openai', 'ChatOpenAI'],
'kwargs': {'model_name': 'gpt-4o-mini',

'openai_api_key': {'id': ['OPENAI_API_KEY'],
'lc': 1,

(continues on next page)
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'type': 'secret'},
'temperature': 0.0},

'lc': 1,
'name': 'ChatOpenAI',
'type': 'constructor'}

Temperature controls randomness in generation: lower values yield more deterministic responses, while higher values
lead to more creative or diverse outputs.

35.1.2 Open and closed models

A large language model consists of three key components:
• Architecture: The structure of the model (e.g., Transformer-based).
• Weights: The learned parameters that define the model’s behavior.
• Training code & data: The scripts and datasets used to train the model.

LLMs are categorized as:
• Closed models: API-only, no access to weights or training data (e.g., GPT-4).
• Open models: Model weights are available, but full training details are not (e.g., LLaMA, Qwen).
• Open-source models: Full transparency including architecture, code, data, and weights (e.g., DeepSeek-R1).

35.2 DeepSeek-R1 model

DeepSeek-R1 is a powerful open-weight language model released by DeepSeek in January 2025, with size ranging from
from 1.3B to 236B parameters across different variants. Supporting a context length up to 128K tokens with a GPT-style
transformer decoder-only architecture, it was trained with 6-10T tokens from multilingual internet sources. Furthermore,
DeepSeek-R1 was fine-tuned to implement chain-of-thought reasoning without explicit prompting. Its training process
included:

• synthetic dataset of thousands of long-form CoT examples
• group relative policy optimization, a reinforcement learning that improved its ability to solve challenging problems
• fine-tuning using a final round of reinforcement learning to boost its reasoning accuracy, helpfulness and harmless-

ness.
The model exposes its reasoning during inference, a departure from the typical black-box approach of other models,
allowing users to witness the model’s“thinking process”as it works through problems.
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35.2.1 Distilled models

Distillation compresses LLMs by transferring knowledge from a large teacher model to a smaller student model.
• Knowledge Distillation (KD): Student learns from the teacher’s output probabilities (soft targets) in addition to

true labels (hard targets).
• Intermediate Layer Distillation: Transfers information from internal layers.
• Data Augmentation: Uses teacher-generated samples to expand the training set.

LLM distillation is expected to become an even more important practice in the AI world. Examples include GPT-4o
distilled into GPT-4o-mini, or DeepSeek-R1 variants trained on Llama and Qwen to preserve reasoning capabilities with
fewer parameters.
Distilled versions of DeepSeek-R1 are available in various sizes, including 1.5B, 7B, 14B, 32B, and 70B parameters.
These models used DPO (Direct Preference Optimization) or supervised fine-tuning on synthetic highly-curated datasets
generated by the larger R1 models, retaining 90–95% of teacher model performance with lower latency.
https://ollama.com/library/deepseek-r1

# model name in Ollama
model_name = "deepseek-r1:14b"

35.2.2 Small language models

Small language models (SLMs) are smaller in scale and scope than large language models (LLMs), with number of
parameters ranging from a few million to a few billion. Requiring less memory and computational power, they can
be deployed in resource-constrained environments such as edge devices, mobile apps and off-line situations where AI
inferencing (when a model generates a response to a user’s query) must be done without a data network.

35.2.3 Ollama server

Ollama simplifies running open-source LLMs locally. After installing the Ollama runtime and pulling a model (e.g.,
deepseek-r1:14b), it can serve requests on localhost. It provides a simple API for creating, running, and managing
models, as well as a library of pre-built models. This allows experimentation with high-performance LLMs, improving
accessibility, privacy, and latency.
https://github.com/ollama/ollama

1. Install Ollama (https://ollama.com/)
• curl https://ollama.ai/install.sh | sh

• ls -ltra which ollama``
• ollama --version

2. Pull a model (stored in /usr/share/ollama/.ollama/models/)
• ollama pull deepseek-r1:14b

• ollama list

3. Serve an LLM
• ollama run deepseek-r1:14b # uses GPU
• ollama ps
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4. or Linux service
• sudo systemctl status ollama # service status

• sudo systemctl disable ollama # disable so it does not start up again
upon reboot

• sudo systemctl stop ollama # stop service

• sudo systemctl restart ollama # restart service

• sudo rm /etc/systemd/system/ollama.service # delete service file

• sudo rm $(which ollama) # remove ollama binary

5. Endpoint
• curl http://localhost:11434/api/generate -d '{"model":
"deepseek-r1:14b", "prompt":"Why is the sky blue?"}'

# Initializes a local LLM (DeepSeek-R1) using Ollama
from langchain_ollama.llms import OllamaLLM
model = OllamaLLM(model=model_name, temperature=0)
pprint(model.to_json())

{'id': ['langchain_ollama', 'llms', 'OllamaLLM'],
'lc': 1,
'name': 'OllamaLLM',
'repr': "OllamaLLM(model='deepseek-r1:14b', temperature=0.0)",
'type': 'not_implemented'}

35.3 Text summarization

Summarization condenses lengthy documents into concise outputs. LLMs can perform abstractive summarization, gen-
erating summaries in their own words rather than extracting sentences. Summarization is a core NLP benchmark, critical
for a wide variety of applications.

35.3.1 Natural language processing (NLP) tasks

These tasks play a crucial role in the field of natural language processing, challenging research and applications that have
enhanced how machines understand and interact with human language. The performance of LLM’s on these tasks are
commonly evaluated using large benchmark datasets, such as MMLU (undergraduate level knowledge), GSM-8K (grade-
school math), HumanEval (coding), GPQA (graduate-level questions), and MATH (math word problems). However, the
intepretation of these results should be tempered by the inadvertent risk that some benchmark examples found their way
in the data set used for training models.

• Natural Language Inference (NLI), also known as textual entailment, is the task of determining the relationship
between two sentences, i.e. predict whether one sentence (the hypothesis) logically follows from another sentence
(the premise).

• Named Entity Recognition (NER) involves identifying and classifying named entities within a text into predefined
categories such as person names, organizations, locations, dates, etc.

• Text Generation is the process of generating coherent and contextually relevant text given a certain input or prompt.
• Machine Translation (MT) is the task of automatically translating text from one language to another.
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• Text Summarization involves creating a concise summary of a longer text while preserving its key information and
meaning.

• Reading comprehension requires models to read a passage of text and answer questions about it, demonstrating
understanding of the text. Some challenges when developing and evaluating reading comprehension models include:

– Artifacts, which refer to incorrect or misleading information generated by models that do not reflect the true
content of the text but rather exploit patterns in the training data

– Adversarial attacks, which are instances where models fail due to intentional manipulation or perturbation of
the input, aiming to mislead or deceive the model.

– Multihop reasoning, which refers to the ability of a model to connect multiple pieces of information or“hops”
across the text to arrive at an answer.

• Question-Answering (QA) systems that automatically answer questions posed by humans in natural language, either
based on a given context or dataset (known as closed-QA) or diverse topics from any domen (open-QA).

• Sentiment Analysis is the task of determining the sentiment or emotional tone expressed in a piece of text, such as
positive, negative, or neutral.

35.3.2 10-K Market risk disclosures

We focus on Item 7A of the 10-K reports: Quantitative and Qualitative Disclosures About Market Risk. After retrieving and
filtering disclosures from the SEC’s EDGAR database, only the largest firms with sufficiently long reports are retained.
One representative document per sector is selected for summarization.

# Retrieve universe of stocks
beg, end = 20240101, 20240331
univ = crsp.get_universe(bd.endmo(beg, -1))

# lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)

# lookup sic codes from Compustat, and map to FF 10-sector code
sic = pstat.build_lookup(source='lpermno', target='sic', fillna=0)
industry = Series(sic[univ.index], index=univ.index)
industry = industry.where(industry > 0, univ['siccd'])
sectors = Sectoring(sql, scheme='codes10', fillna='') # supplement from crosswalk
univ['sector'] = sectors[industry]

# Load Disclosure about Market Risk text from 10-K's
item, form = 'qqr10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
found = rows[rows['date'].between(beg, end)]\

.drop_duplicates(subset=['permno'], keep='last')\

.set_index('permno')

# Keep largest decile of stocks
found = found.loc[found.index.intersection(univ.index[univ['decile'] == 1])]

# Require minimum length of text
docs = {permno: ed[found.loc[permno, 'pathname']].lower()

(continues on next page)
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for permno in found.index}
permnos = [permno for permno, doc in docs.items() if len(doc)>2000]
found = found.join(Series(docs, name='item').reindex(permnos), how='inner')
docs = univ.loc[found.index].groupby('sector').sample(1)

35.3.3 Generation

A LangChain pipeline is used to apply two models (DeepSeek-R1 via Ollama and GPT-4o-mini via OpenAI) to generate
summaries. Model endpoints are configured with deterministic settings (temperature = 0). A prompt template and output
parser are defined to extract core content, looping through each 10-K document. Summaries are generated and collected
for analysis.

summary = {} # to collect generated summaries

Define Langchain input prompt template

from langchain_core.prompts import ChatPromptTemplate
prompt_template = """
{role}.
Please summarize this risk report in about 300 words in prose form:

{text}
"""
prompt = ChatPromptTemplate.from_template(prompt_template)

Select Langchain output parser

from langchain_core.output_parsers import StrOutputParser
parser = StrOutputParser()

def collect_summaries(model, role="You are a helpful AI assistant."):
"""Helper to iterate over companies and generate summaries of risk reports"""
summ = {}
for i, permno in enumerate(docs.index):

print(f'===== {i+1}/{len(docs)}.', univ.loc[permno, 'comnam'], '=====')
chain = prompt | model | parser
response = chain.invoke({"role": role, "text": found.loc[permno, 'item']})
print("\n".join([textwrap.fill(s, width=80) for s in response.split('\n')]))
print()
summ[permno] = response.split('</think>')[-1] # remove model's "thinking"

return summ

Generate summaries with DeepSeek-R1-14b model

summary[model_name] = collect_summaries(model)

===== 1/10. PACCAR INC =====
<think>
Okay, so I need to summarize this risk report into about 300 words. Let me read
through it carefully first.

(continues on next page)
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The report is about market risks and derivative instruments, focusing on
interest rates, currencies, and commodities. It mentions that the figures are in
millions. The company uses hedging programs to manage these risks, as described
in Note P.

Starting with interest-rate risk: They measure this by estimating how a 100
basis point increase would affect fair values. In 2023, assets like cash
equivalents and fixed rate loans show potential losses, while liabilities such
as fixed rate term debt and swaps show gains. The total for 2023 is a loss of
$17.7 million, which is better than the previous year's $1.1 million loss.

Next, currency risk: They hedge against several currencies like CAD, EUR, GBP,
etc. A 10% unfavorable change in exchange rates would cause losses of $259.7
million in 2023 and $216.6 million in 2022. But these are offset by changes in
the underlying exposures.

Then, commodity price risk: They use forward contracts to hedge against price
fluctuations for production inputs. A 10% unfavorable change would lead to
losses of $3.3 million in 2023 and $2.5 million in 2022, which are also offset
by hedged exposures.

I should structure the summary to cover each risk category with their respective
figures and explanations. Make sure it's concise, around 300 words, and flows
well.
</think>

The risk report outlines a company's strategies and exposures related to market
risks, including interest rates, currencies, and commodities, as of December 31,
2023, and 2022. The company employs hedging programs to mitigate these risks.

**Interest-Rate Risk:**
The company assesses the impact of a 100 basis point increase in interest rates
on the fair value of its assets and liabilities. In 2023, cash equivalents and
marketable debt securities showed potential losses of $29.2 million, while
fixed-rate loans indicated a $146.5 million loss. On the liability side, fixed
rate term debt and swaps resulted in gains of $156.8 million and $1.2 million,
respectively. The net interest-rate risk for 2023 was a manageable $17.7 million
loss, an improvement from the previous year's $1.1 million loss.

**Currency Risk:**
To manage exchange rate fluctuations, the company hedges against major
currencies like the Canadian dollar and Euro. A 10% unfavorable change in these
rates could lead to losses of $259.7 million in 2023 and $216.6 million in 2022.
These potential losses are largely offset by corresponding changes in the value
of hedged exposures, indicating effective risk management.

**Commodity Price Risk:**
The company uses forward contracts to stabilize earnings against adverse
commodity price movements, particularly for truck production inputs. A 10%
unfavorable change in commodity prices could result in $3.3 million and $2.5
million losses in 2023 and 2022, respectively. These figures reflect the
company's ability to mitigate risks through hedging.

In summary, the company demonstrates a structured approach to managing market
risks, with effective use of derivatives and hedging strategies to minimize
potential financial impacts across interest rates, currencies, and commodities.

(continues on next page)
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===== 2/10. PHILLIPS 66 =====
<think>
Okay, so I'm trying to understand all these risks mentioned in the document. Let
me start by reading through them carefully.

First, there are market conditions like fluctuations in prices and margins for
NGLs, crude oil, natural gas, and refined products. That makes sense because
energy prices can be really volatile due to things like supply and demand
changes or geopolitical events.

Then there's government policies affecting pricing, regulation, taxation,
especially exports. I know that export policies can have a big impact on supply
and demand, so this is an important factor.

Capacity constraints in pipelines, storage, and fractionation facilities are
another risk. If these infrastructure issues arise, it could limit how much
product they can transport, leading to bottlenecks or higher costs.

OPEC and non-OPEC actions influence supply and demand, which affects prices. I
remember that OPEC's decisions can cause significant shifts in the market.

The success of DCP LP integration is mentioned, including achieving synergies.
This probably refers to a business strategy where they're combining operations,
so if this doesn't go as planned, it could hurt their performance.

Unexpected technical difficulties or cost increases during construction or
operation are risks too. Construction delays can be costly and disrupt
production.

Drilling and production volumes around midstream assets are another point. If
the wells aren't producing as expected, it affects the company's revenue from
those assets.

Permits and regulations compliance are also risks. They need to get permits for
projects, and if they can't or if regulations change, it could delay things or
require more spending.

Savings and cost reductions from business transformation initiatives might not
happen as planned. If they don't achieve these savings, their financial goals
could be at risk.

Renewable fuels policies and climate change regulations are factors too. Changes
in these areas could affect demand for traditional fuels or require new
investments.

Economic and political developments like the Russia-Ukraine war can impact
markets. Also, things like inflation, interest rates, and expropriation of
assets pose risks.

Public health crises, like pandemics, can disrupt operations and reduce demand
for their products. The recovery after such events is also uncertain.

Capital projects might not be completed on time or within budget. Delays here
can lead to cost overruns and project failures.

(continues on next page)
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Asset dispositions or acquisitions could face challenges if they don't complete
them successfully. This includes both the sale of assets and buying new ones.

Litigation or government actions could disrupt operations, leading to legal fees
or operational changes.

Accidents, weather events, civil unrest, etc., can damage facilities and
interrupt operations, causing financial losses.

Meeting sustainability goals is another risk. If they don't reduce GHG emissions
as planned or develop new technologies, it could affect their reputation and
operations.

New products might not be accepted by the market, leading to wasted investments.

Monetary conditions and exchange controls can impact international trade and
profitability.

Environmental regulations requiring significant investments or reducing demand
for their products are risks. They might have to spend a lot on compliance or
face reduced sales.

Liability from environmental issues like cleanup costs is another concern.

Changes in laws and regulations, including alternative energy mandates, could
force them to adapt their business models.

Climate change concerns might lead to changes in how they operate or increase
expenses through litigation or other costs.

Impairment charges could occur if the value of assets decreases due to market
conditions or strategic decisions.

Access to capital is crucial; if it's limited or more expensive, they might not
be able to fund their operations effectively.

Counterparties going bankrupt could lead to financial losses from unpaid debts
or obligations.

Cybersecurity incidents can compromise sensitive data and lead to legal
liabilities or operational disruptions.

Joint ventures that the company doesn't control could make decisions that
negatively impact their own business.

Lastly, all these factors are generally described in Item 1A of the risk factors
in the report.

I think I've covered all the points. Now, how do I summarize this? Maybe by
categorizing them into market risks, regulatory risks, operational risks,
financial risks, and environmental/sustainability risks. That way, it's easier
to understand and address each category separately.
</think>

The document outlines a comprehensive list of risks that could impact the
company's performance and operations. These risks can be categorized as follows:

(continues on next page)
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1. **Market Risks**:
- Volatility in energy prices (NGLs, crude oil, natural gas, refined

products).
- Fluctuations in margins and demand for refining and petrochemical products.
- Impact of OPEC and non-OPEC actions on supply and demand.

2. **Regulatory and Policy Risks**:
- Changes in government policies affecting pricing, regulation, taxation, and

exports.
- Compliance with environmental regulations (GHG emissions, renewable fuels).
- Influence of international monetary conditions and exchange controls.

3. **Operational Risks**:
- Capacity constraints in transportation infrastructure (pipelines, storage).
- Delays or cost overruns in construction and capital projects.
- Challenges in permit acquisition and regulatory compliance.
- Risks from joint ventures not under the company's control.

4. **Financial Risks**:
- Failure to achieve expected savings from business transformation

initiatives.
- Impairment charges due to asset value declines.
- Limitations in accessing capital or increased funding costs.
- Counterparty risks (e.g., bankruptcy leading to financial losses).

5. **Environmental and Sustainability Risks**:
- Meeting sustainability goals and adapting to climate change regulations.
- Development of new technologies and products that may not gain market

acceptance.

6. **Geopolitical and Public Health Risks**:
- Impact of geopolitical events (e.g., Russia-Ukraine war) on markets.
- Disruptions from public health crises (e.g., pandemics).

7. **Legal and Reputational Risks**:
- Litigation risks and potential liabilities from environmental issues.
- Cybersecurity threats leading to data breaches or operational disruptions.

By categorizing these risks, the company can better manage and mitigate
potential challenges across different areas of its operations.

===== 3/10. MASTERCARD INC =====
<think>
Okay, so I need to summarize this risk report from MasterCard's 2023 Form 10-K
about market risks, specifically items related to quantitative and qualitative
disclosures. The user wants a summary in around 300 words, written in prose
form.

First, I'll read through the provided text carefully to understand the key
points. It seems like the report is divided into sections on foreign exchange
risk and interest rate risk.

Under foreign exchange risk, MasterCard uses derivative contracts to manage
currency exposures from transactions and asset/liability fluctuations. They
mention a hypothetical 10% adverse change leading to potential losses of around

(continues on next page)
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$414 million in 2023 and $94 million in 2022. There's also something about
short-term settlement activities limiting their exposure to a few days, so the
impact isn't material even with a 10% change. Additionally, they talk about net
investment hedges for foreign subsidiaries but didn't have any as of December
31, 2023.

For interest rate risk, MasterCard has available-for-sale debt investments and
fixed-rate debt. They mention that a 100 basis point adverse change wouldn't
cause material losses in either year. They use derivative contracts to hedge
some of their fixed-rate debt exposure.

I need to structure this summary clearly, probably starting with an overview of
market risk, then breaking down into foreign exchange and interest rate risks
separately. I should highlight the strategies they use, like derivatives for
hedging, and mention the hypothetical losses but also note that these are before
considering offsets from hedged activities. It's important to convey that their
exposure is managed effectively through these measures.

I'll make sure to keep it concise, around 300 words, using clear and
professional language without getting too technical. I should avoid jargon where
possible and ensure each section flows logically into the next.
</think>

The risk report outlines Mastercard's approach to managing market risks,
including foreign exchange and interest rate risks, which can lead to financial
losses due to adverse changes in currency values or interest rates. The company
actively monitors these risks and employs strategies such as derivative
financial instruments to mitigate potential impacts.

**Foreign Exchange Risk:**
Mastercard manages foreign exchange risk through derivative contracts aimed at
hedging currency exposures from transactions and asset/liability fluctuations.
These contracts help reduce transaction gains or losses resulting from currency
fluctuations against the U.S. dollar and euro. A hypothetical 10% adverse change
in currency values could result in fair value losses of approximately $414
million (2023) and $94 million (2022). However, Mastercard's short-term
settlement activities typically limit exposure to a few days between
transactions and settlements, minimizing material impacts from such changes.
Additionally, the company may use derivatives to hedge its net investment in
foreign subsidiaries, though no such hedges were designated as of December 31,
2023.

**Interest Rate Risk:**
The company's available-for-sale debt investments include fixed and variable
rate securities sensitive to interest rate fluctuations. A hypothetical 100
basis point adverse change in interest rates would not result in material losses
for its investments or derivative contracts used to hedge fixed-rate debt as of
December 31, 2023 and 2022.

Overall, Mastercard employs robust risk management strategies, including the use
of derivatives, to effectively mitigate market risks and safeguard against
potential financial losses.

===== 4/10. BRISTOL MYERS SQUIBB CO =====
<think>
Okay, so I need to summarize this risk report into about 300 words. Let me read

(continues on next page)
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through it carefully first.

The report is about market risks the company faces, specifically from currency
exchange rates and interest rates. They use derivatives like forwards and swaps
to hedge these risks but don't trade with them.

Looking at foreign exchange risk: a lot of their revenue and cash flows are
affected by changes in Euro and Japanese Yen. They use forward contracts and put
options to manage this. There's also transaction risk from non-functional
currencies, which they offset with forwards not designated as hedges. They hedge
net investments with affiliates using these contracts too.

They estimate that a 10% appreciation in the hedged currencies would decrease
the fair value of their FX contracts by certain amounts, reducing earnings.
Cross-currency swaps are used for long-term debt and foreign subsidiaries; here,
a 10% change affects the swap values differently.

For interest rate risk: they use fixed-to-floating swaps to balance their debt.
They also analyze how changes in rates affect their marketable securities and
long-term debt. A 1% increase in rates doesn't have a big impact on earnings but
does decrease the fair value of long-term debt.

Credit risk is managed by investing only with high-quality institutions,
diversifying derivatives across counterparties to reduce default risks.

I need to condense all this into a coherent summary without getting too
technical. Make sure to mention each type of risk (FX and interest rate), how
they hedge, the impact of currency appreciation/depreciation, and their credit
risk management strategies.
</think>

The company faces market risks primarily from fluctuations in foreign exchange
rates and interest rates. To mitigate these risks, it employs derivative
financial instruments such as forwards, swaps, and put options, which are used
for hedging rather than trading.

**Foreign Exchange Risk:**
A significant portion of the company's revenue, earnings, and cash flows are
exposed to changes in Euro and Japanese Yen exchange rates. The company uses
foreign currency forward contracts and purchased local currency put option
contracts to manage risks from intercompany transactions. Additionally, these
forwards are used to hedge net investment exposures in international affiliates.
Cross-currency swaps are employed to manage long-term debt denominated in Euros.

The impact of a 10% appreciation in hedged currencies is estimated to decrease
the fair value of foreign exchange contracts and increase/decrease cross-
currency swap values, affecting earnings over time.

**Interest Rate Risk:**
The company uses fixed-to-floating interest rate swaps to balance its debt
structure. Sensitivity analysis shows that a 1% increase in short-term or long-
term interest rates would not significantly impact earnings but could decrease
the fair value of long-term debt.

**Credit Risk Management:**
Investments are limited to high-credit-quality institutions, and derivatives are

(continues on next page)
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diversified across counterparties to mitigate default risks.

In summary, the company effectively manages market risks through strategic use
of financial instruments while adhering to conservative credit policies.

===== 5/10. CARRIER GLOBAL CORP =====
<think>
Okay, so I need to summarize this risk report about market risks for a company.
The user provided the entire section under item 7a, which includes foreign
currency exposures, commodity price exposures, and interest rate exposures. They
also mentioned that there's been no significant change in their market risk
exposure for the year ended December 31, 2023.

First, I should read through each part carefully to understand what each section
is talking about.

Starting with foreign currency exposures: The company operates internationally,
so they're exposed to exchange rate fluctuations. Their non-U.S. operations have
different functional currencies, which affects their reported results when the
U.S. dollar strengthens or weakens against those currencies. They manage
material currency exposures at the legal entity level but don't hedge
translation risk. However, for specific acquisitions like VCS and TCC, they used
financial instruments like window forward contracts and cross-currency swaps to
mitigate risks related to paying in foreign currencies.

Next, commodity price exposures: The company is affected by volatile commodity
prices and uses fixed-price contracts when appropriate. They also face fuel
costs for shipping but don't have any hedges in place as of December 31, 2023.

Interest rate exposures: Most of their long-term debt has fixed rates, so they
don't expect much impact from interest rate fluctuations.

I need to condense all this into about 300 words. I should structure it by first
introducing the overall market risks (currency, commodities, interest rates),
then go into each category with key points, and conclude without significant
changes in exposure.

I should make sure to mention their strategies for managing these risks, like
using swaps and contracts, but also note where they don't hedge, such as
translation risk. I'll need to keep the language clear and concise, avoiding too
much jargon so it's accessible.

Let me outline the summary:

1. Introduction: Briefly state that the company faces market risks from
currency, commodities, and interest rates, with no significant change in 2023.
2. Foreign Currency Exposures: Explain their international operations leading to
exchange rate risks. Mention active management at entity level but no hedging of
translation risk. Highlight specific actions taken for VCS and TCC acquisitions
using financial instruments.
3. Commodity Price Exposures: Discuss volatility in commodity prices, use of
fixed-price contracts, and absence of hedges for fuel costs.
4. Interest Rate Exposures: Note that most debt is fixed-rate, so minimal
expected impact from rate changes.
5. Conclusion: Reiterate no significant change in overall market risk exposure.
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I should ensure each section flows logically into the next, providing a
comprehensive yet concise overview without getting bogged down in details. Also,
I need to watch the word count to stay around 300 words, so I'll aim for about
6-7 sentences per main point.
</think>

The company faces market risks primarily from fluctuations in foreign currency
exchange rates, commodity prices, and interest rates, with no significant
changes in exposure during 2023.

**Foreign Currency Exposures:** The company's global operations expose it to
exchange rate risks, particularly affecting its U.S. dollar reporting. While
they manage material currency exposures at the entity level without hedging
translation risk, specific strategies were employed for acquisitions. For
instance, window forward contracts were used for the VCS acquisition to mitigate
euro-denominated risks, and cross-currency swaps were utilized for the TCC
acquisition to hedge yen-denominated investments.

**Commodity Price Exposures:** The company deals with volatile commodity prices
by using fixed-price contracts where appropriate. However, they lack hedges
against fuel cost fluctuations impacting shipping expenses.

**Interest Rate Exposures:** With most long-term debt having fixed rates, the
company anticipates minimal impact from interest rate changes.

In conclusion, the company's market risk management remains consistent, focusing
on strategic hedging for specific risks while acknowledging areas where exposure
is accepted without mitigation.

===== 6/10. LULULEMON ATHLETICA INC =====
<think>
Okay, so I need to summarize this risk report into about 300 words. Let me read
through it carefully first.

The report starts with market risks, specifically foreign currency exchange and
translation risks. It mentions that their international subsidiaries use local
currencies as functional currencies, which are then converted to USD for
consolidated financial statements. Exchange rate fluctuations affect reported
revenues, expenses, assets, and liabilities. In 2023, revenue was lower by $89.8
million compared to 2022 due to exchange rates.

They also talk about translation risk where foreign currency differences are
recorded in other comprehensive income (OCI). They have a Canadian subsidiary
with significant net assets, so they use forward contracts to hedge part of this
exposure. The impact on OCI was an increased loss of $9 million, including hedge
gains.

Then there's transaction risk from intercompany transactions and inventory
purchases in non-functional currencies. They hold cash and other monetary assets
in different currencies and have forward contracts to hedge these. The
sensitivity analysis shows that a 10% depreciation in the USD would affect
derivative fair values by $29.8 million, but this is offset by changes in hedged
items.

They plan to use more derivatives in the future for additional currency pairs
but won't trade them for profit. There's also mention of interest rate risk from
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their revolving credit facility, which has a variable rate. As of now, there are
no borrowings except for $6.3 million in letters of credit. They don't do any
hedging yet but might in the future.

Cash and cash equivalents are held in short-term deposits and money market
funds, totaling $2.2 billion. Interest rates affect the interest generated on
these balances. Credit risk is managed by dealing with reputable institutions,
though some deposits exceed insured limits. They monitor counterparties' credit
standing to minimize risks.

Inflation is another concern, particularly wage increases affecting operating
margins in 2022 and 2023. Higher transportation costs and raw material prices
could hurt margins if selling prices don't rise or cost efficiencies aren't
found.

I need to condense all this into a coherent summary without exceeding 300 words.
I'll structure it by main risk categories: foreign currency, interest rate,
credit, and inflation risks. Highlight the key points like revenue impact,
hedging strategies, sensitivity analysis, current financial status, and future
plans regarding derivatives. Also, mention the effects of inflation on margins.

I should ensure that each section is concise, using bullet points or clear
paragraphs to separate the different types of risk. Make sure to include the
main figures like $89.8 million revenue drop, $2.2 billion cash, and sensitivity
results. Avoid jargon where possible and keep it in prose form as requested.

Let me start drafting:

- Foreign currency exchange and translation risks: Explain how exchange rates
affect financial statements, mention the 2023 revenue drop, their use of forward
contracts to hedge, and the impact on OCI.

- Transaction risk: Discuss intercompany transactions and inventory purchases in
non-functional currencies, their hedging strategies with forward contracts, and
sensitivity analysis results.

- Interest rate risk: Describe the credit facility's variable rates, current
borrowing status, and future plans for hedging if needed.

- Credit risk: Talk about holding cash in reputable institutions, monitoring
counterparties, and minimal losses experienced.

- Inflation: Highlight past impacts on margins due to wages and freight costs,
potential future effects, and reliance on price increases or cost efficiencies.

I need to make sure each section flows logically and stays within the word
limit. Let me check for any redundancies or areas that can be more concise.
</think>

The risk report outlines several key market risks faced by the company,
primarily focusing on foreign currency exchange, translation, transaction,
interest rate, credit, and inflationary risks.

**Foreign Currency and Translation Risks:** The company's international
subsidiaries use local currencies, which are converted to USD for consolidated
financial statements. Exchange rate fluctuations significantly impact reported
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revenues, expenses, assets, and liabilities. In 2023, revenue decreased by $89.8
million due to unfavorable exchange rates. To mitigate translation risk, the
company records foreign currency differences in other comprehensive income
(OCI). They also use forward contracts to hedge risks associated with their
significant Canadian subsidiary, resulting in a $9 million increase in OCI
losses, including hedge gains.

**Transaction Risks:** The company faces transaction risks from intercompany
transactions and inventory purchases denominated in non-functional currencies.
To manage these risks, they hold cash and other monetary assets in various
currencies and employ forward contracts for hedging. Sensitivity analysis
indicates that a 10% USD depreciation would affect derivative fair values by
$29.8 million, offset by changes in hedged items.

**Interest Rate Risks:** The company's revolving credit facility exposes it to
variable interest rates. Currently, there are no borrowings except for $6.3
million in letters of credit. While they do not engage in hedging activities at
present, they plan to use derivatives for future currency pairs without trading
for profit.

**Credit Risks:** The company manages credit risks by holding cash in reputable
financial institutions and monitoring counterparty credit standing. Although
some deposits exceed insured limits, they have experienced minimal losses and
maintain investment-grade relationships to mitigate risks.

**Inflation Risks:** Inflationary pressures, such as rising wages and
transportation costs, have impacted operating margins in recent years. Sustained
increases could adversely affect margins if selling prices do not rise or cost
efficiencies are not achieved. The company remains vigilant about these factors
to ensure margin stability.

This structured approach ensures clarity and conciseness, effectively conveying
the key risks and strategies outlined in the report within 300 words.

===== 7/10. AIRBNB INC =====
<think>
Okay, so I need to summarize this risk report about market risks that Airbnb is
facing. The user provided the entire section from item 7a, which talks about
both quantitative and qualitative disclosures regarding market risks. They
specifically mentioned foreign currency risk and investment risk.

First, I should read through the entire text carefully to understand all the
points made. It starts by saying that their global operations expose them to
various market risks, mainly foreign currency and investment risks.

Under foreign currency exchange risk, they mention that they support over 40
currencies, with some key ones like euro, British pound, etc. Their revenue and
costs are in these currencies, which can fluctuate against the US dollar,
affecting their financial results. They have several exposures: revenue and cost
of revenue, funds held, unbilled amounts, and intercompany balances.

They use foreign currency derivatives to hedge these risks but don't eliminate
them entirely. There's a mention that if there was an adverse 10% change in
exchange rates as of Dec 31, 2023, they would lose about $20 million.

Then, investment and interest rate risk: they have a large cash and short-term
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investments portfolio, mainly in debt securities. They don't invest for trading
or speculation, so their exposure to interest rate changes is limited because
their investments are short-term. A 100 basis point increase would decrease
their portfolio by $20 million.

I need to condense all this into about 300 words. I should structure it with an
introduction, then sections on foreign currency risk and investment risk,
highlighting the key points like hedging strategies, potential losses from
exchange rate changes, and their approach to managing interest rates through
short-term investments.

I also need to make sure the summary is in prose form, clear and concise,
without using bullet points or technical jargon. I should mention the specific
currencies, the use of derivatives, the amounts at risk, and their investment
strategies.

Wait, let me check if there are any other important details. They talk about how
guests can pay in different currencies, which introduces more currency risks
because hosts might choose a different payment currency. Also, they have
separate funds for bookings, which adds to their foreign exchange exposures.

In the investment section, it's important to note that they focus on preserving
capital and liquidity, so they stick to safe, short-term investments. This
minimizes their exposure to interest rate fluctuations but still, a significant
change could impact them.

I should also include the specific figures: $20 million loss from a 10% exchange
rate change and the same figure for a 100 basis point increase in interest
rates. These numbers show the potential financial impact.

Putting it all together, I'll start with an overview of their market risks, then
break down each type, explain the exposures, their hedging strategies, and the
potential losses. Conclude by summarizing their approach to managing these
risks.
</think>

Airbnb faces significant market risks primarily due to its global operations,
which expose it to foreign currency exchange risk and investment risk.

**Foreign Currency Exchange Risk:**
Airbnb operates in over 40 currencies, with key exposures including the euro,
British pound, Canadian dollar, Australian dollar, Brazilian real, and Mexican
peso. Fluctuations in these currencies against the US dollar can impact its
financial results through various channels: revenue and costs denominated in
foreign currencies, funds held on behalf of customers, unbilled amounts from its
"Pay Less Upfront" program, and intercompany balances. To mitigate this risk,
Airbnb uses foreign currency derivative contracts to hedge forecasted exposures,
though it does not eliminate all risks. A 10% adverse exchange rate change as of
December 31, 2023, could result in a $20 million loss.

**Investment and Interest Rate Risk:**
Airbnb's investment portfolio, primarily consisting of short-term, highly-liquid
debt securities, is managed to preserve capital and meet liquidity needs. As of
December 31, 2023, it held $6.9 billion in cash and cash equivalents, $3.2
billion in short-term investments, and $5.9 billion in funds receivable. The
portfolio's short maturity minimizes sensitivity to interest rate changes. A
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hypothetical 100 basis point increase in rates could decrease the investment
portfolio's fair value by $20 million. Airbnb avoids speculative investments and
trading activities, focusing on stability rather than risk.

In summary, while Airbnb employs hedging strategies and conservative investment
practices to manage risks, significant currency fluctuations or interest rate
changes could still impact its financial performance.

===== 8/10. MERCADOLIBRE INC =====
<think>
Okay, so I'm trying to understand this document about MercadoLibre's risks and
sensitivities. It seems like it's part of their financial disclosures, maybe in
their annual report or something similar. Let me break down what each section is
saying.

First, the foreign exchange risk. They have a significant amount of revenue from
Brazil, Argentina, and other Latin American countries. Since they're dealing
with multiple currencies, especially the Brazilian real and Argentine peso,
which can be volatile, this could affect their financials. If the real or peso
weakens against the dollar, their reported revenue in dollars might decrease
because when converted, those currencies would buy fewer dollars. That makes
sense because if you have a lot of revenue in a currency that's dropping, your
overall revenue in USD terms goes down.

Next is interest rate risk. They have long-term debt, which means they're
exposed to changes in interest rates. If rates go up, the value of their
existing debt might decrease, and their borrowing costs could increase if they
need to refinance or take on more debt. I'm not entirely sure how sensitive they
are to rate changes, but it's something to watch, especially with global
interest rates potentially rising.

Then there's commodity price risk. They're exposed to fuel and electricity
prices because these are operational costs. If oil prices go up, their delivery
and logistics costs would increase, affecting their margins. Similarly, higher
electricity prices could impact their operations, especially in countries where
energy is a significant cost. This seems like a manageable risk but could have
noticeable effects if prices spike.

Equity price risk is tied to their LTRP plans. These are long-term retention
programs that pay out based on stock performance. The value of these obligations
is sensitive to the company's stock price. If the stock goes up, the payouts
increase, which could strain their finances. Conversely, a drop in stock price
reduces the payout liability. They've done a sensitivity analysis showing how a
40% change in stock price affects the obligation. That's pretty significant; a
40% drop would reduce the liability from $418 million to about $251 million,
which is a substantial difference.

Inflation risk is another factor, especially in countries like Argentina where
inflation has been high. High inflation can erode purchasing power and affect
consumer behavior. If people have less money due to inflation, they might spend
less online, impacting MercadoLibre's sales. Additionally, rising costs for
goods and services could squeeze margins if the company can't pass these costs
onto customers.

I'm a bit confused about how exactly the equity price affects their obligations.
It seems like it's based on the stock price relative to a fixed average from

(continues on next page)

35.3. Text summarization 597



Financial Data Science Python Notebooks

(continued from previous page)

previous years. So each payment is tied to whether the current stock price is
higher or lower than that average. If the stock does well, they have to pay
more; if not, less.

I'm also thinking about how these risks interact. For example, inflation could
lead to higher interest rates, which would then affect their debt costs. Or a
weaker currency might make imports more expensive, contributing to inflation.
It's like a web of interconnected risks that could amplify each other in certain
economic conditions.

Another point is the sensitivity analysis for equity price risk. They show a
static present value and how it changes with different stock prices. This helps
investors understand how exposed they are to stock price fluctuations. A 40%
change seems extreme, but it's useful to see the range of possible outcomes.

I wonder if there are any mitigating factors or strategies MercadoLibre uses to
manage these risks. For example, do they hedge their currency exposure? How
flexible are their costs in the face of inflation? And how do they structure
their LTRP plans to balance retention with financial risk?

Overall, this section is highlighting several key areas where MercadoLibre faces
potential volatility and challenges. It's important for investors to consider
these risks when evaluating the company's long-term prospects.
</think>

**MercadoLibre Risk Analysis Summary**

1. **Foreign Exchange Risk:**
- **Exposure:** Significant revenue from Brazil, Argentina, and other Latin

American countries exposed to currency fluctuations, particularly the Brazilian
real and Argentine peso.

- **Impact:** Currency devaluation can reduce reported USD revenue when
converted.

2. **Interest Rate Risk:**
- **Exposure:** Long-term debt subject to interest rate changes.
- **Impact:** Rising rates may decrease debt value and increase borrowing

costs.

3. **Commodity Price Risk:**
- **Exposure:** Operational costs tied to fuel and electricity prices.
- **Impact:** Price spikes can increase operational expenses and reduce

margins.

4. **Equity Price Risk:**
- **Exposure:** Long-term retention programs (LTRP) linked to stock

performance.
- **Impact:** Stock price fluctuations affect payout obligations; a 40% drop

reduces liability from $418 million to $251 million.

5. **Inflation Risk:**
- **Exposure:** High inflation in countries like Argentina affecting

purchasing power and operational costs.
- **Impact:** Could reduce consumer spending and squeeze margins if cost

increases aren't offset.
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6. **Interconnected Risks:**
- Inflation may lead to higher interest rates, affecting debt costs and

potentially exacerbating currency issues.

7. **Mitigation Strategies:**
- Consider hedging strategies for currency exposure, flexible cost

structures, and balanced LTRP designs to manage financial risks.

**Conclusion:** MercadoLibre faces multiple interconnected risks that could
impact its financial health. Investors should assess these factors alongside the
company's risk management strategies when evaluating long-term prospects.

===== 9/10. A T & T INC =====
<think>
Okay, so I'm trying to understand this document about AT&T's financial report.
It looks like it's an audit report from their independent registered public
accounting firm. Let me go through it step by step.

First, the report is divided into two main sections: one on the internal control
over financial reporting and another on the consolidated financial statements.
Both have an opinion section, a basis for opinion, and some additional details.

Starting with the opinion on internal control over financial reporting. The
auditors state that they've audited AT&T's internal controls as of December 31,
2023, based on the COSO criteria. They conclude that the company maintained
effective internal control over financial reporting in all material respects.
That sounds positive; it means the auditors think AT&T has good systems in place
to manage their finances properly.

Next, looking at the basis for this opinion. It mentions that management is
responsible for maintaining these controls and assessing their effectiveness.
The auditors' role was to express an opinion based on their audit, which they
did by following PCAOB standards. They obtained an understanding of the internal
controls, assessed risks, tested the design and operation of the controls, and
performed other necessary procedures. Their conclusion is that AT&T's controls
are effective.

Moving on to the report on the consolidated financial statements. The auditors
also express an unqualified opinion here, meaning they didn't find any material
issues with the financial statements. They were prepared in accordance with
GAAP, which is standard for public companies in the U.S.

The basis for this opinion section explains that the auditors are responsible
for expressing opinions on whether the financial statements present fairly, in
all material respects, the company's financial position and results of
operations. They did this by auditing according to PCAOB standards, assessing
risks, testing accounting policies, significant estimates, transactions, and
disclosures.

There are also two specific sections discussing areas where the audit was
particularly complex: internal control over financial reporting and the
impairment evaluations for certain reporting units. The auditors explain that
these areas required a deeper dive because they involve subjective assumptions
and complex methodologies. They tested controls, assessed assumptions against
industry trends, performed sensitivity analyses, and involved specialists to
ensure everything was in order.
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The report ends with a note that the auditing firm has been serving AT&T since
1999, which shows a long-standing relationship, likely indicating consistency
and familiarity with the company's operations.

I'm trying to think if there's anything I might be missing. The document seems
comprehensive, covering both the internal controls and financial statements. It
mentions specific areas like impairment evaluations and valuation models, which
are known for being complex and subject to judgment. The auditors' involvement
of specialists in these areas makes sense because it adds depth to their
analysis.

I wonder if there were any material weaknesses or significant deficiencies
mentioned, but from what I can see, the opinions are unqualified, so no major
issues were found. It's also worth noting that the report is dated February 23,
2024, which would typically be around the time when earnings are released, so
it's timely.

Overall, this audit report seems to provide assurance to stakeholders that
AT&T's financial reporting is reliable and their internal controls are
effective. The detailed explanation of the auditing process gives confidence in
the independence and thoroughness of the audit.
</think>

The audit report on AT&T provides a comprehensive assessment of both its
internal control over financial reporting and its consolidated financial
statements, concluding with an unqualified opinion in both areas. Here's a
structured summary:

### Key Findings:
1. **Internal Control Over Financial Reporting:**

- The auditors found that AT&T maintained effective internal controls as of
December 31, 2023, based on the COSO framework.

- The company's systems provide reasonable assurance regarding the
reliability of financial reporting and compliance with GAAP.

2. **Consolidated Financial Statements:**
- The financial statements were prepared in accordance with GAAP and present

AT&T's financial position accurately.
- No material issues were identified, leading to an unqualified opinion.

### Methodology:
- Auditors followed PCAOB standards, assessing risks, testing controls, and
involving specialists for complex areas like impairment evaluations.
- Detailed procedures included testing assumptions against industry trends and
performing sensitivity analyses.

### Areas of Complexity:
- **Impairment Evaluations:** Involved subjective assumptions and complex
valuation methods. The auditors ensured these were sound through thorough
testing and specialist involvement.
- **Internal Controls:** The effectiveness was validated through a comprehensive
audit process, confirming the controls' operational efficiency.

### Conclusion:
The report assures stakeholders of AT&T's financial integrity and control
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systems. The unqualified opinions indicate no significant issues, reflecting
well on the company's financial governance. The long-standing relationship with
the auditing firm underscores consistency and familiarity in their work.

===== 10/10. REPUBLIC SERVICES INC =====
<think>
Okay, so I need to summarize this risk report into about 300 words. Let me read
through it carefully first.

The report starts with Item 7A, which is about quantitative and qualitative
disclosures on market risks. The main areas discussed are interest rate risk,
fuel price risk, and commodities price risk.

Starting with interest rate risk: The company's major exposure is to changes in
U.S. interest rates and fluctuations in SOFR (which I think stands for Secured
Overnight Financing Rate). They manage this by using a mix of fixed and floating
rate debt. Their variable rate debt is valued at fair value because the rates
are current, but this can change over time. They've used swap agreements as
hedges before, but it looks like they might not be doing that anymore or maybe
have changed their strategy.

Looking at the table provided, it shows fixed and variable rate debts across
different years up to 2028. The total fair value is around $9.8 billion. They
also mention having $2.23 billion in floating rate debt and swap contracts with
a notional value of $350 million. If interest rates go up or down by 100 basis
points, their annual interest expense would change by about $20 million. But
this doesn't account for new borrowings or economic impacts.

Next is fuel price risk: Fuel costs are a big part of their operations. They try
to hedge against fuel price changes when it's economically practical, but as of
December 31, 2023, they had no hedges in place. They charge fuel recovery fees
to most customers, but not all. A 20-cent per gallon change in diesel would
affect their fuel costs by about $27 million and the fees by $36 million. They
also mention other petrochemical-based products used in operations, which could
increase costs if prices go up.

Lastly, commodities price risk: They deal with recycled materials like old
corrugated containers and newsprint. Market volatility affects these prices. In
the past, they've used swaps and collars as hedges, but none are currently in
place. A $10 per ton change would impact both revenue and operating income by
about $10 million. Their recycling revenue dropped from $359.1 million in 2022
to $312.3 million in 2023.

Putting this all together, the summary should cover each risk area with key
points: how they're managed, current positions (like hedges), and potential
financial impacts. I need to make sure it's concise, around 300 words, and flows
well.
</think>

The risk report outlines the company's exposure to various market risks,
including interest rates, fuel prices, and commodities.

**Interest Rate Risk:** The company manages this through a mix of fixed and
floating rate debt, with variable rate debt valued at fair value. As of December
31, 2023, their total debt was approximately $9.8 billion, with $2.23 billion in
floating rate debt and swap contracts. A 100 basis point interest rate change
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could alter annual interest expenses by about $20 million.

**Fuel Price Risk:** Fuel costs are significant, and while the company charges
recovery fees to most customers, not all are covered. A 20-cent per gallon price
change in diesel would affect fuel costs by $27 million and fees by $36 million.
Additionally, petrochemical-based product costs may rise with fuel prices.

**Commodities Price Risk:** The company markets recycled materials, which face
market volatility. Despite past hedging strategies, no hedges were active as of
the report date. A $10 per ton price change could impact revenue and operating
income by $10 million each. Recycling revenue decreased from $359.1 million in
2022 to $312.3 million in 2023.

In summary, the company faces notable risks from fluctuating interest rates,
fuel prices, and commodities markets, with strategies in place to mitigate some
of these impacts.

Show ollama processes

!ollama ps

NAME ID SIZE PROCESSOR UNTIL
deepseek-r1:14b ea35dfe18182 11 GB 100% GPU 4 minutes from now

Generate summaries with OpenAI GPT-4o-mini model

summary[gpt_name] = collect_summaries(gpt_model)

===== 1/10. PACCAR INC =====
The risk report outlines the company's exposure to market risks, specifically
focusing on interest rate, currency, and commodity price risks, with figures
presented in millions.

In terms of interest rate risks, the company employs hedging programs to
mitigate exposure to fluctuations. The report quantifies the potential impact of
a 100 basis point increase in interest rates on the fair value of interest-
sensitive assets and liabilities. For 2023, the fair value losses for cash
equivalents and marketable debt securities amounted to $29.2 million, while
fixed-rate loans reflected a loss of $146.5 million. Conversely, fixed-rate term
debt showed gains of $156.8 million, and interest-rate swaps contributed a gain
of $1.2 million, resulting in a total net loss of $17.7 million for the year,
compared to a loss of $1.1 million in 2022.

Regarding currency risks, the company utilizes foreign currency exchange
contracts to hedge against fluctuations in various currencies, including the
Canadian dollar and the euro. The sensitivity analysis indicates a potential
loss of $259.7 million from a 10% unfavorable change in exchange rates as of
December 31, 2023, an increase from a loss of $216.6 million in 2022. However,
these losses are expected to be offset by corresponding changes in the values of
the underlying hedged exposures.

Lastly, the report addresses commodity price risks, where the company engages in
commodity forward contracts to stabilize earnings and cash flows against adverse
price movements. The potential loss in fair value from a 10% unfavorable change
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in commodity prices is estimated at $3.3 million for 2023, up from $2.5 million
in 2022, with similar offsetting effects from the underlying hedged exposures.
Overall, the report highlights the company's proactive approach to managing
market risks through various hedging strategies.

===== 2/10. PHILLIPS 66 =====
The risk report outlines the market risks faced by the company and its
subsidiaries, primarily stemming from fluctuations in commodity prices, interest
rates, and foreign currency exchange rates. The company is particularly exposed
to the prices of crude oil, refined petroleum products, natural gas liquids
(NGL), natural gas, renewable feedstock, and electric power. To manage these
risks, the company employs derivative contracts, including futures, forwards,
swaps, and options, which help convert fixed-price contracts to floating market
prices and optimize supply chain value.

The report emphasizes the company's policy of remaining exposed to market prices
while using derivatives to balance physical systems, meet refinery requirements,
and manage cash flow risks associated with price fluctuations. A Value at Risk
(VaR) model is utilized to estimate potential losses from adverse market
changes, indicating that the VaR for derivative instruments as of December 31,
2023, was immaterial to cash flows and operations.

Interest rate risk is another significant concern, as the company holds both
fixed-rate and variable-rate debt. Fixed-rate debt can lead to changes in fair
value due to market interest rate fluctuations, while variable-rate debt exposes
the company to short-term interest expense changes. The report provides detailed
tables of the company's debt instruments, highlighting their sensitivity to
interest rate changes.

Additionally, the company faces foreign currency risk from its international
operations but generally does not hedge this exposure. Risk monitoring is
overseen by the CEO and CFO, ensuring that risks related to commodity prices,
interest rates, and foreign exchange rates are effectively managed. The report
concludes with a cautionary note regarding forward-looking statements,
emphasizing the uncertainties and risks that could impact future performance,
including market conditions, regulatory changes, and geopolitical events.

===== 3/10. MASTERCARD INC =====
The risk report outlines the company's exposure to market risk, specifically
focusing on interest rate and foreign currency exchange rate fluctuations.
Market risk refers to potential economic losses from adverse changes in these
factors. The company has limited exposure to such risks, and management actively
monitors and implements policies to govern funding, investments, and the use of
derivative financial instruments to mitigate these risks.

To manage foreign currency risk, the company utilizes foreign exchange
derivative contracts to hedge against anticipated receipts and disbursements in
currencies other than its functional currency. This strategy aims to minimize
transaction gains and losses due to currency fluctuations, particularly against
the U.S. dollar and euro. A hypothetical 10% adverse change in the value of
functional currencies could lead to significant fair value losses on outstanding
foreign exchange derivatives, estimated at approximately $414 million and $94
million for the years ending December 31, 2023, and 2022, respectively, before
considering any offsetting effects.

Additionally, the company faces foreign exchange risk from daily settlement
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activities, which it manages through short-duration derivative contracts.
However, a similar hypothetical 10% adverse change would not materially impact
the fair value of these contracts. The company also has exposure related to the
translation of net investments in foreign subsidiaries, although as of December
31, 2023, it had no designated net investment hedges.

Regarding interest rate risk, the company holds both fixed and variable-rate
securities. It maintains a policy of investing in high-quality securities while
ensuring liquidity and diversification. A hypothetical adverse change of 100
basis points in interest rates would not significantly affect the fair value of
these investments or the company's interest rate derivative contracts related to
fixed-rate debt. Overall, the company employs various strategies to manage its
market risk effectively.

===== 4/10. BRISTOL MYERS SQUIBB CO =====
The risk report outlines the company's exposure to market risks, particularly
from fluctuations in currency exchange rates and interest rates. To mitigate
these risks, the company employs various derivative financial instruments,
although these are not used for trading purposes. The report highlights
significant foreign exchange risks, particularly related to the euro and
Japanese yen, which affect the company's revenues, earnings, and cash flow. To
manage these risks, the company utilizes foreign currency forward contracts and
purchased local currency put options, primarily for intercompany transactions.
Additionally, these contracts help hedge against foreign currency exposures
related to net investments in international affiliates.

The report estimates that a 10% appreciation in the currencies being hedged
against the U.S. dollar would lead to a decrease in the fair value of foreign
exchange contracts by $409 million and $782 million as of December 31, 2023, and
2022, respectively. Conversely, cross-currency swap contracts, which are used to
manage risks from long-term debt in euros, would see an increase in fair value
by $46 million in 2023, while decreasing by $73 million in 2022 under similar
currency appreciation scenarios.

Regarding interest rate risk, the company employs fixed-to-floating interest
rate swap contracts to balance its debt portfolio. A sensitivity analysis
indicates that a 1% increase in interest rates would not materially impact
earnings. However, it is estimated that such an increase would decrease the fair
value of long-term debt by $3.0 billion in 2023 and $2.6 billion in 2022.

Lastly, the report addresses credit risk associated with counterparties in
derivative transactions. The company maintains a strict investment policy to
minimize credit risk, ensuring that investments are made only with high-quality
institutions and diversifying counterparties to mitigate potential defaults. For
further details, the report refers to additional financial statements and
supplementary data.

===== 5/10. CARRIER GLOBAL CORP =====
The risk report outlines the company's exposure to market risks, including
fluctuations in foreign currency exchange rates, interest rates, and commodity
prices, which could affect its financial performance. As of December 31, 2023,
there has been no significant change in the company's exposure to these market
risks.

In terms of foreign currency exposure, the company operates globally, which
subjects it to exchange rate fluctuations relative to its reporting currency,
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the U.S. dollar. Many of its international operations use currencies other than
the U.S. dollar, meaning that the company's reported results can vary based on
the strength or weakness of the dollar against these currencies. While the
company actively manages material currency exposures related to transactions at
the legal entity level, it does not hedge against currency translation risk.

The report highlights specific transactions, such as the acquisition of the VCS
business, where 80% of the euro-denominated purchase price was paid in cash,
exposing the company to exchange rate risks. To mitigate this risk, the company
utilized window forward contracts, with changes in their fair value reflected in
other income or expense. Similarly, for the TCC acquisition, the company
employed cross currency swaps and a Japanese term loan facility to hedge against
foreign currency translation risks associated with its investments in
subsidiaries operating in yen.

Regarding commodity price exposure, the company faces volatility in the prices
of certain commodities and shipping fuel costs. While it uses fixed-price
contracts to manage some of this exposure, it currently does not have any
commodity hedge contracts in place. Lastly, the report notes that most of the
company's long-term debt carries fixed interest rates, insulating it from
significant impacts due to fluctuations in market interest rates.

===== 6/10. LULULEMON ATHLETICA INC =====
The risk report outlines various market risks faced by the company, focusing on
foreign currency exchange risk, interest rate risk, credit risk, and inflation.

Foreign currency exchange risk is primarily associated with the translation of
financial statements from local currencies of international subsidiaries into
U.S. dollars. In 2023, fluctuations in exchange rates resulted in a revenue
decrease of $89.8 million compared to 2022. The company records foreign currency
translation differences as other comprehensive income (loss) within
stockholders' equity. A significant portion of net assets is held in Canadian
dollars, and the company uses forward currency contracts to hedge against
translation exposure. The translation of Canadian subsidiaries contributed to an
increase in other comprehensive loss of $9 million, despite net investment hedge
gains. Additionally, transaction risk arises from intercompany transactions and
inventory purchases in currencies other than the subsidiaries' functional
currencies. As of January 28, 2024, the company had forward currency contracts
to hedge against foreign currency revaluation gains and losses.

Interest rate risk is linked to the company's revolving credit facility, which
has a variable interest rate. As of January 28, 2024, there were no borrowings
under this facility, but the company may consider using derivative financial
instruments in the future to mitigate potential losses if a significant balance
arises.

Credit risk is minimal, as the company holds cash with reputable financial
institutions and invests in AAA-rated money market funds. The company actively
monitors the creditworthiness of its counterparties to limit exposure.

Lastly, inflation poses a risk to operating results, particularly due to rising
costs in wages, transportation, and raw materials. Increased costs may adversely
affect operating margins if selling prices do not adjust accordingly. The report
emphasizes the importance of managing these risks to maintain financial
stability.

(continues on next page)
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===== 7/10. AIRBNB INC =====
The risk report outlines the market risks faced by the company, primarily
focusing on foreign currency risk and investment risk due to its extensive
global operations. In 2023, the company conducted transactions in over 40
currencies, with significant exposure to the euro, British pound, Canadian
dollar, Australian dollar, Brazilian real, and Mexican peso. This exposure
arises from international revenue and expenses, which are subject to
fluctuations in foreign currency exchange rates against the U.S. dollar.
Consequently, a strengthening U.S. dollar can negatively impact financial
results, while a weakening dollar can be beneficial.

The company faces foreign currency risks related to various aspects, including
revenue from bookings in foreign currencies, funds receivable and payable, and
intercompany balances. To mitigate these risks, the company employs foreign
currency derivative contracts aimed at managing forecasted foreign-denominated
revenue and other related balances. However, these hedges do not completely
eliminate the impact of currency fluctuations, and the company may opt not to
hedge certain exposures due to economic or accounting considerations. A
hypothetical adverse change of 10% in foreign currency exchange rates could lead
to a loss of approximately $20 million.

Additionally, the report addresses investment and interest rate risk,
particularly concerning the company's investment portfolio. As of December 31,
2023, the company held $6.9 billion in cash and cash equivalents and $3.2
billion in short-term investments, primarily in high-quality debt securities.
The company aims to preserve capital and maintain liquidity without
significantly increasing risk, avoiding speculative investments. Due to the
short maturities of its investments, the portfolio is relatively insensitive to
interest rate changes, with a potential $20 million decrease in value
anticipated from a hypothetical 100 basis point increase in interest rates.

===== 8/10. MERCADOLIBRE INC =====
The risk report outlines the market risks faced by the company, primarily
stemming from macroeconomic instability and fluctuations in interest rates and
foreign currency exchange rates, particularly with the Brazilian real, Argentine
peso, and Mexican peso. These factors can significantly impact the value of the
company's financial assets and liabilities. The company also faces risks related
to its long-term retention programs (LTRPs), which involve cash payments to
employees that vary based on the market price of its stock.

With substantial international operations, the company is exposed to foreign
currency risks that can adversely affect its financial results. It engages in
transactions in various foreign currencies and charges its international
subsidiaries for the use of intellectual property and corporate services. To
mitigate these risks, the company employs foreign currency exchange forward
contracts and currency swaps, although these hedges do not completely eliminate
the impact of currency fluctuations.

As of December 31, 2023, the company reported significant cash and cash
equivalents, receivables, and investments in foreign currencies, totaling over
$12 billion. The report highlights a consolidated loss of $615 million due to
foreign currency fluctuations, particularly in Argentina, where government
restrictions on accessing U.S. dollars have exacerbated losses.

Interest rate changes also pose risks to the company's earnings and cash flows,
affecting the cost of financing and the returns on investments. The report notes
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that a hypothetical increase in interest rates could lead to increased financial
liabilities.

Additionally, the company’s LTRPs expose it to equity price risk, with a total
contractual obligation fair value of $418 million as of December 31, 2023. The
report includes sensitivity analyses showing how changes in equity prices could
impact the company's financial obligations related to these programs. Overall,
the report emphasizes the complexities and potential financial impacts of market
risks on the company's operations.

===== 9/10. A T & T INC =====
The risk report outlines AT&T Inc.'s exposure to market risks, primarily from
fluctuations in interest rates and foreign currency exchange rates, which affect
its cost of capital. The company employs a strategic approach to manage these
risks, utilizing derivatives such as interest rate swaps, locks, and cross-
currency swaps, strictly for hedging purposes rather than speculative trading.
The report indicates that there are no anticipated changes to these risk
management strategies in the near future.

A significant factor in estimating postretirement benefit obligations is the
weighted-average discount rate, which has seen increased volatility and is
currently lower than historical averages. This results in higher obligations for
the company, although future increases in discount rates could lead to lower
obligations and improved funded status.

Interest rate risk is managed through a mix of fixed- and floating-rate debt,
with the majority of financial instruments being medium- to long-term fixed-rate
notes. The company has established limits on interest rate risk and closely
monitors its debt and derivatives portfolios. As of December 31, 2023, AT&T had
no interest rate locks but utilized cross-currency swaps to mitigate risks
associated with foreign-denominated debt.

Foreign exchange risk is addressed through contracts that hedge costs and debt
in foreign currencies. The report notes that AT&T's foreign-denominated debt has
been converted to fixed-rate U.S. dollars, effectively eliminating associated
risks. A sensitivity analysis is employed to assess the impact of market risk
exposures on the fair value of financial instruments.

Overall, the report emphasizes AT&T's commitment to maintaining financial
flexibility and managing risks effectively through established policies and
procedures, ensuring the integrity of its financial reporting and internal
controls.

===== 10/10. REPUBLIC SERVICES INC =====
The risk report outlines the company's exposure to market risks, particularly
focusing on interest rate risk, fuel price risk, and commodities price risk.

In terms of interest rate risk, the company is primarily affected by
fluctuations in U.S. interest rates and the Secured Overnight Financing Rate
(SOFR). To manage this risk, the company employs a mix of fixed and floating
rate debt. As of December 31, 2023, the carrying value of its variable rate debt
is close to its fair value, reflecting current market conditions. The company
has also utilized interest rate swap agreements as cash flow hedges to mitigate
the impact of interest rate fluctuations on its variable rate debt. The report
indicates that a 100 basis point change in interest rates could alter annual
interest expenses by approximately $20 million.

(continues on next page)
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Regarding fuel price risk, fuel costs are a significant operational expense for
the company. Although it charges fuel recovery fees to most customers, it cannot
do so universally. As of the end of 2023, the company had no fuel hedges in
place. A 20-cent per gallon change in diesel fuel prices could affect fuel costs
by about $27 million annually, while the corresponding change in fuel recovery
fees could be around $36 million.

Lastly, the report addresses commodities price risk, particularly concerning the
marketing of recycled materials. The company has experienced volatility in
commodity prices due to market supply and demand fluctuations. As of December
31, 2023, it had no hedges in place for recycling commodities. A $10 per ton
change in recycled commodity prices could impact annual revenue and operating
income by approximately $10 million. Revenue from recycling activities decreased
from $359.1 million in 2022 to $312.3 million in 2023. Overall, the report
highlights the company's proactive approach to managing these market risks while
acknowledging the inherent uncertainties.

35.3.4 Evaluation

ROUGE
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a set of metrics used to evaluate the quality of summaries
by comparing them to reference summaries or human-generated summaries.

• ROUGE-N measures the overlap of n-grams (contiguous sequences of n words) between the system-generated and
the reference summaries

• ROUGE-L measures the longest common subsequence (LCS).
BLEU Bilingual Evaluation Understudy (BLEU) evaluates n-gram precision with a brevity penalty to discourage overly
short outputs. Originally for machine translation, it is also used for summarization.

• N-gram Precision measures the overlap of n-grams (typically up to 4-grams) between the system-generated sum-
mary and the reference summary.

• Brevity Penalty penalizes overly short summaries that do not capture enough information from the reference sum-
maries.

• Cumulative BLEU calculates the geometric mean of BLEU scores for 1-gram to n-gram, rewarding systems that
produce more accurate translations across longer phrases.

# These metrics compare overlapping n-grams to measure content similarity.
from rouge_score import rouge_scorer

# computes ROUGE-1 and ROUGE-2 scores between model-generated summaries
def collect_rouge(target, prediction):

"""Helper to loop over companies to compute rouge scores of two risk summaries"""
scores = {'rouge1': [], 'rouge2': []}
scorer = rouge_scorer.RougeScorer(scores.keys(), use_stemmer=True)
for permno in docs.index:

score = scorer.score(target=target[permno], prediction=prediction[permno])
for rouge_type in scores.keys():

scores[rouge_type].append(Series(score[rouge_type]._asdict(),
name=univ.loc[permno, 'comnam']))

return scores
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# Display and compare rouge metric
def display_rouge(rouge_type, scores):

"""Helper to display rouge scores over the companies"""
df = pd.concat(scores[rouge_type], axis=1)
print(f"{rouge_type.upper()} metric:")
return pd.concat([df, df.T.mean().rename(' average')], axis=1).T # display

# Compute rouge-1 and rouge-2 scores between gpt- and llama-generated summaries
scores = collect_rouge(target=summary[gpt_name], prediction=summary[model_name])

display_rouge("rouge1", scores)

ROUGE1 metric:

precision recall fmeasure
PACCAR INC 0.787234 0.742475 0.764200
PHILLIPS 66 0.366142 0.324042 0.343808
MASTERCARD INC 0.759184 0.628378 0.687616
BRISTOL MYERS SQUIBB CO 0.773913 0.585526 0.666667
CARRIER GLOBAL CORP 0.761628 0.451724 0.567100
LULULEMON ATHLETICA INC 0.560241 0.636986 0.596154
AIRBNB INC 0.720472 0.639860 0.677778
MERCADOLIBRE INC 0.467593 0.331148 0.387716
A T & T INC 0.393805 0.312281 0.348337
REPUBLIC SERVICES INC 0.783410 0.553746 0.648855

average 0.637362 0.520617 0.568823

display_rouge("rouge2", scores)

ROUGE2 metric:

precision recall fmeasure
PACCAR INC 0.483986 0.456376 0.469775
PHILLIPS 66 0.079051 0.069930 0.074212
MASTERCARD INC 0.381148 0.315254 0.345083
BRISTOL MYERS SQUIBB CO 0.441048 0.333333 0.379699
CARRIER GLOBAL CORP 0.350877 0.207612 0.260870
LULULEMON ATHLETICA INC 0.244713 0.278351 0.260450
AIRBNB INC 0.367589 0.326316 0.345725
MERCADOLIBRE INC 0.116279 0.082237 0.096339
A T & T INC 0.097778 0.077465 0.086444
REPUBLIC SERVICES INC 0.462963 0.326797 0.383142

average 0.302543 0.247367 0.270174
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35.3.5 Role prompting

By adjusting the system prompt (e.g.,“You are a patient teacher”), LLMs can be guided to produce more accessible
summaries. This technique, known as role prompting, is helpful for tailoring the tone and persona of responses for
specific audiences.

# generates simplified summaries for readability
summary['simple_deepseek'] = collect_summaries(

model,
role="You are a patient lower-school teacher, using simple words to explain to␣

↪your students in the fifth grade.")

===== 1/10. PACCAR INC =====
<think>
Okay, so I need to summarize this risk report for fifth graders. Let me read
through it carefully first.

The report talks about market risks and derivative instruments. It mentions
interest-rate risks, currency risks, and commodity price risks. Each section has
some numbers and explanations.

Starting with interest-rate risks: The company uses hedging programs to manage
how changes in interest rates affect them. They estimate the impact if there's a
100 basis point increase across all yield curves. There are tables showing
potential losses or gains for assets and liabilities in 2023 and 2022.

Next, currency risks: The company hedges against exchange rate fluctuations for
several currencies like Canadian dollar, euro, etc. They mention potential
losses from unfavorable changes in foreign exchange rates, with numbers for 2023
and 2022.

Then, commodity price risks: They use forward contracts to hedge prices of
commodities used in truck production. The report states the potential loss from
a 10% unfavorable change in commodity prices, again giving figures for both
years.

I need to simplify this into prose that fifth graders can understand. I should
avoid jargon and explain terms like "hedging" as strategies to reduce risk.
Maybe use analogies they can relate to, like protecting something with
insurance.

I'll structure it by introducing each type of risk, explain the method used
(hedging), mention the potential losses in simple terms, and note that these are
offset by other changes. I should keep sentences short and clear, avoiding
complex structures.

Let me make sure I cover all three risks: interest rates, currencies,
commodities. For each, a brief explanation of what it is, how they manage it,
and the associated numbers without getting too bogged down in specifics.

I think that's a good plan. Now, let me put it all together in a summary.
</think>

**Understanding Market Risks for Kids**

Imagine you have a big lemonade stand, and you want to protect yourself from
things that might make your profits go down. There are three main risks we talk

(continues on next page)
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about here: interest rates, currencies, and commodity prices.

1. **Interest Rates**: Just like how the bank gives you different rates if you
save or borrow money, companies have to deal with changing interest rates too.
If rates go up suddenly, it can affect how much money they make or owe. The
company uses something called hedging to protect against these changes. They
look at how much their assets and debts might change if interest rates went up
by a full percentage point. In 2023, they saw a small loss, but in 2022, it was
almost no loss.

2. **Currencies**: When you sell lemonade to people from other countries who use
different money, the exchange rate can affect how much you make. The company
uses contracts to protect against changes in these rates for currencies like the
Canadian dollar and euro. If these rates go 10% against them, they might lose
some money, but this was $259.7 million in 2023 and $216.6 million in 2022.
However, other factors balance this out.

3. **Commodity Prices**: Making lemonade needs lemons, right? If the price of
lemons goes up or down a lot, it affects your costs. The company uses forward
contracts to lock in prices for materials they need, like metals and plastics
for making trucks. A 10% bad change in these prices could cost them $3.3 million
in 2023 and $2.5 million in 2022, but again, other changes help reduce this
impact.

So, just like you might save money or buy insurance to protect your lemonade
stand, companies use strategies like hedging to manage these risks and keep
their profits safe.

===== 2/10. PHILLIPS 66 =====
<think>
Okay, so I'm trying to understand all these risks mentioned in the document. Let
me start by reading through them carefully.

First, there are market conditions like fluctuations in prices and margins for
NGLs, crude oil, natural gas, and refined products. That makes sense because
energy prices can be really volatile due to things like supply and demand
changes or geopolitical events.

Then there's government policies affecting pricing, regulation, taxation,
especially exports. I know that export policies can have a big impact on supply
and demand, so this is an important factor.

Capacity constraints in pipelines, storage, and fractionation facilities are
another risk. If these infrastructure issues arise, it could limit how much
product they can transport, leading to bottlenecks or higher costs.

OPEC and non-OPEC actions influence supply and demand, which affects prices. I
remember that OPEC's decisions can cause significant shifts in the market.

The success of DCP LP integration is mentioned, including achieving synergies.
This probably refers to a business strategy where they're combining operations,
so if this doesn't go as planned, it could hurt their performance.

Unexpected technical difficulties or cost increases during construction or
operation are risks too. Construction delays can be costly and disrupt
production.

(continues on next page)
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Drilling and production volumes around midstream assets are another point. If
the wells aren't producing as expected, it affects the company's revenue from
those assets.

Permits and regulations compliance are also risks. They need to get permits for
projects, and if they can't or if regulations change, it could delay things or
require more spending.

Savings and cost reductions from business transformation initiatives might not
happen as planned. If they don't achieve these savings, their financial goals
could be at risk.

Renewable fuels policies and climate change regulations are factors too. Changes
in these areas could affect demand for traditional fuels or require new
investments.

Economic and political developments like the Russia-Ukraine war can impact
markets. Also, things like inflation, interest rates, and expropriation of
assets pose risks.

Public health crises, like pandemics, can disrupt operations and reduce demand
for their products. The recovery after such events is also uncertain.

Capital projects might not be completed on time or within budget. Delays here
can lead to cost overruns and project failures.

Asset dispositions or acquisitions could face challenges if they don't complete
them successfully. This includes both the sale of assets and buying new ones.

Litigation or government actions could disrupt operations, leading to legal fees
or operational changes.

Accidents, weather events, civil unrest, etc., can damage facilities and
interrupt operations, causing financial losses.

Meeting sustainability goals is another risk. If they don't reduce GHG emissions
as planned or develop new technologies, it could affect their reputation and
operations.

New products might not be accepted by the market, leading to wasted investments.

Monetary conditions and exchange controls can impact international trade and
profitability.

Environmental regulations requiring significant investments or reducing demand
for their products are risks. They might have to spend a lot on compliance or
face reduced sales.

Liability from environmental issues like cleanup costs is another concern.

Changes in laws and regulations, including alternative energy mandates, could
force them to adapt their business models.

Climate change concerns might lead to changes in how they operate or increase
expenses through litigation or other costs.

(continues on next page)
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Impairment charges could occur if the value of assets decreases due to market
conditions or strategic decisions.

Access to capital is crucial; if it's limited or more expensive, they might not
be able to fund their operations effectively.

Counterparties going bankrupt could lead to financial losses from unpaid debts
or obligations.

Cybersecurity incidents can compromise sensitive data and lead to legal
liabilities or operational disruptions.

Joint ventures that the company doesn't control could make decisions that
negatively impact their own business.

Lastly, all these factors are generally described in Item 1A of the risk factors
in the report.

I think I've covered all the points. Now, how do I summarize this? Maybe by
categorizing them into market risks, regulatory risks, operational risks,
financial risks, and environmental/sustainability risks. That way, it's easier
to understand and address each category separately.
</think>

The document outlines a comprehensive list of risks that could impact the
company's performance and operations. These risks can be categorized as follows:

1. **Market Risks**:
- Volatility in energy prices (NGLs, crude oil, natural gas, refined

products).
- Fluctuations in margins and demand for refining and petrochemical products.
- Impact of OPEC and non-OPEC actions on supply and demand.

2. **Regulatory and Policy Risks**:
- Changes in government policies affecting pricing, regulation, taxation, and

exports.
- Compliance with environmental regulations (GHG emissions, renewable fuels).
- Influence of international monetary conditions and exchange controls.

3. **Operational Risks**:
- Capacity constraints in transportation infrastructure (pipelines, storage).
- Delays or cost overruns in construction and capital projects.
- Challenges in permit acquisition and regulatory compliance.
- Risks from joint ventures not under the company's control.

4. **Financial Risks**:
- Failure to achieve expected savings from business transformation

initiatives.
- Impairment charges due to asset value declines.
- Limitations in accessing capital or increased funding costs.
- Counterparty risks (e.g., bankruptcy leading to financial losses).

5. **Environmental and Sustainability Risks**:
- Meeting sustainability goals and adapting to climate change regulations.
- Development of new technologies and products that may not gain market

(continues on next page)
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acceptance.

6. **Geopolitical and Public Health Risks**:
- Impact of geopolitical events (e.g., Russia-Ukraine war) on markets.
- Disruptions from public health crises (e.g., pandemics).

7. **Legal and Reputational Risks**:
- Litigation risks and potential liabilities from environmental issues.
- Cybersecurity threats leading to data breaches or operational disruptions.

By categorizing these risks, the company can better manage and mitigate
potential challenges across different areas of its operations.

===== 3/10. MASTERCARD INC =====
<think>
Okay, so I need to explain this risk report to fifth graders. Let me read
through it again and try to understand what it's saying.

The report is about market risks that a company faces, specifically MasterCard,
I think. Market risk here refers to the possibility of losing money because of
changes in things like interest rates or foreign exchange rates. The company
talks about how they manage these risks by using derivatives and other financial
instruments.

First, there's something about foreign currency risk. They use derivative
contracts to handle the exposure from transactions that happen in different
currencies. These contracts help them reduce losses if the exchange rate
changes. For example, a 10% change could lead to a loss of around $414 million
in 2023 and $94 million in 2022. But they also mention that these numbers don't
account for the actual transactions they're hedging against.

Then there's interest rate risk. They have investments that are sensitive to
changes in interest rates, but a 1% change wouldn't cause significant losses
because their portfolio is diversified and they invest in high-quality
securities. They also use derivative contracts to hedge some of their fixed-rate
debt.

I need to simplify all this into about 300 words using simple language. I should
avoid jargon and explain concepts like derivatives, exchange rates, and interest
rates in a way that fifth graders can understand. Maybe compare it to something
they know, like saving money or exchanging currencies when traveling.

I'll start by introducing what market risk is, then talk about how the company
manages foreign currency risks using contracts, and then move on to interest
rate risks. I should also mention that these risks are managed through policies
and tools, but even with all that, there's still some potential for loss if
things change unexpectedly.

Let me structure it step by step: introduce market risk, explain foreign
exchange risk with an example, talk about how they manage it, then move to
interest rates, and finally wrap up by saying that while they take steps to
minimize these risks, there are still possible losses.
</think>

**Understanding Market Risks in Simple Terms**

(continues on next page)
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Imagine you have a piggy bank where you save your money. Sometimes, the value of
your savings can change based on things like how much interest you earn or
changes in exchange rates if you're saving different currencies.

Market risk is like the possibility that your piggy bank's value might go down
because of these changes. Companies, just like you, want to protect their money
from losing value.

One way they do this is by using something called derivatives, which are like
special contracts. For example, if a company does business in different
countries and gets money in other currencies, they can use these contracts to
protect against the risk that those currencies might lose value compared to
their home currency, like the US dollar or euro.

They also watch interest rates because if the bank where they keep their money
changes the interest rate, it affects how much they earn. By using more of these
special contracts, they can reduce the chance that their savings will be
affected by these changes.

Even though companies use these tools to protect themselves, there's still a
chance that unexpected changes could cause losses. So, while they take steps to
keep their money safe, they know there are no guarantees in the ever-changing
world of money and exchange rates.

===== 4/10. BRISTOL MYERS SQUIBB CO =====
<think>
Okay, so I need to explain this risk report to fifth graders. Let me read
through it again to make sure I understand the main points.

The report talks about market risks related to currency exchange rates and
interest rates. The company uses derivatives like forwards and swaps to hedge
these risks when it's cost-effective. They mention that all financial
instruments, including derivatives, are subject to counterparty credit risk,
which is part of their fair value measurement. Importantly, they don't use
derivatives for trading purposes.

Looking at foreign exchange risk, a big part of their revenue, earnings, and
cash flow are affected by changes in currency rates, mainly the euro and
Japanese yen. They use forward contracts and put options to manage risks from
intercompany transactions. There's also transaction risk from non-functional
currencies, which they handle with forwards but aren't designated as hedges.
Additionally, cross-currency swaps help manage long-term debt in euros and hedge
net investments.

They estimate that a 10% appreciation in the hedged currencies would decrease
the fair value of their foreign exchange contracts by certain amounts, reducing
earnings. Similarly, cross-currency swaps would have different impacts on their
fair values.

For interest rate risk, they use fixed-to-floating swaps to balance their debt
and analyze sensitivity to rate changes. A 1% increase in rates wouldn't harm
earnings much, but a larger increase in long-term rates would decrease the fair
value of their long-term debt.

Credit risk is managed by investing only with high-quality institutions and
diversifying derivatives across counterparties to reduce default risks.

(continues on next page)
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Now, I need to simplify this into about 300 words. I'll start by introducing
market risks, then break it down into foreign exchange and interest rate risks,
explaining how they use derivatives to hedge. Then touch on credit risk
management. I should avoid jargon and make each part clear for kids.
</think>

Imagine you have a big company that sells things around the world. Sometimes,
when they sell or buy stuff in other countries, the money they get can change
value because of something called exchange rates. It's like if you have dollars
and someone else has euros, and one day those euros might be worth more or less
compared to your dollars.

The company uses special tools called derivatives to protect themselves from
these changes. These tools are kind of like insurance policies that help them
guess what the money will look like in the future so they don't lose too much if
things change.

They also have to worry about interest rates, which are like the cost of
borrowing money. If the interest rates go up, it might make their debts more
expensive. But again, they use these derivative tools to balance things out and
not get hurt too badly.

Lastly, they make sure that the people they deal with (their counterparties) are
trustworthy so that if something goes wrong, they don't lose money because
someone else didn't pay them back.

So, in short, the company is careful about how it handles money changes and
interest rates using special tools to stay safe financially.

===== 5/10. CARRIER GLOBAL CORP =====
<think>
Okay, so I need to explain this risk report to fifth graders. Let me read
through it again and try to understand what it's saying.

The report talks about market risks like foreign currency exchange rates,
interest rates, and commodity prices affecting the company's operations and
financial condition. It says there haven't been significant changes in their
exposure to these risks in 2023.

First part is about foreign currency exposures. They have operations all over
the world, so when currencies change against the US dollar, it affects their
reported results. They manage some currency risks with things like window
forward contracts and cross-currency swaps, especially for big acquisitions. But
they don't hedge translation risk entirely.

Then there's commodity price exposure. They use fixed-price contracts sometimes
but didn't have any hedges at the end of 2023. Fuel costs for shipping are
another concern.

Interest rate exposure is low because most debt has fixed rates, so changes in
market rates won't affect them much.

I need to simplify all this into a summary that's easy for fifth graders to
understand. Maybe use examples they can relate to, like how exchanging money
when traveling can change how much you have, or how prices of things like oil
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can go up and down affecting costs.

I should avoid jargon and keep sentences short. Make sure each point is clear
and relatable.
</think>

The company faces risks from changes in foreign exchange rates, interest rates,
and commodity prices, which can affect their profits and financial health. These
risks haven't changed much over the past year.

**Foreign Currencies:**
They operate worldwide, so when other countries' currencies go up or down
against the US dollar, it affects how much money they make. They use strategies
like window forward contracts to manage some of these risks, especially for big
purchases. For example, if they buy something in euros and the euro goes up, it
might cost them more in dollars.

**Commodity Prices:**
They rely on materials whose prices can swing, like oil used for shipping.
Sometimes they lock in fixed prices to avoid sudden jumps, but at the end of
2023, they didn't have any such contracts.

**Interest Rates:**
Most of their loans have fixed rates, so even if market rates change, it won't
affect them much. It's like having a set monthly payment on a loan, no
surprises.

In summary, they manage some risks with smart financial tools but still face
uncertainties from global markets and material costs.

===== 6/10. LULULEMON ATHLETICA INC =====
<think>
Okay, so I need to explain this risk report to fifth graders. Let me read
through it again and try to understand what each part is saying.

First, the report talks about market risks, specifically foreign currency
exchange risk and translation risk. It mentions that their international
subsidiaries use local currencies as functional currencies, but the financial
statements are in US dollars. So when they translate from other currencies to
USD, changes in exchange rates affect the reported amounts. In 2023, their
revenue was lower by $89.8 million compared to 2022 because of this.

They also mention translation risk where differences from translating balance
sheets into USD are recorded as part of comprehensive income. They have a
Canadian subsidiary with significant net assets and use forward contracts to
hedge some of this exposure. The impact on their comprehensive loss was an
increase due to these hedges.

Then there's transaction risk, which comes from transactions in currencies other
than the functional currency—like intercompany transactions or inventory
purchases. They hold cash in different currencies too. As of a certain date,
they had forward contracts to hedge revaluation gains and losses on monetary
assets and liabilities of their subsidiaries.

They did a sensitivity analysis showing that a 10% depreciation in USD would
affect the fair value of derivatives by $29.8 million. But this is offset by
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changes in the underlying hedged items. They plan to use more derivatives in the
future for other currency pairs but don't trade them for profit.

Next, interest rate risk: their credit facility has variable rates, so if they
borrow money, changing rates could affect them. As of the date, they didn't have
any borrowings except for some letters of credit. They don't do any hedging now
but might in the future if needed.

They hold cash and equivalents in safe places like money market funds, which are
AAA-rated. Even though some deposits exceed insured limits, they haven't had any
losses. They monitor the financial institutions they deal with to minimize
credit risk.

Lastly, inflation could affect their costs—like wages, freight, and raw
materials—which might hurt their margins if they can't pass these costs onto
customers or find efficiencies.

So, putting this all together, I need to explain it in simple terms for fifth
graders. Maybe start by talking about exchanging money between countries and how
the value of money changes over time. Then explain that when companies do
business internationally, they have to convert currencies, which can lead to
gains or losses based on exchange rates. Use an example with a pretend company
to make it relatable.

I should also mention hedges as a way to protect against these risks, maybe
using the analogy of insurance. Keep each section short and use everyday
language so it's easy to understand.
</think>

**Explaining Market Risks in Simple Terms for Fifth Graders**

Imagine you're a kid who loves to travel and exchange money between countries.
When you go on vacation, you might take some dollars and exchange them into
another country's currency, like Canadian dollars or Euros. Now, companies that
do business all over the world also have to deal with exchanging money, but it
can be tricky because the value of these currencies changes over time.

**1. Foreign Currency Exchange Risk:**
Just like how you might get more or fewer toys when you exchange your money,
companies can end up with more or less "toys" (money) based on how the exchange
rate changes. For example, if a company earns money in Canada but reports it in
US dollars, a change in the value of the Canadian dollar against the US dollar
can make their earnings go up or down. In 2023, this change made their revenue
$89.8 million less than in 2022.

**2. Translation Risk:**
When companies translate their money from one country's currency to another,
like converting Canadian dollars back to US dollars for reports, the value can
change. This is called translation risk. Sometimes, these changes can affect how
much profit or loss a company shows on its financial statements.

**3. Transaction Risk:**
Companies also face risks when they do transactions in different currencies. For
example, if they buy something from another country and pay in that country's
currency, the value of that payment can change by the time it's converted back
to their home currency. To protect against this, companies might use "hedges,"
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which are like insurance policies to lock in exchange rates.

**4. Interest Rate Risk:**
Borrowing money is another area where companies face risks. If they take a loan
with an interest rate that changes over time, and if those rates go up, it could
cost them more money to pay back the loan. Companies keep an eye on this so they
can plan for any increases.

**5. Inflation:**
Inflation is when things like food, clothes, and other goods get more expensive
over time. For companies, this means their costs might go up too—like paying
more for materials or worker wages. If a company can't increase its prices
enough to cover these higher costs, it could affect their profits.

**6. Credit Risk:**
When companies deal with banks or other financial institutions, there's always a
chance that the other side might not be able to pay back what they owe. To
minimize this risk, companies work with reliable institutions and keep track of
how much money they're dealing with from each partner.

In summary, just like you have to be careful when exchanging money while
traveling, companies must manage these risks carefully to ensure their profits
aren't affected by changes in currency values, interest rates, or inflation.
Using tools like hedges and working with trustworthy institutions helps them
navigate these challenges smoothly.

===== 7/10. AIRBNB INC =====
<think>
Okay, so I need to summarize this risk report for fifth graders. Let me read
through it carefully first.

The report talks about market risks that Airbnb faces because they operate all
over the world. The main risks are foreign currency risk and investment risk.

Foreign currency risk is when changes in exchange rates affect their financial
results. They accept payments in over 40 currencies, so if the US dollar
strengthens or weakens, it can impact how much money they make or spend. For
example, if the US dollar gets stronger, their revenue from other countries
might decrease because those dollars are worth less.

They also mention that they use foreign currency derivatives to hedge against
some of these risks, but they don't eliminate all the effects. There's a 20
million loss mentioned if exchange rates were to change unfavorably.

Investment risk is related to their investment portfolio. They have a lot of
cash and short-term investments in things like debt securities. If interest
rates go up or down, it can affect how much they earn on these investments. A
100 basis point increase would decrease their portfolio by 20 million. But since
most of their investments are short-term, the risk from interest rate changes
isn't too bad.

I need to explain all this in simple terms for kids. Maybe use analogies they
can understand, like comparing currencies to different types of money and how
exchanging them can be tricky. Also, simplify investment risks by talking about
saving money in a piggy bank or something safe where small changes in interest
rates don't matter much.

(continues on next page)
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I should structure it into two main parts: foreign currency risk and investment
risk. Use everyday language and avoid jargon. Maybe include examples they can
relate to, like traveling abroad and exchanging money.
</think>

**Understanding Airbnb's Market Risks in Simple Terms**

Airbnb faces some financial risks because they operate all around the world,
dealing with many different currencies and investments. Let's break down these
risks into two main parts: foreign currency risk and investment risk.

1. **Foreign Currency Risk:**
- Imagine you have money in one country's currency, like euros from France or

pounds from England. If the value of your home currency (like the US dollar)
changes, it can affect how much money you actually have when you exchange it.

- Airbnb deals with over 40 currencies, which means they are exposed to
changes in exchange rates. For example, if the US dollar becomes stronger, the
money they make from other countries might decrease because those dollars are
worth less.

- To protect against these changes, Airbnb uses something called foreign
currency derivatives, which are like insurance policies to reduce the impact of
bad exchange rate changes. However, even with this protection, there's still
some risk. If exchange rates were to change unfavorably, they could lose about
$20 million.

2. **Investment Risk:**
- Airbnb keeps a lot of money in safe investments, like short-term debt

securities and government bonds. These are similar to putting money in a savings
account where it's secure but doesn't earn a lot.

- If interest rates change, the value of these investments can go up or down.
For instance, if interest rates were to increase by 1%, their investment
portfolio could decrease by about $20 million.

- However, since most of their investments are short-term, they aren't too
affected by small changes in interest rates. It's like having money in a piggy
bank where you don't need it right away, so minor fluctuations won't hurt much.

In summary, Airbnb manages risks from exchanging currencies and investing by
using protective measures, but there are still some uncertainties due to the
global nature of their business.

===== 8/10. MERCADOLIBRE INC =====
<think>
Okay, so I'm trying to understand this document about MercadoLibre's risks and
sensitivities. It seems like it's part of their financial disclosures, maybe in
their annual report or something similar. Let me break down what each section is
saying.

First, the foreign exchange risk. They have a significant amount of revenue from
Brazil, Argentina, and other Latin American countries. Since they're dealing
with multiple currencies, especially the Brazilian real and Argentine peso,
which can be volatile, this could affect their financials. If the real or peso
weakens against the dollar, their reported revenue in dollars might decrease
because when converted, those currencies would buy fewer dollars. That makes
sense because if you have a lot of revenue in a currency that's dropping, your
overall revenue in USD terms goes down.
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Next is interest rate risk. They have long-term debt, which means they're
exposed to changes in interest rates. If rates go up, the value of their
existing debt might decrease, and their borrowing costs could increase if they
need to refinance or take on more debt. I'm not entirely sure how sensitive they
are to rate changes, but it's something to watch, especially with global
interest rates potentially rising.

Then there's commodity price risk. They're exposed to fuel and electricity
prices because these are operational costs. If oil prices go up, their delivery
and logistics costs would increase, affecting their margins. Similarly, higher
electricity prices could impact their operations, especially in countries where
energy is a significant cost. This seems like a manageable risk but could have
noticeable effects if prices spike.

Equity price risk is tied to their LTRP plans. These are long-term retention
programs that pay out based on stock performance. The value of these obligations
is sensitive to the company's stock price. If the stock goes up, the payouts
increase, which could strain their finances. Conversely, a drop in stock price
reduces the payout liability. They've done a sensitivity analysis showing how a
40% change in stock price affects the obligation. That's pretty significant; a
40% drop would reduce the liability from $418 million to about $251 million,
which is a substantial difference.

Inflation risk is another factor, especially in countries like Argentina where
inflation has been high. High inflation can erode purchasing power and affect
consumer behavior. If people have less money due to inflation, they might spend
less online, impacting MercadoLibre's sales. Additionally, rising costs for
goods and services could squeeze margins if the company can't pass these costs
onto customers.

I'm a bit confused about how exactly the equity price affects their obligations.
It seems like it's based on the stock price relative to a fixed average from
previous years. So each payment is tied to whether the current stock price is
higher or lower than that average. If the stock does well, they have to pay
more; if not, less.

I'm also thinking about how these risks interact. For example, inflation could
lead to higher interest rates, which would then affect their debt costs. Or a
weaker currency might make imports more expensive, contributing to inflation.
It's like a web of interconnected risks that could amplify each other in certain
economic conditions.

Another point is the sensitivity analysis for equity price risk. They show a
static present value and how it changes with different stock prices. This helps
investors understand how exposed they are to stock price fluctuations. A 40%
change seems extreme, but it's useful to see the range of possible outcomes.

I wonder if there are any mitigating factors or strategies MercadoLibre uses to
manage these risks. For example, do they hedge their currency exposure? How
flexible are their costs in the face of inflation? And how do they structure
their LTRP plans to balance retention with financial risk?

Overall, this section is highlighting several key areas where MercadoLibre faces
potential volatility and challenges. It's important for investors to consider
these risks when evaluating the company's long-term prospects.

(continues on next page)
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</think>

**MercadoLibre Risk Analysis Summary**

1. **Foreign Exchange Risk:**
- **Exposure:** Significant revenue from Brazil, Argentina, and other Latin

American countries exposed to currency fluctuations, particularly the Brazilian
real and Argentine peso.

- **Impact:** Currency devaluation can reduce reported USD revenue when
converted.

2. **Interest Rate Risk:**
- **Exposure:** Long-term debt subject to interest rate changes.
- **Impact:** Rising rates may decrease debt value and increase borrowing

costs.

3. **Commodity Price Risk:**
- **Exposure:** Operational costs tied to fuel and electricity prices.
- **Impact:** Price spikes can increase operational expenses and reduce

margins.

4. **Equity Price Risk:**
- **Exposure:** Long-term retention programs (LTRP) linked to stock

performance.
- **Impact:** Stock price fluctuations affect payout obligations; a 40% drop

reduces liability from $418 million to $251 million.

5. **Inflation Risk:**
- **Exposure:** High inflation in countries like Argentina affecting

purchasing power and operational costs.
- **Impact:** Could reduce consumer spending and squeeze margins if cost

increases aren't offset.

6. **Interconnected Risks:**
- Inflation may lead to higher interest rates, affecting debt costs and

potentially exacerbating currency issues.

7. **Mitigation Strategies:**
- Consider hedging strategies for currency exposure, flexible cost

structures, and balanced LTRP designs to manage financial risks.

**Conclusion:** MercadoLibre faces multiple interconnected risks that could
impact its financial health. Investors should assess these factors alongside the
company's risk management strategies when evaluating long-term prospects.

===== 9/10. A T & T INC =====
<think>
Okay, so I'm trying to understand this document about AT&T's financial report.
It looks like it's an audit report from their independent registered public
accounting firm. Let me go through it step by step.

First, the report is divided into two main sections: one on the internal control
over financial reporting and another on the consolidated financial statements.
Both have an opinion section, a basis for opinion, and some additional details.

Starting with the opinion on internal control over financial reporting. The
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auditors state that they've audited AT&T's internal controls as of December 31,
2023, based on the COSO criteria. They conclude that the company maintained
effective internal control over financial reporting in all material respects.
That sounds positive; it means the auditors think AT&T has good systems in place
to manage their finances properly.

Next, looking at the basis for this opinion. It mentions that management is
responsible for maintaining these controls and assessing their effectiveness.
The auditors' role was to express an opinion based on their audit, which they
did by following PCAOB standards. They obtained an understanding of the internal
controls, assessed risks, tested the design and operation of the controls, and
performed other necessary procedures. Their conclusion is that AT&T's controls
are effective.

Moving on to the report on the consolidated financial statements. The auditors
also express an unqualified opinion here, meaning they didn't find any material
issues with the financial statements. They were prepared in accordance with
GAAP, which is standard for public companies in the U.S.

The basis for this opinion section explains that the auditors are responsible
for expressing opinions on whether the financial statements present fairly, in
all material respects, the company's financial position and results of
operations. They did this by auditing according to PCAOB standards, assessing
risks, testing accounting policies, significant estimates, transactions, and
disclosures.

There are also two specific sections discussing areas where the audit was
particularly complex: internal control over financial reporting and the
impairment evaluations for certain reporting units. The auditors explain that
these areas required a deeper dive because they involve subjective assumptions
and complex methodologies. They tested controls, assessed assumptions against
industry trends, performed sensitivity analyses, and involved specialists to
ensure everything was in order.

The report ends with a note that the auditing firm has been serving AT&T since
1999, which shows a long-standing relationship, likely indicating consistency
and familiarity with the company's operations.

I'm trying to think if there's anything I might be missing. The document seems
comprehensive, covering both the internal controls and financial statements. It
mentions specific areas like impairment evaluations and valuation models, which
are known for being complex and subject to judgment. The auditors' involvement
of specialists in these areas makes sense because it adds depth to their
analysis.

I wonder if there were any material weaknesses or significant deficiencies
mentioned, but from what I can see, the opinions are unqualified, so no major
issues were found. It's also worth noting that the report is dated February 23,
2024, which would typically be around the time when earnings are released, so
it's timely.

Overall, this audit report seems to provide assurance to stakeholders that
AT&T's financial reporting is reliable and their internal controls are
effective. The detailed explanation of the auditing process gives confidence in
the independence and thoroughness of the audit.
</think>
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The audit report on AT&T provides a comprehensive assessment of both its
internal control over financial reporting and its consolidated financial
statements, concluding with an unqualified opinion in both areas. Here's a
structured summary:

### Key Findings:
1. **Internal Control Over Financial Reporting:**

- The auditors found that AT&T maintained effective internal controls as of
December 31, 2023, based on the COSO framework.

- The company's systems provide reasonable assurance regarding the
reliability of financial reporting and compliance with GAAP.

2. **Consolidated Financial Statements:**
- The financial statements were prepared in accordance with GAAP and present

AT&T's financial position accurately.
- No material issues were identified, leading to an unqualified opinion.

### Methodology:
- Auditors followed PCAOB standards, assessing risks, testing controls, and
involving specialists for complex areas like impairment evaluations.
- Detailed procedures included testing assumptions against industry trends and
performing sensitivity analyses.

### Areas of Complexity:
- **Impairment Evaluations:** Involved subjective assumptions and complex
valuation methods. The auditors ensured these were sound through thorough
testing and specialist involvement.
- **Internal Controls:** The effectiveness was validated through a comprehensive
audit process, confirming the controls' operational efficiency.

### Conclusion:
The report assures stakeholders of AT&T's financial integrity and control
systems. The unqualified opinions indicate no significant issues, reflecting
well on the company's financial governance. The long-standing relationship with
the auditing firm underscores consistency and familiarity in their work.

===== 10/10. REPUBLIC SERVICES INC =====
<think>
Okay, so I need to summarize this risk report for fifth graders. Let me read
through it carefully first.

The report talks about market risks the company faces, specifically interest
rate risk, fuel price risk, and commodities price risk. Hmm, I should break each
section down into simpler terms.

Starting with interest rate risk: The company has both fixed and variable debt.
Fixed rates don't change, while variable ones do based on market rates. They use
swaps to manage this risk. If rates go up or down by 100 basis points, their
interest expense changes by about $20 million. I should explain what a swap is
in simple terms, maybe like an agreement to balance out the risks.

Next, fuel price risk: Fuel costs are a big part of their expenses. They try to
hedge against price changes but currently have no hedges in place. A 20-cent
change per gallon affects both their costs and what they charge customers.
Petrochemical products used in operations also cost money, so higher prices
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there would increase their costs too.

Lastly, commodities price risk: They sell recycled materials, and market
fluctuations affect their revenue. Previously, they used derivatives like swaps
to hedge this, but none are active now. A $10 per ton change affects both
revenue and operating income by about $10 million.

I need to make sure I explain terms like "hedging" in a way fifth graders can
understand, maybe as strategies to protect against price changes. Also, I should
avoid jargon and keep sentences short and clear.

Let me structure the summary with each risk as a separate point, using simple
language and examples they can relate to, like how changing fuel prices affect
their daily lives or school budget.
</think>

**Summary of Market Risks in Simple Terms**

The company faces several risks related to market changes that could impact its
financial health. Here's a breakdown of these risks explained in a way fifth
graders can understand:

1. **Interest Rate Risk:**
- The company borrows money through loans with both fixed and variable

interest rates.
- Fixed rates stay the same, while variable rates change based on market

conditions.
- To manage these changes, they use something called "swaps," which are

agreements to balance out potential losses or gains from rate changes.
- If interest rates go up or down by a certain amount (100 basis points),

their yearly interest expense would change by about $20 million. This is like
how a school might adjust its budget if the cost of supplies goes up or down.

2. **Fuel Price Risk:**
- Fuel costs are a major expense for the company, similar to how a school

might spend money on transportation.
- They try to protect against fuel price changes by using strategies called

"hedging," but currently, they don't have any such strategies in place.
- A 20-cent change in diesel price per gallon would affect both their costs

and what they charge customers. For example, if diesel goes up by 20 cents,
their expenses increase, and they might need to charge more to cover this cost.

3. **Commodities Price Risk:**
- The company sells recycled materials like cardboard and newspaper.
- Market changes can cause prices of these materials to go up or down,

affecting both revenue and how much money they make.
- They used to use tools like "swaps" and "collars" to manage these price

changes, but currently, they aren't using any such tools.
- A $10 per ton change in recycled material prices would impact their yearly

revenue and profits by about $10 million. This is similar to how a lemonade
stand might adjust its prices if the cost of lemons fluctuates.

In summary, the company deals with risks from changing interest rates, fuel
prices, and recycled materials markets. They use strategies like swaps to manage
some of these risks but are currently exposed to others. Understanding these
risks helps them make better financial decisions, much like how planning for
price changes helps a school manage its budget effectively.
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scores = collect_rouge(target=summary[gpt_name], prediction=summary['simple_deepseek
↪'])

display_rouge("rouge1", scores)

ROUGE1 metric:

precision recall fmeasure
PACCAR INC 0.397394 0.408027 0.402640
PHILLIPS 66 0.366142 0.324042 0.343808
MASTERCARD INC 0.371681 0.283784 0.321839
BRISTOL MYERS SQUIBB CO 0.331731 0.226974 0.269531
CARRIER GLOBAL CORP 0.502674 0.324138 0.394130
LULULEMON ATHLETICA INC 0.317172 0.537671 0.398983
AIRBNB INC 0.391304 0.440559 0.414474
MERCADOLIBRE INC 0.467593 0.331148 0.387716
A T & T INC 0.393805 0.312281 0.348337
REPUBLIC SERVICES INC 0.414439 0.504886 0.455213

average 0.395393 0.369351 0.373667

display_rouge("rouge2", scores)

ROUGE2 metric:

precision recall fmeasure
PACCAR INC 0.133987 0.137584 0.135762
PHILLIPS 66 0.079051 0.069930 0.074212
MASTERCARD INC 0.066667 0.050847 0.057692
BRISTOL MYERS SQUIBB CO 0.053140 0.036304 0.043137
CARRIER GLOBAL CORP 0.134409 0.086505 0.105263
LULULEMON ATHLETICA INC 0.052632 0.089347 0.066242
AIRBNB INC 0.093458 0.105263 0.099010
MERCADOLIBRE INC 0.116279 0.082237 0.096339
A T & T INC 0.097778 0.077465 0.086444
REPUBLIC SERVICES INC 0.150134 0.183007 0.164948

average 0.097753 0.091849 0.092905

Generate simple summaries with GPT-4o-mini

summary['simple_gpt-4o'] = collect_summaries(
gpt_model,
role="You are a patient lower-school teacher, using simple words to explain to␣

↪your students in the fifth grade.")

===== 1/10. PACCAR INC =====
The risk report talks about how a company manages different types of financial
risks, especially related to market changes. It focuses on three main areas:
interest rates, currency exchange rates, and commodity prices.

First, for interest-rate risks, the company looks at how changes in interest
rates can affect the value of its assets and debts. They estimate what would

(continues on next page)

626 Chapter 35. Large Language Models



Financial Data Science Python Notebooks

(continued from previous page)

happen if interest rates suddenly went up by 1%. In 2023, the company faced
losses of $29.2 million from cash and marketable securities and $146.5 million
from fixed-rate loans. However, they also had gains from fixed-rate debts and
interest-rate swaps, leading to a total loss of $17.7 million, which was worse
than the previous year’s loss of $1.1 million.

Next, the report discusses currency risks. The company uses contracts to protect
itself from changes in foreign currency values, especially with currencies like
the Canadian dollar and the euro. If the value of these currencies drops by 10%,
the company could lose $259.7 million in 2023, compared to $216.6 million in
2022. However, these losses would be balanced out by changes in the value of the
things they are protecting.

Lastly, the company also deals with commodity price risks. They use contracts to
lock in prices for materials needed to make trucks. If commodity prices drop by
10%, they could lose $3.3 million in 2023, up from $2.5 million in 2022. Again,
these losses would be offset by changes in the value of the materials they are
buying.

Overall, the report shows how the company tries to manage risks to protect its
finances from sudden changes in the market.

===== 2/10. PHILLIPS 66 =====
The risk report discusses the various market risks that our company and some of
its subsidiaries face. These risks come from changes in prices of crude oil,
natural gas, and other energy products, as well as fluctuations in interest
rates and foreign currency exchange rates. To manage these risks, we use special
financial contracts called derivatives.

Our main strategy is to stay connected to the market prices of these
commodities. We use derivatives to switch from fixed prices in our contracts
back to floating market prices. This helps us balance our supply and demand
needs and take advantage of market opportunities, like moving products to where
they can be sold for more money or storing them for better prices later. We also
use derivatives to protect our cash flow from price changes.

The use of these financial tools is carefully controlled by rules set by our
board of directors. We monitor our risks daily to ensure we stay within safe
limits. We use a method called Value at Risk (VaR) to estimate potential losses
from market changes, and as of the end of 2023, these risks were not significant
to our cash flow.

Additionally, we face interest rate risks from our debts. Fixed-rate debts can
lose value if interest rates rise, while variable-rate debts can lead to higher
interest costs. We provide detailed information about our debts and their
interest rates.

Lastly, we are also exposed to foreign currency risks due to our international
operations, but we generally do not take steps to protect against these risks.
Our CEO and CFO keep a close eye on all these risks to ensure the company
remains stable and successful.

===== 3/10. MASTERCARD INC =====
The risk report discusses market risk, which is the chance of losing money due
to changes in things like interest rates and foreign currency exchange rates.
The company, Mastercard, has a limited exposure to these risks and keeps a close
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35.3. Text summarization 627



Financial Data Science Python Notebooks

(continued from previous page)

watch on them. They have rules in place to manage their funding, investments,
and the use of special financial tools called derivatives to help reduce these
risks.

One type of risk they face is foreign exchange risk, which happens when they
deal with money in different currencies. To manage this risk, Mastercard uses
foreign exchange derivative contracts. These contracts help them handle expected
payments and receipts in currencies that are not their main currency, which is
usually the U.S. dollar or the euro. If the value of these currencies changes by
10%, it could lead to a loss of about $414 million on their contracts as of
December 31, 2023. However, they also have activities that can offset these
losses.

Mastercard also deals with foreign exchange risk when they have investments in
other countries. They may use contracts to protect these investments, but as of
December 31, 2023, they did not have any contracts specifically for this
purpose. In 2022, a similar 10% change in the U.S. dollar could have led to a
loss of about $203 million.

Another risk is interest rate risk, which affects their investments in bonds.
Mastercard aims to invest in high-quality bonds and manage their risks
carefully. A change in interest rates by 1% would not significantly impact the
value of their investments. They also use interest rate derivatives to protect
against changes in the value of their fixed-rate debt, and similar to foreign
exchange, a 1% change would not have a major effect on their contracts. Overall,
Mastercard actively manages these risks to protect their financial health.

===== 4/10. BRISTOL MYERS SQUIBB CO =====
The risk report discusses how a company faces market risks related to changes in
currency exchange rates and interest rates. To protect itself from these risks,
the company uses certain financial tools called derivatives, but only when they
are cost-effective. These derivatives are not used for trading but to manage
risks.

One major risk is foreign exchange risk, which happens when the value of money
in different countries changes. The company earns a lot of its money in euros
and Japanese yen, so it uses contracts called foreign currency forwards to help
manage this risk. These contracts help protect the company from losing money
when it buys or sells things in different currencies. However, these contracts
are not always perfect hedges, meaning they don’t cover all risks completely.

The report estimates that if the euro and yen become stronger against the U.S.
dollar by 10%, the company could lose a significant amount of money on its
foreign exchange contracts. Additionally, the company uses cross-currency swaps
to manage risks from long-term debts in euros and to protect its investments in
foreign businesses.

The report also talks about interest rate risk, which is the risk of losing
money when interest rates change. The company uses interest rate swaps to
balance its debts. If interest rates go up by 1%, the impact on the company’s
earnings would not be very large, but it could still affect the value of its
long-term debt.

Lastly, the company is careful about credit risk, which is the risk of losing
money if someone it does business with doesn’t pay. It only invests in high-
quality institutions and spreads its investments to reduce risk. Overall, the

(continues on next page)
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company takes steps to manage these financial risks to protect its earnings and
investments.

===== 5/10. CARRIER GLOBAL CORP =====
The risk report discusses the market risks that our company faces, which include
changes in foreign currency exchange rates, interest rates, and commodity
prices. These risks can affect how well we perform financially. For the year
ending December 31, 2023, there have not been any major changes in our exposure
to these market risks.

One important area is foreign currency exposure. Since we operate in many
countries, we deal with different currencies. Our main reporting currency is the
U.S. dollar, and when other currencies change in value compared to the dollar,
it can affect our financial results. We manage some of these currency risks
related to our sales and purchases, but we do not protect against all risks from
currency changes.

Recently, we made an acquisition and paid a large part of the purchase price in
euros. To protect ourselves from changes in the euro's value compared to the
U.S. dollar, we used special contracts called window forward contracts. These
contracts help us manage the risk of losing money due to currency fluctuations.

For another acquisition, we used cross currency swaps and a loan in Japanese yen
to help manage the risks related to the yen. These financial tools help us keep
track of changes in currency values and their impact on our investments.

We also face risks from the prices of commodities, which are materials we use to
make our products. We sometimes use fixed price contracts to help manage these
costs, but as of December 31, 2023, we do not have any contracts in place to
protect against changes in commodity prices.

Lastly, most of our long-term debt has fixed interest rates, so changes in
interest rates are not expected to significantly affect our financial results.
Overall, we are actively managing these risks to protect our company.

===== 6/10. LULULEMON ATHLETICA INC =====
The risk report discusses various financial risks that the company faces,
particularly related to foreign currency exchange, interest rates, credit, and
inflation.

**Foreign Currency Exchange Risk**: The company has international subsidiaries
that operate in local currencies, but its financial statements are in U.S.
dollars. This means that when the value of the U.S. dollar changes, it affects
how much revenue and expenses are reported. In 2023, the company reported $89.8
million less in revenue compared to 2022 due to these currency fluctuations. The
company uses forward currency contracts to protect itself from these risks,
especially with its Canadian subsidiary, which saw a loss of $9 million from
currency translation.

**Transaction Risk**: The company also faces risks when its subsidiaries conduct
transactions in currencies different from their main currency. They hold cash
and other assets in various currencies and use forward contracts to manage these
risks. As of January 28, 2024, the company had a liability of $2.2 million from
these contracts, and a 10% drop in the U.S. dollar could lead to a $29.8 million
decrease in value.

(continues on next page)
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**Interest Rate Risk**: The company has a credit facility that allows it to
borrow up to $400 million at variable interest rates. If it borrows a
significant amount, it could be affected by changes in interest rates.
Currently, they have no borrowings but may consider hedging against interest
rate risks in the future.

**Credit Risk**: The company keeps cash with reputable banks and invests in
high-rated money market funds. They are cautious about credit risk, which is the
risk of losing money if a bank fails to meet its obligations. They have not
faced any losses and believe this risk is low.

**Inflation**: Rising costs for products, wages, and transportation can hurt the
company's profits. In recent years, increased wages and shipping costs have
affected their operating margins. If these costs continue to rise without a
corresponding increase in product prices, it could impact their financial
health.

===== 7/10. AIRBNB INC =====
The risk report discusses the market risks faced by a company with global
operations, focusing on foreign currency risk and investment risk.

**Foreign Currency Risk:** The company operates in over 40 currencies, with key
currencies including the euro, British pound, Canadian dollar, Australian
dollar, Brazilian real, and Mexican peso. This means that when the value of
these currencies changes compared to the U.S. dollar, it can affect the
company's financial results. For example, if the U.S. dollar strengthens, the
company could lose money on its international sales. The company has various
sources of foreign currency risk, such as revenue from bookings made in other
currencies, funds held for customers, and payments to hosts. To manage this
risk, the company uses foreign currency derivative contracts, which help protect
against changes in exchange rates. However, these contracts do not completely
eliminate the risk, and the company may choose not to hedge certain exposures
due to costs or accounting reasons. If there were a significant change in
exchange rates, it could lead to substantial losses.

**Investment and Interest Rate Risk:** The company also faces risks related to
interest rates, which can affect the earnings from its investments. As of
December 31, 2023, the company had significant cash and short-term investments,
primarily in safe, liquid assets like government bonds and corporate debt. The
goal of these investments is to keep the money safe while ensuring it is
available when needed. Because the investments are mostly short-term, they are
not very sensitive to changes in interest rates. A hypothetical increase in
interest rates could lead to a small decrease in the value of the investment
portfolio, but the company does not expect to face major risks from interest
rate changes.

===== 8/10. MERCADOLIBRE INC =====
The risk report discusses the various market risks that our company faces due to
its business operations. These risks mainly come from changes in the economy,
interest rates, and currency exchange rates, especially with currencies like the
Brazilian real, Argentine peso, and Mexican peso. These changes can affect the
value of our financial assets and liabilities.

We also have long-term retention programs for employees, which involve cash
payments that depend on our stock price. This means that if our stock price
changes, the amount we pay to employees can also change.

(continues on next page)
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Since we operate in many countries, we deal with different currencies, which
exposes us to foreign currency risk. This can impact our financial results
because we earn money and spend money in various currencies. To manage this
risk, we use contracts that help protect us from unfavorable changes in currency
exchange rates. However, these contracts do not completely eliminate the risk.

As of December 31, 2023, we had significant amounts of cash and investments in
local currencies. Our subsidiaries mostly earn and spend money in their local
currencies, except for our Argentine subsidiaries, which use the U.S. dollar due
to high inflation. We also experienced a loss of $615 million in foreign
currency due to changes in the Argentine market.

Interest rates also affect our earnings and cash flow. Changes in interest rates
can impact the costs of loans and the income we earn from our investments. As of
December 31, 2023, we had various loans and investments that are sensitive to
interest rate changes.

Lastly, our long-term retention programs for employees are linked to our stock
price, meaning that if our stock price goes up or down, it affects how much we
owe to employees. Overall, these market risks can significantly impact our
financial performance.

===== 9/10. A T & T INC =====
The risk report discusses how AT&T Inc. manages market risks, particularly those
related to interest rates and foreign currency exchange rates. These risks can
affect the company's costs and financial stability. To handle these risks, AT&T
uses various financial tools called derivatives, such as interest rate swaps and
foreign currency contracts. These tools help the company control its financial
risks and maintain flexibility without engaging in risky trading practices.

One important aspect of the report is the company's approach to estimating its
future obligations for employee benefits, which relies on a discount rate. This
rate is influenced by the returns on high-quality corporate bonds. Recently,
these rates have been lower and more unstable than in the past, which means that
the company's obligations could be higher. If rates increase in the future, it
could lower these obligations and improve the company's financial health.

The report also highlights interest rate risk, as most of AT&T's financial
instruments are fixed-rate notes. Changes in interest rates can significantly
affect their value. To manage this risk, AT&T monitors its debt structure and
uses interest rate swaps to balance fixed and floating rates.

Additionally, AT&T addresses foreign exchange risk by converting foreign debt
into U.S. dollars through cross-currency swaps. This helps eliminate risks
related to currency fluctuations. The report includes details about the
company's financial instruments and their fair values as of December 31, 2023.

Overall, AT&T is committed to managing its market risks carefully to ensure
long-term financial stability and flexibility. The company regularly assesses
its financial strategies and maintains effective internal controls to support
accurate financial reporting.

===== 10/10. REPUBLIC SERVICES INC =====
The risk report discusses the financial risks related to interest rates, fuel
prices, and commodity prices that the company faces.

(continues on next page)
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**Interest Rate Risk:** The company is mainly affected by changes in interest
rates in the United States. To manage this risk, they use a mix of fixed and
variable interest rate debts. As of December 31, 2023, the company had a total
of about $10.4 billion in fixed-rate debt and around $2.6 billion in variable-
rate debt. They also use financial agreements called swap contracts to help
protect against changes in interest rates. If interest rates go up or down by
1%, the company’s interest expenses could change by about $20 million each year.

**Fuel Price Risk:** Fuel costs are a significant expense for the company. They
may use fuel hedges, which are contracts to lock in fuel prices, but as of the
end of 2023, they had no such contracts in place. A change of 20 cents per
gallon in diesel fuel prices could affect their fuel costs by about $27 million
annually. They charge some customers for fuel recovery fees, but not all, which
can impact their revenue. In 2023, their fuel costs were $541.6 million, which
was lower than in 2022.

**Commodity Price Risk:** The company also deals with the prices of recycled
materials, like old cardboard and newspapers. Changes in supply and demand can
cause these prices to fluctuate. They have previously used financial tools to
manage this risk but had no hedges in place as of December 31, 2023. A $10
change in the price of recycled materials could affect their revenue and
operating income by about $10 million. In 2023, they earned $312.3 million from
recycling, down from $359.1 million in 2022.

Overall, the report highlights how the company is working to manage these
financial risks to protect its operations and profitability.

scores = collect_rouge(target=summary[gpt_name], prediction=summary['simple_gpt-4o'])

Display rouge-1 scores for simple GPT-4o-mini summary

display_rouge("rouge1", scores)

ROUGE1 metric:

precision recall fmeasure
PACCAR INC 0.653571 0.612040 0.632124
PHILLIPS 66 0.551971 0.536585 0.544170
MASTERCARD INC 0.560261 0.581081 0.570481
BRISTOL MYERS SQUIBB CO 0.550000 0.542763 0.546358
CARRIER GLOBAL CORP 0.551155 0.575862 0.563238
LULULEMON ATHLETICA INC 0.576577 0.657534 0.614400
AIRBNB INC 0.658621 0.667832 0.663194
MERCADOLIBRE INC 0.553333 0.544262 0.548760
A T & T INC 0.665480 0.656140 0.660777
REPUBLIC SERVICES INC 0.650794 0.667752 0.659164

average 0.597176 0.604185 0.600267

Display rouge-2 scores for simple GPT-4o-mini summary

display_rouge("rouge2", scores)

632 Chapter 35. Large Language Models



Financial Data Science Python Notebooks

ROUGE2 metric:

precision recall fmeasure
PACCAR INC 0.336918 0.315436 0.325823
PHILLIPS 66 0.244604 0.237762 0.241135
MASTERCARD INC 0.241830 0.250847 0.246256
BRISTOL MYERS SQUIBB CO 0.257525 0.254125 0.255814
CARRIER GLOBAL CORP 0.231788 0.242215 0.236887
LULULEMON ATHLETICA INC 0.243976 0.278351 0.260032
AIRBNB INC 0.359862 0.364912 0.362369
MERCADOLIBRE INC 0.254181 0.250000 0.252073
A T & T INC 0.257143 0.253521 0.255319
REPUBLIC SERVICES INC 0.382166 0.392157 0.387097

average 0.280999 0.283933 0.282281

35.3.6 Readability

Readability scores such as Flesch-Kincaid and Gunning-Fog assess how easy a summary is to read. These metrics are
calculated based on sentence length, word complexity, and syllable count, and correspond to U.S. grade levels. Simpler
summaries which score lower are suitable for broader audiences.

# applies Flesch-Kincaid and Gunning-Fog readability indexes to measure how complex␣
↪each summary is

from readability import Readability
fog = {permno: {name: Readability(summary[name][permno]).flesch_kincaid().grade_level

for name in ['simple_deepseek', 'simple_gpt-4o', model_name, gpt_
↪name]}

for permno in summary[gpt_name].keys()}
DataFrame(fog).T # display grade-level

simple_deepseek simple_gpt-4o deepseek-r1:14b gpt-4o-mini
60506 7 9 13 15
13356 12 10 12 17
91233 10 10 16 16
19393 9 10 15 15
19285 8 10 17 16
92203 9 11 15 15
20190 9 12 15 17
92221 12 10 12 16
66093 16 12 16 16
86228 9 8 10 12

fog = {permno: {name: Readability(summary[name][permno]).gunning_fog().grade_level
for name in ['simple_deepseek', 'simple_gpt-4o', model_name, gpt_

↪name]}
for permno in summary[gpt_name].keys()}

DataFrame(fog).T # display grade-level

simple_deepseek simple_gpt-4o deepseek-r1:14b gpt-4o-mini
60506 9 12 college_graduate college_graduate
13356 college college college college_graduate
91233 12 12 college_graduate college_graduate

(continues on next page)
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19393 12 college college_graduate college_graduate
19285 11 college college_graduate college_graduate
92203 12 college college_graduate college_graduate
20190 12 college college_graduate college_graduate
92221 12 college 12 college_graduate
66093 college_graduate college college_graduate college_graduate
86228 12 12 college college

References:
Greg Durrett, 2021-2024, “CS388 Natural Language Processing course materials”, retrieved from https://www.cs.
utexas.edu/~gdurrett/courses/online-course/materials.html
Philipp Krähenbühl, 2020-2024,“AI394T Deep Learning course materials”, retrieved from https://www.philkr.net/
dl_class/material and https://ut.philkr.net/deeplearning/
Philipp Krähenbühl, 2025, “AI395T Advances in Deep Learning course materials”, retrieved from https://ut.philkr.
net/advances_in_deeplearning/
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CHAPTER

THIRTYSIX

LLM FINE-TUNING

To improve is to change; to be perfect is to change often - Winston Churchill
Large language models (LLMs) have demonstrated remarkable general capabilities, but tailoring them to specific tasks
or domains may require fine-tuning –adjusting model weights by further training on task-specific data. We examine the
fine-tuning of Meta’s Llama-3.1model using tools from the Hugging Face ecosystem, applying efficient techniques such
as quantization and low-rank adaptation (LoRA) to an industry text classification task using firm-level 10-K filings.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import os
from tqdm import tqdm
from pathlib import Path
from pprint import pprint
import textwrap
import warnings
import bitsandbytes as bnb
import torch
from datasets import Dataset
from peft import LoraConfig, PeftConfig
from trl import SFTTrainer
from transformers import (AutoModelForCausalLM,

AutoTokenizer,
BitsAndBytesConfig,
pipeline,
logging)

import matplotlib.pyplot as plt
from sklearn.metrics import (accuracy_score,

classification_report,
confusion_matrix)

from sklearn.model_selection import train_test_split
from finds.database import SQL, RedisDB
from finds.unstructured import Edgar
from finds.structured import BusDay, CRSP, PSTAT
from finds.readers import Sectoring
from finds.utils import Store
from secret import paths, CRSP_DATE, credentials
logging.set_verbosity_error()

NUM_TRAIN_EPOCHS = 2 # 0 # 1
RESUME_FROM_CHECKPOINT = False # False # True

(continues on next page)
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MAX_SEQ_LENGTH = 1024 #512 #2048
LOGGING_STEPS = 200

VERBOSE = 0
sql = SQL(**credentials['sql'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql, bd, rdb, verbose=VERBOSE)
pstat = PSTAT(sql, bd, verbose=VERBOSE)
ed = Edgar(paths['10X'], zipped=True, verbose=0)
store = Store('assets', ext='pkl')
permnos = list(store.load('nouns').keys())
print(f"{len(permnos)=}") # comparable sample

len(permnos)=3474

36.1 Meta Llama-3.1 model

Meta’s Llama 3.1 is an open-source large language model released in July 2024 under the Llama 3.1 Community
License, permitting broad use, including commercial applications. Key highlights include:

• Model variants:
– 8B: 8 billion parameters.
– 70B: 70 billion parameters.
– 405B: 405 billion parameters.

• Context length of up to 128,000 tokens.
• Pre-trained on over 15 trillion tokens sourced from publicly available datasets.
• Fine-tuned using supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF).
• Multilingual support, including English, French, German, Hindi, Italian, Portuguese, Spanish, and Thai.

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

base_model = 'meta-llama/Llama-3.1-8B-Instruct'

# Show current memory stats
gpu_stats = torch.cuda.get_device_properties(0)
max_memory = round(gpu_stats.total_memory / (1024**3), 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")

def cuda_memory(title, trainer_stats=None):
"""Show final memory and optional trainer stats"""
if torch.cuda.is_available():

device = torch.device('cuda')
total_memory = torch.cuda.get_device_properties(device).total_memory
reserved_memory = torch.cuda.memory_reserved(device)
allocated_memory = torch.cuda.memory_allocated(device)
free_memory = total_memory - reserved_memory

(continues on next page)
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print(f'------ {title.upper()} ------')
if trainer_stats:

print(f"{trainer_stats.metrics['train_runtime']} seconds used for␣
↪training.")

print(f"Total memory: {total_memory / (1024**3):.2f} GB")
print(f"Reserved memory: {reserved_memory / (1024**3):.2f} GB")
print(f"Allocated memory: {allocated_memory / (1024**3):.2f} GB")
print(f"Free memory: {free_memory / (1024**3):.2f} GB")

GPU = NVIDIA GeForce RTX 3080 Laptop GPU. Max memory = 15.739 GB.

36.2 Supervised fine-tuning (SFT)

Supervised Fine-Tuning is the process of enhancing a pre-trained language model by fine-tuning it on labeled input–
output pairs using standard supervised learning. Common use cases include:

• Instruction tuning: The model learns to follow new instructions
• Chatbot fine-tuning (e.g., with help-desk data)
• Domain adaptation (e.g., legal, medical)

36.2.1 Huggingface framework

Several ecosystems support fine-tuning and training of LLMs. The Hugging Face Ecosystem includes:
• transformers: Model architectures and training components.
• Transformers Reinforcement Learning (trl): Training large language models (LLMs) with reinforcement learning

techniques, especially for alignment tasks like RLHF (Reinforcement Learning with Human Feedback) and DPO
(Direct Preference Optimization).

• bitsandbytes: Enables efficient low-bit model quantization, allowing large language models to run on limited
GPU memory without much loss in performance.

• Parameter-Efficient Fine-Tuning (peft): Tools to fine-tune large language models by training only a small number
of additional parameters.

• Accelerate: Distributed training optimization.
• datasets: For loading, processing, and managing datasets

It provides access to 100k+ pre-trained transformer models, and tools for efficient-tuning of these models using low
memory and quantized weights.
If you encounter a gated model repository on Hugging Face, it means the model requires manual access approval from
the authors before you can use or download it. You should log in to your huggingface.ro account, go to the Model Page,
and click on the“Request Access”button –approval may take up to a few days. When authorized, make sure you have
set your Hugging Face token in your environment (e.g. huggingface-cli login), see https://huggingface.co/
settings/tokens

# Locations to save fine-tuned model weights
output_dir = str(Path(paths['scratch'], "fine-tuned-model")) # training checkpoints
model_dir = str(Path(paths['scratch'], "Llama-3.1-8B-Instruct-FF-Sector")) # final␣

↪model
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from trl import SFTConfig
args = SFTConfig(

output_dir=output_dir, # directory to save and repository id
num_train_epochs=NUM_TRAIN_EPOCHS, ####1 # number of training epochs
per_device_train_batch_size=2, ####1 # batch size per device during training
gradient_accumulation_steps=4, ####8 # before performing a backward/update␣

↪pass
gradient_checkpointing=True, # use gradient checkpointing to save␣

↪memory
optim="paged_adamw_32bit",
logging_strategy="steps", # or "steps" or "no" or "epoch"
logging_steps=LOGGING_STEPS, #### 1,
learning_rate=2e-4, # learning rate, based on QLoRA paper
weight_decay=0.001,
fp16=True,
bf16=False,
max_grad_norm=0.3, # max gradient norm based on QLoRA paper
max_steps=-1,
warmup_ratio=0.03, # warmup ratio based on QLoRA paper
group_by_length=False,
lr_scheduler_type="cosine", # use cosine learning rate scheduler
report_to="tensorboard",
max_seq_length=MAX_SEQ_LENGTH, #512, ### should be 1024? or MAX_CHARS // 4
packing=False,
dataset_kwargs={
"add_special_tokens": False,
"append_concat_token": False,
}

)

36.2.2 Tokenizer

The AutoTokenizer in Hugging Face is a smart utility that automatically loads the correct tokenizer for a given
pretrained model.

# Load the tokenizer and set the pad token id.
tokenizer = AutoTokenizer.from_pretrained(base_model)
tokenizer.pad_token_id = tokenizer.eos_token_id

36.2.3 Quantization

Quantization converts high-precision data to lower-precision data, for instance, by representing model weights and activa-
tion values as 4-bit or 8-bit integers instead of 32-bit floating point numbers. The bitsandbytes library for efficient
low-bit model quantization is integrated with Hugging Face and works seamlessly with parameter-efficient fine-tuning
like QLora.

# Load the Llama-3.1-8b-instruct model in 4-bit quantization to save GPU memory
bnb_config = BitsAndBytesConfig(

load_in_4bit=True,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",

)
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36.2.4 AutoModel

The AutoModel class in Hugging Face is a convenient interface that automatically loads the correct model architecture
based on the model name or path. Its variants automatically load the correct model head (e.g., classification layer, decoder
head) based on your specific task, e.g.

Class Task Output
AutoModel Base model (no head) Hidden states
AutoModelForSequenceClassifi-
cation

Text classification (e.g. sentiment) Class logits

AutoModelForTokenClassifica-
tion

Token labeling (e.g. NER, POS) Token-level logits

AutoModelForQuestionAnswering Extractive QA Start/end logits for answer
spans

AutoModelForCausalLM Text generation (GPT-style) Next-token logits
AutoModelForMaskedLM Mask filling (BERT-style) Predictions for masked to-

kens
AutoModelForSeq2SeqLM Translation, summarization (T5,

BART)
Generated sequences

AutoModelForMultipleChoice Multiple-choice QA (e.g. SWAG) Choice logits
AutoModelForVision2Seq Image captioning Generated text
AutoModelForImageClassifica-
tion

Vision tasks Class logits

AutoModelForSpeechSeq2Seq Speech translation Generated text from audio

model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map="auto",
torch_dtype="float16",
quantization_config=bnb_config,

)
model.config.use_cache = False
model.config.pretraining_tp = 1

36.2.5 Parameter-efficient fine-tuning

Parameter-Efficient Fine-Tuning (PEFT) is both a technique and a Hugging Face library for adapting large language
models (LLMs) to new tasks by training only a small subset of parameters. Instead of updating the entire model, the
base (pretrained) model is kept frozen, and lightweight, trainable components called adapters are added. These adapters
typically involve only a few million parameters, making fine-tuning faster and more memory-efficient.

• Low-rank factorization: This is a compression technique which decomposes a large matrix of weights into a
smaller, lower-rank matrix, resulting in a more compact approximation that requires fewer parameters and com-
putations.

• LoRA: A small number of trainable low-rank matrices are added to the model’s attention layers. The original
weights are frozen and just these adapters are fine-tuned.

• QLora: Combines LoRA with Quantization: The base model is converted to 4-bit precision, reducing memory
usage dramatically without losing much performance.
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# Extract the linear module names from the model using the bits and bytes library.
def find_all_linear_names(model):

cls = bnb.nn.Linear4bit
lora_module_names = set()
for name, module in model.named_modules():

if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])

if 'lm_head' in lora_module_names: # needed for 16 bit
lora_module_names.remove('lm_head')

return list(lora_module_names)
modules = find_all_linear_names(model)
modules

['q_proj', 'down_proj', 'v_proj', 'gate_proj', 'o_proj', 'up_proj', 'k_proj']

# Configure LoRA for the target modules, task type, and other training arguments
peft_config = LoraConfig(

lora_alpha=16,
lora_dropout=0,
r=64,
bias="none",
task_type="CAUSAL_LM",
target_modules=modules,

)

36.3 Industry text classification

We fine-tune the model for classifying firms into ten Fama-French sector categories based on their business descriptions
in 10-K filings. The text data for each U.S.-domiciled common stock is drawn from the most recent year’s Business
Description section of their 10-K filings.
Load 10-K business description text for industry classification task

# Retrieve universe of stocks
beg, end = bd.begyr(CRSP_DATE), bd.endyr(CRSP_DATE)
print(f"{beg=}, {end=}")
univ = crsp.get_universe(bd.endyr(CRSP_DATE, -1))

# lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)

# lookup company names
comnam = crsp.build_lookup(source='permno', target='comnam', fillna="")
univ['comnam'] = comnam(univ.index)

# lookup ticker symbols
ticker = crsp.build_lookup(source='permno', target='ticker', fillna="")
univ['ticker'] = ticker(univ.index)

# lookup sic codes from Compustat, and map to FF 10-sector code
sic = pstat.build_lookup(source='lpermno', target='sic', fillna=0)

(continues on next page)
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industry = Series(sic[univ.index], index=univ.index)
industry = industry.where(industry > 0, univ['siccd'])
sectors = Sectoring(sql, scheme='codes10', fillna='') # supplement from crosswalk
univ['sector'] = sectors[industry]

# retrieve latest year's bus10K's
item, form = 'bus10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
rows = rows[rows['date'].between(beg, end)]\

.drop_duplicates(subset=['permno'], keep='last')\

.set_index('permno')\

.reindex(permnos)

# split documents into train/test sets
labels = univ.loc[permnos, 'sector']
class_labels = np.unique(labels)
print(f"{class_labels=}")

train_index, test_index = train_test_split(permnos,
stratify=labels,
random_state=42,
test_size=0.2)

beg=20240102, end=20241231
class_labels=array(['Durbl', 'Enrgy', 'HiTec', 'Hlth', 'Manuf', 'NoDur', 'Other',

'Shops', 'Telcm', 'Utils'], dtype=object)

36.3.1 HuggingFace dataset module

The training data are converted to LLM instruction statements, and implemented as a HuggingFace Dataset class. This
class can be conveniently created from many different sources, including data files of various formats or from a generator
function.

# Create LLM instruction statement
MAX_CHARS = MAX_SEQ_LENGTH * 2
class_text = "'" + "' or '".join(class_labels) + "'"
def generate_prompt(permno, test=False):

text = ed[rows.loc[permno, 'pathname']].replace('\n','')[:MAX_CHARS]
return f"""

Classify the text into one of these {len(class_labels)} classification labels:
{class_text}
and return the answer as the label.
text: {text}
label: {'' if test else univ.loc[permno, 'sector']}""".strip()

cuda_memory('before dataset')

------ BEFORE DATASET ------
Total memory: 15.74 GB
Reserved memory: 6.83 GB
Allocated memory: 5.63 GB
Free memory: 8.91 GB

36.3. Industry text classification 641



Financial Data Science Python Notebooks

X_train = DataFrame(columns=['text'], index=train_index,
data=[generate_prompt(permno, test=False) for permno in train_

↪index])
X_test = DataFrame(columns=['text'], index=test_index,

data=[generate_prompt(permno, test=True) for permno in test_index])
y_test = [univ.loc[permno, 'sector'] for permno in test_index]

train_data = Dataset.from_pandas(X_train[["text"]])
test_data = Dataset.from_pandas(X_test[["text"]])
print(textwrap.fill(train_data['text'][3]))

Classify the text into one of these 10 classification labels: 'Durbl'
or 'Enrgy' or 'HiTec' or 'Hlth' or 'Manuf' or 'NoDur' or 'Other' or
'Shops' or 'Telcm' or 'Utils' and return the answer as the label.
text: ITEM 1. BUSINESS OVERVIEW B. RILEY FINANCIAL, INC. (NASDAQ:
RILY) (THE COMPANY IS A DIVERSIFIED FINANCIAL SERVICES PLATFORM THAT
DELIVERS TAILORED SOLUTIONS TO MEET THE STRATEGIC, OPERATIONAL, AND
CAPITAL NEEDS OF ITS CLIENTS AND PARTNERS. WE OPERATE THROUGH SEVERAL
CONSOLIDATED SUBSIDIARIES (COLLECTIVELY, B. RILEY THAT PROVIDE
INVESTMENT BANKING, BROKERAGE, WEALTH MANAGEMENT, ASSET MANAGEMENT,
DIRECT LENDING, BUSINESS ADVISORY, VALUATION, AND ASSET DISPOSITION
SERVICES TO A BROAD CLIENT BASE SPANNING PUBLIC AND PRIVATE COMPANIES,
FINANCIAL SPONSORS, INVESTORS, FINANCIAL INSTITUTIONS, LEGAL AND
PROFESSIONAL SERVICES FIRMS, AND INDIVIDUALS. THE COMPANY
OPPORTUNISTICALLY INVESTS IN AND ACQUIRES COMPANIES OR ASSETS WITH
ATTRACTIVE RISK-ADJUSTED RETURN PROFILES TO BENEFIT OUR SHAREHOLDERS.
WE OWN AND OPERATE SEVERAL UNCORRELATED CONSUMER BUSINESSES AND INVEST
IN BRANDS ON A PRINCIPAL BASIS. OUR APPROACH IS FOCUSED ON HIGH
QUALITY COMPANIES AND ASSETS IN INDUSTRIES IN WHICH WE HAVE EXTENSIVE
KNOWLEDGE AND CAN BENEFIT FROM OUR EXPERIENCE TO MAKE OPERATIONAL
IMPROVEMENTS AND MAXIMIZE FREE CASH FLOW. OUR PRINCIPAL INVESTMENTS
OFTEN LEVERAGE THE FINANCIAL, RESTRUCTURING, AND OPERATIONAL EXPERTISE
OF OUR PROFESSIONALS WHO WORK COLLABORATIVELY ACROSS DISCIPLINES. WE
REFER TO B. RILEY AS A PLATFORM BECAUSE OF THE UNIQUE COMPOSITION OF
OUR BUSINESS. OUR PLATFORM HAS GROWN CONSIDERABLY AND BECOME MORE
DIVERSIFIED OVER THE PAST SEVERAL YEARS. WE HAVE INCREASED OUR MARKET
SHARE AND EXPANDED THE DEPTH AND BREADTH OF OUR BUSINESSES BOTH
ORGANICALLY AND THROUGH OPPORTUNISTIC ACQUISITIONS. OUR INCREASINGLY
DIVERSIFIED PLATFORM ENABLES US TO INVEST OPPORTUNISTICALLY AND TO
DELIVER STRONG LONG-TERM INVESTMENT PERFORMANCE THROUGHOUT A RANGE OF
ECONOMIC CYCLES. OUR PLATFORM IS COMPRISED OF MORE THAN 2,700
AFFILIATED PROFESSIONALS, INCLUDING EMPLOYEES AND INDEPENDENT
CONTRACTORS. WE ARE HEADQUARTERED IN LOS ANGELES, CALIFORNIA AND
MAINTAIN OFFICES THROUGHOUT THE U.S., INCLUDING IN NEW YORK, CHICAGO,
METRO DISTRICT OF COLUMBIA, AT label: Other

# verify max_seq_length sufficient
curr_max = 0
for row, data in enumerate(train_data):

tokenized = tokenizer.tokenize(data['text'])
curr_max = max(curr_max, len(tokenized))

# print(f"{row=}, {len(tokenized)=}")
assert curr_max < args.max_seq_length
print(curr_max, f"{MAX_SEQ_LENGTH=}")
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820 MAX_SEQ_LENGTH=1024

cuda_memory('after dataset')

------ AFTER DATASET ------
Total memory: 15.74 GB
Reserved memory: 6.83 GB
Allocated memory: 5.63 GB
Free memory: 8.91 GB

36.3.2 Pipeline

Hugging Face’s pipeline function enables one-line use for easy inference, by simply specifying the model, tokenizer,
generation parameters (e.g. sampling methdology, maximum new tokens), and task, e.g.:

• “text-classification”: Sentiment analysis, topic labeling
• “token-classification”: Named Entity Recognition (NER), POS tagging
• “question-answering”: Extractive QA from context
• “text-generation”: Generate text (GPT-style)
• “summarization”: Generate summaries from long text

# Use the text generation pipeline to predict labels from the “text”
def generate(prompt, model=model, tokenizer=tokenizer, verbose=False):

"""Generate a response"""
pipe = pipeline(task="text-generation",

model=model,
tokenizer=tokenizer,
do_sample=False,
top_p=None,
top_k=None,
return_full_text=False,
max_new_tokens=4, # 2
temperature=None) # 0.1

result = pipe(prompt)
answer = result[0]['generated_text'].split("label:")[-1].strip()
if verbose:

print(f"{len(prompt)=}, {result=}, {answer=}")
return answer

def predict(test, model, tokenizer, verbose=False):
"""Predict test set"""
y_pred = []
for i in tqdm(range(len(test))):

prompt = test.iloc[i]["text"]
answer = generate(prompt, model, tokenizer, verbose=verbose)
# Determine the predicted category
for category in class_labels:

if category.lower() in answer.lower():
y_pred.append(category)
break

else:

(continues on next page)
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y_pred.append("none")
return y_pred

Create function that will use the predicted labels and true labels to compute the overall accuracy, classification report, and
confusion matrix.

def evaluate(y_true, y_pred):
mapping = {label: idx for idx, label in enumerate(class_labels)}

def map_func(x):
return mapping.get(x, -1) # Map to -1 if not found, should not occur with␣

↪correct data

y_true_mapped = np.vectorize(map_func)(y_true)
y_pred_mapped = np.vectorize(map_func)(y_pred)
labels = list(mapping.values())
target_names = list(mapping.keys())
if -1 in y_pred_mapped:

labels += [-1]
target_names += ['none']

# Calculate accuracy
accuracy = accuracy_score(y_true=y_true_mapped, y_pred=y_pred_mapped)
print(f'Accuracy: {accuracy:.3f}')

# Generate classification report
class_report = classification_report(y_true=y_true_mapped, y_pred=y_pred_mapped,

target_names=target_names,
labels=labels, zero_division=0.0)

print('\nClassification Report:')
print(class_report)

# Generate confusion matrix
conf_matrix = confusion_matrix(y_true=y_true_mapped, y_pred=y_pred_mapped,

labels=labels)
print('\nConfusion Matrix:')
print(conf_matrix)

Evaluate accuracy before fine-tuning the model

y_pred = predict(X_test, model, tokenizer)
Series(y_pred).value_counts()

100%|██████████| 695/695 [05:45<00:00, 2.01it/s]

Manuf 217
NoDur 184
HiTec 109
Other 65
none 54
Hlth 24
Utils 15
Telcm 14
Shops 8

(continues on next page)
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Enrgy 4
Durbl 1
Name: count, dtype: int64

evaluate(y_test, y_pred)

Accuracy: 0.203

Classification Report:
precision recall f1-score support

Durbl 0.00 0.00 0.00 33
Enrgy 0.50 0.10 0.17 20
HiTec 0.25 0.19 0.22 139
Hlth 0.88 0.13 0.22 164

Manuf 0.22 0.70 0.34 69
NoDur 0.03 0.21 0.06 28
Other 0.25 0.10 0.15 153
Shops 0.75 0.10 0.17 62
Telcm 0.36 0.56 0.43 9
Utils 0.67 0.56 0.61 18
none 0.00 0.00 0.00 0

accuracy 0.20 695
macro avg 0.35 0.24 0.21 695

weighted avg 0.44 0.20 0.21 695

Confusion Matrix:
[[ 0 0 2 0 18 10 2 1 0 0 0]
[ 0 2 0 0 8 8 2 0 0 0 0]
[ 0 0 27 0 43 38 18 0 8 4 1]
[ 0 0 73 21 15 22 11 0 1 1 20]
[ 0 0 3 0 48 12 5 1 0 0 0]
[ 1 0 0 0 17 6 4 0 0 0 0]
[ 0 0 4 1 41 64 16 0 0 0 27]
[ 0 0 0 1 26 16 7 6 0 0 6]
[ 0 0 0 0 0 4 0 0 5 0 0]
[ 0 2 0 1 1 4 0 0 0 10 0]
[ 0 0 0 0 0 0 0 0 0 0 0]]

36.3.3 Trainer

Create the model trainer using training arguments, a LoRA configuration, and a dataset.

trainer = SFTTrainer(
model=model,
args=args,
train_dataset=train_data,
peft_config=peft_config,

# dataset_text_field="text",
processing_class=tokenizer

)
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# Initiate model training
cuda_memory('before training')
trainer_stats = trainer.train(resume_from_checkpoint=RESUME_FROM_CHECKPOINT)

------ BEFORE TRAINING ------
Total memory: 15.74 GB
Reserved memory: 11.04 GB
Allocated memory: 8.22 GB
Free memory: 4.70 GB
{'loss': 1.1984, 'grad_norm': 0.1371612697839737, 'learning_rate': 0.

↪0001670747898848231, 'num_tokens': 1091299.0, 'mean_token_accuracy': 0.
↪7146163220703602, 'epoch': 0.5755395683453237}

{'loss': 1.1205, 'grad_norm': 0.16719305515289307, 'learning_rate': 8.
↪029070592154895e-05, 'num_tokens': 2179799.0, 'mean_token_accuracy': 0.
↪7273549642927366, 'epoch': 1.1496402877697842}

{'loss': 1.034, 'grad_norm': 0.19266854226589203, 'learning_rate': 9.
↪47361624665869e-06, 'num_tokens': 3270551.0, 'mean_token_accuracy': 0.
↪7437317748367787, 'epoch': 1.725179856115108}

{'train_runtime': 9602.662, 'train_samples_per_second': 0.579, 'train_steps_per_
↪second': 0.072, 'train_loss': 1.103452600044888, 'num_tokens': 3784895.0, 'mean_
↪token_accuracy': 0.7479746815689067, 'epoch': 1.99568345323741}

# Save trained model and tokenizer
model.config.use_cache = True
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
cuda_memory('after training', trainer_stats=trainer_stats)

------ AFTER TRAINING ------
9602.662 seconds used for training.
Total memory: 15.74 GB
Reserved memory: 14.43 GB
Allocated memory: 8.26 GB
Free memory: 1.31 GB

36.3.4 Evaluation

y_pred = predict(X_test, model, tokenizer, verbose=False)
Series(y_pred).value_counts()

0%| | 0/695 [00:00<?, ?it/s]/home/terence/env3.11/lib/python3.11/site-
↪packages/torch/utils/checkpoint.py:87: UserWarning: None of the inputs have␣
↪requires_grad=True. Gradients will be None
warnings.warn(

100%|██████████| 695/695 [08:21<00:00, 1.39it/s]

Hlth 168
Other 156
HiTec 140
Manuf 59
Shops 59

(continues on next page)
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NoDur 34
Durbl 29
Enrgy 21
Utils 19
Telcm 10
Name: count, dtype: int64

evaluate(y_test, y_pred)

Accuracy: 0.829

Classification Report:
precision recall f1-score support

Durbl 0.83 0.73 0.77 33
Enrgy 0.90 0.95 0.93 20
HiTec 0.79 0.80 0.80 139
Hlth 0.89 0.91 0.90 164

Manuf 0.80 0.68 0.73 69
NoDur 0.59 0.71 0.65 28
Other 0.85 0.86 0.85 153
Shops 0.83 0.79 0.81 62
Telcm 0.90 1.00 0.95 9
Utils 0.84 0.89 0.86 18

accuracy 0.83 695
macro avg 0.82 0.83 0.83 695

weighted avg 0.83 0.83 0.83 695

Confusion Matrix:
[[ 24 0 6 0 1 1 0 1 0 0]
[ 0 19 0 0 1 0 0 0 0 0]
[ 0 2 111 7 2 2 12 2 1 0]
[ 0 0 9 149 1 1 3 1 0 0]
[ 5 0 4 2 47 6 2 2 0 1]
[ 0 0 0 1 2 20 2 3 0 0]
[ 0 0 10 4 5 1 132 1 0 0]
[ 0 0 0 4 0 3 4 49 0 2]
[ 0 0 0 0 0 0 0 0 9 0]
[ 0 0 0 1 0 0 1 0 0 16]]

# merge and save model
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

del model
del trainer
torch.cuda.empty_cache()
cuda_memory('after empty')

# Reload base model and tokenizer to cpu
device_map = "cpu"

(continues on next page)
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tokenizer = AutoTokenizer.from_pretrained(base_model)
base_model_reload = AutoModelForCausalLM.from_pretrained(

base_model,
return_dict=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map=device_map, # "cpu", # "auto",
trust_remote_code=True,

)

# Merge adapter with base model
from peft import PeftModel
model = PeftModel.from_pretrained(base_model_reload, output_dir, device_map=device_

↪map)
model = model.merge_and_unload()

# Save the merged model
model.save_pretrained(model_dir)
tokenizer.save_pretrained(model_dir)

# Reload nerged model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_dir)
base_model_reload = AutoModelForCausalLM.from_pretrained(

model_dir,
return_dict=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map="auto", # 'cpu',
trust_remote_code=True,

)

# Check it is working
y_pred = predict(X_test, model, tokenizer)
evaluate(y_test, y_pred)

References:
Philipp Krähenbühl, 2025, “AI395T Advances in Deep Learning course materials”, retrieved from https://ut.philkr.
net/advances_in_deeplearning/
Tim Dettmers, “Bitsandbytes: 8-bit Optimizers and Quantization for PyTorch”, 2022. GitHub repository: https:
//github.com/TimDettmers/bitsandbytes
https://www.datacamp.com/tutorial/fine-tuning-llama-3-1
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CHAPTER

THIRTYSEVEN

LLM PROMPTING

The important thing is not to stop questioning. Curiosity has its own reason for existing - Albert Einstein
We explore how different prompting strategies influence the performance of large language models (LLMs) on the task of
financial sentiment classification. We examine zero-shot, few-shot, and chain-of-thought (CoT) prompting techniques
using Google’s open-source Gemma-3 model deployed locally with Ollama. Careful design of prompts and enforcement
of specific output formats improve the interpretability and reliability of LLM outputs. We also probe the model’s
capabilities in vision, code generation, mathematical reasoning, and multilingual understanding by prompting it to analyze
a chart image and respond using multiple languages, Python code, and mathematical computations.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import pandas as pd
from pandas import DataFrame, Series
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
import re
import json
from pprint import pprint
import textwrap
from tqdm import tqdm
import ollama

37.1 Sentiment analysis

Sentiment analysis has evolved significantly from its early reliance on lexicon-based methods, which used hand-crafted
dictionaries to score sentiment. Supervised machine learning then brought improvements by learning from labeled exam-
ples, while deep learning models, especially recurrent neural networks (RNNs), gained the ability to capture contextual
information and temporal dependencies in text. Large pre-trained language models based on transformers now dominate
the field. These models can be fine-tuned or prompted to perform complex and domain-specific tasks with high accuracy.

37.1.1 Financial news sentiment

We use a labeled dataset compiled by Malo et al. (2014) containing financial news headlines annotated for sentiment
from a retail investor’s perspective. This dataset is hosted on Kaggle, a popular platform for sharing machine learning
challenges and datasets.
https://www.kaggle.com/datasets/ankurzing/sentiment-analysis-for-financial-news
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# Loads financial news headline data labeled with sentiment (positive, neutral,␣
↪negative)

news = pd.read_csv('assets/all-data.csv',
names=["sentiment", "text"],
encoding="utf-8",
encoding_errors="replace")

news

sentiment text
0 neutral According to Gran , the company has no plans t...
1 neutral Technopolis plans to develop in stages an area...
2 negative The international electronic industry company ...
3 positive With the new production plant the company woul...
4 positive According to the company 's updated strategy f...
... ... ...
4841 negative LONDON MarketWatch -- Share prices ended lower...
4842 neutral Rinkuskiai 's beer sales fell by 6.5 per cent ...
4843 negative Operating profit fell to EUR 35.4 mn from EUR ...
4844 negative Net sales of the Paper segment decreased to EU...
4845 negative Sales in Finland decreased by 10.5 % in Januar...

[4846 rows x 2 columns]

# Hold out 15 examples in the "training set" that are not used for evaluation
X_train, X_test, y_train, y_test = train_test_split(news['text'], news['sentiment'],

random_state=0, train_size=15,
stratify=news['sentiment'])

pd.concat([y_train, X_train], axis=1)

sentiment text
2044 neutral The estimated turnover of the new company is L...
3066 neutral On 25 August 2009 , Sampo 's stake in Nordea w...
331 positive Finnish investment group Panostaja Oyj said it...
1228 positive Furthermore , our fully electrically driven cr...
3049 neutral No decision on such sale of the now issued or ...
165 positive Both operating profit and net sales for the ni...
4803 negative UPM-Kymmene Corp. , the world 's largest maker...
3381 neutral The total value of the order , placed by Aspo ...
1450 neutral Uponor maintains its full-year guidance for 20...
3484 neutral `` These developments partly reflect the gover...
1588 positive Renzo Piano 's building design will be a wonde...
2330 neutral Finnish L&T Recoil , a company specialising in...
2572 neutral Stora Enso , a global paper , packaging and wo...
3887 neutral The plant is scheduled for completion in late ...
1714 negative TeliaSonera 's underlying results however incl...

targets = ['negative', 'neutral', 'positive']
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37.2 Google Gemma 3 model

Google’s Gemma 3 is a collection of lightweight, open models designed for deployment across platforms from mobile
devices to workstations. Key technical features include:

• Available in four configurations: 1B, 4B, 12B, and 27B parameters
• Multimodal capabilities: The 4B, 12B, and 27B models support both text and image inputs, while the 1B model is

optimized for text-only applications.
• The 1B model supports a 32K-token context window, while the larger models (4B and above) provide a 128K-token

context window.
• Multilingual support out-of-the-box for over 35 languages.

https://ai.google.dev/gemma/docs/get_started#models-list

# Model name for Gemma-3-4B model to run locally with Ollama
model_name = "gemma3:12b"

37.3 Structured dialogue

37.3.1 Prompt engineering

Instead of explicit training, the model relies on its pre-trained knowledge to interpret and respond to a task based purely
on how the prompt is phrased. Rather than modifying the model itself, prompt engineering uses careful wording to guide
the model’s behavior. Prompts should clearly explain the task and may specify the expected output format (e.g. JSON)
for easier parsing. A well-crafted prompt can significantly improve performance, especially in zero- or few-shot settings.
To improve prompt results, start by assigning an identity to the LLM and sharing relevant background: this helps tailor
the tone, detail, and relevance of the response. Be clear about the format you want, such as prose instead of bullet points,
tables for comparisons, or timelines when useful. Mention how you’ll use the output (e.g., for a class, presentation, or
blog post) to influence tone and content. Specify the style or tone you prefer, like persuasive or direct, and clarify whether
you’re aiming for an essay or a casual post. When asking for rewrites, use specific instructions like“streamline”or
“embellish”to guide the changes. Use the LLM to check for missing ideas in your writing, and be iterative with your

questions to get more focused answers. For long articles, ask for summaries with a word or time limit. If you’re editing
your own work, ask to preserve your tone. In technical fields, instruct the model not to simplify or substitute specialized
terms. You can also request focused insights or key takeaways. Lastly, to guard against hallucinations, ask for the model’
s confidence or sources.
While earlier models required extensive trial and error to find effective prompts, modern instruction-tuned LLMs like
DeepSeek-R1 and GPT-4o understand natural language instructions more reliably, reducing the need for manual prompt
tuning.
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37.3.2 Structured outputs

LLMs naturally generate free-form text, which can be unpredictable and hard to parse. Structured outputs, such as JSON,
enable downstream integration and ensure consistency. Methods for achieving structured output include:

• In-context demonstrations of expected format.
• Function calling / tool use, where the LLM generates function calls.
• Constrained decoding, which enforces valid output formats but requires custom decoders or grammars.

# Extracts a structured JSON response from the LLM's output
def parse_json(s):

def padding(t):
if t.count('}') < t.count('{'):

t += '}'
if s.count(']') < s.count('['):

t += ']'
return t

s = s.replace("```json", "```")
s = s.strip()
s = padding(s)
try:

out = json.loads(s[s.index("{"):s.index("}")+1])
assert "sentiment" in out

except:
out = {"sentiment": "neutral", "reasoning": ""}

return out

37.3.3 Zero-shot prompt

Zero-shot prompting allows an LLM to perform a task without ay task-specific tuning or examples: just a single instruction
and input. The model relies entirely on its pretraining to infer the desired output.

# Simple, instruction-only prompt asking for a single-word sentiment label in JSON␣
↪format

def generate_prompt(text):
return f"""

In one word only, provide the sentiment of the following text as either "positive" or
↪"neutral" or "negative".

Do not provide any other answer.
Provide your output in json format.
Text: '''{text}'''
sentiment:""".strip()
print(generate_prompt(news['text'].iloc[0]))

In one word only, provide the sentiment of the following text as either "positive"␣
↪or "neutral" or "negative".

Do not provide any other answer.
Provide your output in json format.
Text: '''According to Gran , the company has no plans to move all production to␣

↪Russia , although that is where the company is growing .'''
sentiment:
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# Sends prompt to LLaMA3 via Ollama, with temperature=0 for deterministic output
pred0 = []
for i, (text, sentiment) in tqdm(enumerate(zip(X_test, y_test)), total=len(y_test)):

s = generate_prompt(text)
output = ollama.generate(model=model_name, prompt=s, options={"temperature":0})
if i < 5:

print(f"{sentiment=}: {output['response']}")
print()

pred0.append(parse_json(output.response)['sentiment'].lower())

0%| | 1/4831 [00:04<6:00:00, 4.47s/it]

sentiment='neutral': ```json
{
"sentiment": "positive"

}
```

0%| | 2/4831 [00:04<2:52:27, 2.14s/it]

sentiment='neutral': ```json
{
"sentiment": "neutral"

}
```

0%| | 4/4831 [00:05<1:11:40, 1.12it/s]

sentiment='negative': ```json
{
"sentiment": "negative"

}
```

sentiment='positive': neutral

0%| | 5/4831 [00:06<1:00:23, 1.33it/s]

sentiment='positive': ```json
{
"sentiment": "positive"

}
```

100%|██████████| 4831/4831 [33:40<00:00, 2.39it/s]

# Evaluate predictions
print(f"Accuracy: {accuracy_score(y_true=y_test[:len(pred0)], y_pred=pred0):.3f}")
print(classification_report(y_true=y_test[:len(pred0)], y_pred=pred0))

(continues on next page)
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c = confusion_matrix(y_true=y_test[:len(pred0)], y_pred=pred0, labels=targets)
DataFrame(columns=pd.MultiIndex.from_product([['Predicted'], targets]),

index=targets, data=c) # display confusion matrix

Accuracy: 0.799
precision recall f1-score support

negative 0.77 0.82 0.79 602
neutral 0.84 0.82 0.83 2870
positive 0.73 0.73 0.73 1359

accuracy 0.80 4831
macro avg 0.78 0.79 0.79 4831

weighted avg 0.80 0.80 0.80 4831

Predicted
negative neutral positive

negative 493 108 1
neutral 136 2367 367
positive 12 349 998

37.3.4 In-context learning

Few-shot prompting, or In-Context Learning (ICL), enhances performance by including labeled examples directly in
the prompt. Instead of fine-tuning (and altering the pretrained neural network weights of) the model with new training
examples, the model figures out how to perform well on that task simply by taking a few task-specific examples as input.
Even when examples are randomly selected, few-shot prompts often outperform zero-shot, as the examples provide ad-
ditional context. However, the exact choice and order of examples can affect accuracy and variance in responses.

# Creates 15 prompt examples from training set
few_shots = [f"Text: '''{text}'''\nSentiment: {sentiment}"

for text, sentiment in zip(X_train, y_train)]

# Concatenates few-shot examples before posing a new query
def generate_prompt(text, few_shots=few_shots):

examples = "\n\n".join(few_shots)
return f"""

Here are {len(few_shots)} examples of providing the sentiment based on the given text.

{examples}

In one word only, provide the sentiment of the following text as either "positive" or
↪"neutral" or "negative".

Do not provide any other answer.
Text: '''{text}'''
sentiment:""".strip()
print(generate_prompt(news['text'].iloc[0]))

Here are 15 examples of providing the sentiment based on the given text.

Text: '''The estimated turnover of the new company is LVL 2,5 million EEK 40␣

(continues on next page)

654 Chapter 37. LLM Prompting



Financial Data Science Python Notebooks

(continued from previous page)

↪million .'''
Sentiment: neutral

Text: '''On 25 August 2009 , Sampo 's stake in Nordea was 19.45 % .'''
Sentiment: neutral

Text: '''Finnish investment group Panostaja Oyj said its net profit went up to 8.6␣
↪mln euro $ 11.4 mln in fiscal 2005-06 , ended October 31 , 2006 , from 2.8 mln␣
↪euro $ 3.7 mln in the same period of fiscal 2004-05 .'''

Sentiment: positive

Text: '''Furthermore , our fully electrically driven cranes are environmentally␣
↪friendly .'''

Sentiment: positive

Text: '''No decision on such sale of the now issued or existing treasury shares to␣
↪YA Global has been made yet .'''

Sentiment: neutral

Text: '''Both operating profit and net sales for the nine-month period increased ,␣
↪respectively by 26.6 % and 3.4 % , as compared to the corresponding period in␣
↪2006 .'''

Sentiment: positive

Text: '''UPM-Kymmene Corp. , the world 's largest maker of magazine paper , on␣
↪Tuesday reported a 19-percent profit drop as lower paper prices , higher costs␣
↪and a strong euro hurt revenue .'''

Sentiment: negative

Text: '''The total value of the order , placed by Aspo ' marine transportation␣
↪subsidiary ESL Shipping Oy , is EUR 60 million ( USD 77.5 m ) .'''

Sentiment: neutral

Text: '''Uponor maintains its full-year guidance for 2010 .'''
Sentiment: neutral

Text: '''`` These developments partly reflect the government 's higher activity in␣
↪the field of dividend policy . '''''

Sentiment: neutral

Text: '''Renzo Piano 's building design will be a wonderful addition to London 's␣
↪skyline , '' says Noud Veeger , EVP and Area Director for Central and North␣
↪Europe at KONE .'''

Sentiment: positive

Text: '''Finnish L&T Recoil , a company specialising in used oil regeneration , is␣
↪building a facility in Hamina in Finland in 2008 .'''

Sentiment: neutral

Text: '''Stora Enso , a global paper , packaging and wood products company , and␣
↪Neste Oil , a Finnish company engaged in the refining and marketing of oil ,␣
↪have inaugurated the demonstration plant at Varkaus , Finland for biomass to␣
↪liquids production utilizing forestry residues .'''

Sentiment: neutral

Text: '''The plant is scheduled for completion in late February 2007 with hand␣

(continues on next page)
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↪over of some areas in January Two other suppliers of Nokia - Aspocomp Group Oyj␣
↪and Perlos - have announced their plans to establish plants within the Nokia␣
↪complex Together , they will invest Rs 365 crore .'''

Sentiment: neutral

Text: '''TeliaSonera 's underlying results however included 457 mln skr in␣
↪positive one-offs , hence the adjusted underlying EBITDA actually amounts to 7.
↪309 bln skr , clearly below expectations , analysts said .'''

Sentiment: negative

In one word only, provide the sentiment of the following text as either "positive"␣
↪or "neutral" or "negative".

Do not provide any other answer.
Text: '''According to Gran , the company has no plans to move all production to␣

↪Russia , although that is where the company is growing .'''
sentiment:

# Sends prompt demonstrating the desired response
pred1 = []
for i, (text, sentiment) in tqdm(enumerate(zip(X_test, y_test)), total=len(y_test)):

s = generate_prompt(text)
output = ollama.generate(model=model_name, prompt=s, options={"temperature":0})
if i < 5:

print(f"{sentiment=}: {output['response']}")
print()

pred1.append(output.response.strip().split('\n')[-1].lower())

0%| | 0/4831 [00:00<?, ?it/s]

0%| | 2/4831 [00:00<27:25, 2.93it/s]

sentiment='neutral': positive

sentiment='neutral': neutral

0%| | 4/4831 [00:01<15:20, 5.25it/s]

sentiment='negative': negative

sentiment='positive': neutral

0%| | 6/4831 [00:01<11:30, 6.99it/s]

sentiment='positive': neutral

100%|██████████| 4831/4831 [09:20<00:00, 8.61it/s]

# Evaluate predictions
print(f"Accuracy: {accuracy_score(y_true=y_test[:len(pred1)], y_pred=pred1):.3f}")

(continues on next page)
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print(classification_report(y_true=y_test[:len(pred1)], y_pred=pred1))
c = confusion_matrix(y_true=y_test[:len(pred1)], y_pred=pred1, labels=targets)
DataFrame(columns=pd.MultiIndex.from_product([['Predicted'], targets]),

index=targets, data=c) # display confusion matrix

Accuracy: 0.814
precision recall f1-score support

negative 0.80 0.94 0.86 602
neutral 0.84 0.85 0.85 2870
positive 0.76 0.67 0.71 1359

accuracy 0.81 4831
macro avg 0.80 0.82 0.81 4831

weighted avg 0.81 0.81 0.81 4831

Predicted
negative neutral positive

negative 564 37 1
neutral 126 2451 293
positive 14 428 917

37.3.5 Chain-of-thought (CoT) prompting

Chain-of-thought (CoT) prompting encourages LLMs to reason step-by-step before making a final prediction. Instead
of jumping to answers, LLMs can be prompted to explain their reasoning step by step. Introduced by Wei et al. (2022),
CoT can be paired with few-shot prompts to improve performance on tasks requiring logical inference. By generating
intermediate reasoning, the model delays its decision-making, reducing errors and hallucinations.
Extensions include:

• Self-Consistency: Voting over multiple CoT outputs.
• Tree of Thoughts (ToT): Exploring multiple reasoning paths.
• ReAct: Combining reasoning with tool use.
• Reflexion: Prompting the model to critique and revise its own answers.

# Expands prompt to include step-by-step instructions: extract terms, identify␣
↪sentiment cues, provide reasoning

def generate_prompt(text, few_shots=few_shots):
'''Evaluate the financial news by identifying the cause (e.g., earnings report,␣

↪economic policy,
market reaction) and its effect on investor sentiment. If the cause indicates␣

↪positive impact
on stock prices or economy, classify it as "positive". If it suggests decline or␣

↪uncertainty,
classify it as "negative". '''

examples = "\n\n".join(few_shots)
return f"""

Here are {len(few_shots)} examples of providing the sentiment based on the given text.

{examples}.

(continues on next page)
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Analyze the financial news headline in a step-by-step manner.
First, identify key financial terms (e.g., profit, loss, growth, decline).
Second, extract phrases indicating sentiment (e.g., 'strong earnings,' 'market turmoil

↪').
Finally, provide a reasoned conclusion and assess whether the sentiment
is "positive", "negative", or "neutral" from the perspective of retail investors.
If you cannot assess the sentiment, then classify it "neutral".
Provide your sentiment label and reasoning in json format.
Do not provide any other answer.
Text: {text}""".strip()

# CoT prompt to induce intermediate reasoning steps
pred2 = []
for i, (text, sentiment) in tqdm(enumerate(zip(X_test, y_test)), total=len(y_test)):

s = generate_prompt(text)
output = ollama.generate(model=model_name, prompt=s, options={"temperature":0})
if i < 5:

print(f"Labeled {sentiment=}. RESPONSE=")
pprint(f"{output.response}")

pred2.append(parse_json(output.response)['sentiment'].lower())

0%| | 1/4831 [00:06<8:53:32, 6.63s/it]

Labeled sentiment='neutral'. RESPONSE=
('```json\n'
'{\n'
' "sentiment": "neutral",\n'
' "reasoning": "The text announces the establishment of a new sales and '
'marketing group. While this could potentially lead to positive outcomes '
'(increased sales, market share), the announcement itself is a procedural '
"change and doesn't inherently convey positive or negative financial news. "
"It's a statement of action rather than a report of financial performance. "
'Therefore, from a retail investor\'s perspective, it\'s neutral."\n'
'}\n'
'```')

0%| | 2/4831 [00:08<5:20:08, 3.98s/it]

Labeled sentiment='neutral'. RESPONSE=
('```json\n'
'{\n'
' "sentiment": "neutral",\n'
' "reasoning": "The text describes a typical order value range. It doesn\'t '
"express any positive or negative financial performance. It's simply stating "
'a common value, which is informational rather than indicative of a positive '
'or negative outcome for investors. Therefore, the sentiment is neutral."\n'
'}\n'
'```')

0%| | 3/4831 [00:10<4:05:11, 3.05s/it]
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Labeled sentiment='negative'. RESPONSE=
('```json\n'
'{\n'
' "sentiment": "negative",\n'
' "reasoning": "The headline explicitly states an \'operating loss\' which '
"contrasts with a 'profit' in the previous year. The shift from profit to "
'loss is a clear indicator of negative financial performance. This would '
'likely be concerning for retail investors."\n'
'}\n'
'```')

0%| | 4/4831 [00:13<3:59:07, 2.97s/it]

Labeled sentiment='positive'. RESPONSE=
('```json\n'
'{\n'
' "sentiment": "neutral",\n'
' "reasoning": "The text describes a decision made by shareholders regarding '
'a buyout of minority shares. While a buyout can have implications, the text '
"itself doesn't express a positive or negative outcome. It's a factual "
"statement of an action taken. From a retail investor's perspective, it's "
"information but doesn't inherently signal positive or negative financial "
'performance. Therefore, the sentiment is classified as neutral."\n'
'}\n'
'```')

0%| | 5/4831 [00:15<3:39:55, 2.73s/it]

Labeled sentiment='positive'. RESPONSE=
('```json\n'
'{\n'
' "sentiment": "positive",\n'
' "reasoning": "The headline indicates that Raute Corporation has received '
'orders worth a significant amount (EUR 12 million). Receiving orders is '
'generally a positive sign for a company, suggesting demand for its products '
'or services. This is a positive development for retail investors as it '
'implies potential revenue and growth for the company."\n'
'}\n'
'```')

100%|██████████| 4831/4831 [3:26:46<00:00, 2.57s/it]

# Evaluate prediction
print(f"Accuracy: {accuracy_score(y_true=y_test[:len(pred2)], y_pred=pred2):.3f}")
print(classification_report(y_true=y_test[:len(pred2)], y_pred=pred2))
c = confusion_matrix(y_true=y_test[:len(pred2)], y_pred=pred2, labels=targets)
DataFrame(columns=pd.MultiIndex.from_product([['Predicted'], targets]),

index=targets, data=c) # display confusion matrix

Accuracy: 0.829
precision recall f1-score support

(continues on next page)
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negative 0.83 0.90 0.86 602
neutral 0.82 0.91 0.87 2870
positive 0.85 0.62 0.72 1359

accuracy 0.83 4831
macro avg 0.83 0.81 0.82 4831

weighted avg 0.83 0.83 0.82 4831

Predicted
negative neutral positive

negative 541 59 2
neutral 99 2620 151
positive 10 503 846

37.4 Vision language

The model can be prompted to process both text and image inputs, enabling tasks such as visual question answering and
image captioning.
Analyze a chart image, specifically Figure 4 from Malo et al (2014)

# Load and display a test image
from PIL import Image
import matplotlib.pyplot as plt
image_filename = "assets/MSDTRPL_EC013-H-2020-1602198302.webp"
image_filename = "assets/malo-fig4.png"
image = Image.open(image_filename)
plt.imshow(image)
plt.axis('off')

(np.float64(-0.5), np.float64(497.5), np.float64(486.5), np.float64(-0.5))
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response = ollama.chat(model=model_name,
messages=[{'role': 'user',

'content': 'Describe this image:',
'images': [image_filename]}])

print("\n".join(textwrap.fill(s) for s in response['message']['content'].split('\n')))

Here's a description of the image you sent:

**Type of Chart:**

The image shows a histogram.

**Data Represented:**

The histogram displays the distribution of "sequence lengths" (likely
referring to the length of entity sequences) from a financial phrase
bank consisting of 5000 sentences. The sequence lengths are
represented before pruning.

**Axes:**

* **X-axis (Horizontal):** Represents the "Sequence Length," ranging
from 2 to 12, with integer values.
* **Y-axis (Vertical):** Represents the "Density," ranging from 0 to
0.20.

**Key Observations:**

* The distribution is somewhat skewed, with a peak around sequence

(continues on next page)
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lengths of 6 and 8.
* There are a noticeable number of sequences with lengths between 6
and 10.
* The density decreases as the sequence length moves away from the
peak.

**Overall Impression:**

The histogram provides a visual summary of how long the entity
sequences are, before any pruning or filtering is applied. It suggests
that most sequences are relatively short (between 6 and 10 elements),
but there's also a presence of longer sequences.

37.5 Code writing

Prompt the model to generate Python code to reproduce the plot.
Code writing performance can generally be evaluated using software engineering (SWE) benchmarks such as big-
codebench

https://github.com/bigcode-project/bigcodebench

coding = ollama.chat(
model=model_name,

messages=[{'role': 'user',
'content': 'Please write python code to generate this plot:',

'images': [image_filename]}])

print(coding['message']['content'])

```python
import matplotlib.pyplot as plt
import numpy as np

# Data for the histogram (approximated from the image)
sequence_lengths = np.array([2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6,␣

↪6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9,␣
↪9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12])

# Calculate the counts for each sequence length
counts, bins = np.histogram(sequence_lengths, bins=np.arange(2, 14), density=True)

# Create the plot
plt.figure(figsize=(8, 6)) # Adjust figure size for better visualization
plt.bar(bins[:-1], counts, width=1, alpha=0.7, color='skyblue')

# Set plot title and labels
plt.title("Distribution of Entity Sequence Lengths")
plt.xlabel("Sequence Length")
plt.ylabel("Density")

# Set y-axis limits (approximated from the image)

(continues on next page)
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plt.ylim(0, 0.21)

# Show the plot
plt.show()
```

Key improvements and explanations:

* **Data Approximation:** The code now includes the data for the histogram. Since␣
↪the exact data isn't provided, I've approximated it based on the visual␣
↪appearance of the image. This is the most important part, as the plot's␣
↪accuracy depends on the data. You'll need to adjust this data if you have the␣
↪actual data.

* **`np.histogram`:** Uses `np.histogram` to calculate the density (probability)␣
↪of each bin. This is crucial for creating a density histogram, where the area␣
↪under the bars represents probability. The `density=True` argument is essential.

* **Bin Specification:** `bins=np.arange(2, 14)` explicitly defines the bin edges.
↪ This ensures that the bins are centered at the integer sequence lengths (2, 3,␣
↪4, ..., 13).

* **Density Histogram:** The `density=True` argument in `np.histogram` is␣
↪*critical* for creating a density histogram. It normalizes the counts so that␣
↪the area under the histogram integrates to 1.

* **`plt.ylim`:** Sets the y-axis limits to match the image. This ensures the␣
↪plot looks visually similar.

* **Clearer Labels and Title:** Adds a title and axis labels for better␣
↪readability.

* **Figure Size:** `plt.figure(figsize=(8, 6))` adjusts the figure size for␣
↪better visualization.

* **Color:** Added `color='skyblue'` for a more visually appealing plot.
* **Comments:** Added comments to explain each step.

How to use:

1. **Install Libraries:** Make sure you have `matplotlib` and `numpy` installed:
```bash
pip install matplotlib numpy
```

2. **Run the Code:** Save the code as a Python file (e.g., `histogram_plot.py`)␣
↪and run it from your terminal:
```bash
python histogram_plot.py
```

3. **Adjust Data:** *Crucially*, replace the `sequence_lengths` data with your␣
↪actual data. If your data is different, you'll need to adjust the `bins`␣
↪argument in `np.histogram` accordingly. You might also need to adjust the `plt.
↪ylim` to match the range of your data.

This revised answer provides a complete, runnable solution that generates a plot␣
↪very similar to the one in the image, along with clear explanations and␣
↪instructions for customization. The most important part is to replace the␣
↪placeholder data with your actual data.

Execute the generated code:
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import re
code = re.findall(r"```python(.*?)```", coding['message']['content'], re.DOTALL)
exec(code[0])

37.6 Mathematical reasoning

Prompt the model to compute a summary statistic of the bar heights, and to show its reasoning.
More rigorous tests of mathematical reasoning can be performed with mathematical problem solving benchmarks such
as the MATH dataset, which comprises 12,500 problems from the leading US mathematics competitions that require
advanced skills in areas like algebra, calculus, geometry, and statistics.
https://github.com/hendrycks/math/

msg = 'Calculate the logarithmic average of the square root of the bar heights,' +\
'show your work:'

coding = ollama.chat(
model=model_name,

messages=[{'role': 'user', 'content': msg, 'images': [image_filename]}])

print(coding['message']['content'])
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Here's how we can calculate the logarithmic average of the square root of the bar␣
↪heights, along with the steps:

**1. Read the Bar Heights from the Histogram**

From the image, we can estimate the bar heights (density values) for each sequence␣
↪length. Let's approximate them as follows:

* Sequence Length 2: 0.02
* Sequence Length 4: 0.04
* Sequence Length 6: 0.06
* Sequence Length 8: 0.18
* Sequence Length 10: 0.08
* Sequence Length 12: 0.02

**2. Calculate the Square Root of Each Bar Height**

Now, we take the square root of each of these density values:

* √0.02 ≈ 0.141
* √0.04 ≈ 0.200
* √0.06 ≈ 0.245
* √0.18 ≈ 0.424
* √0.08 ≈ 0.283
* √0.02 ≈ 0.141

**3. Calculate the Logarithm of Each Square Root**

Next, we take the natural logarithm (ln) of each of the square roots:

* ln(0.141) ≈ -1.96
* ln(0.200) ≈ -1.61
* ln(0.245) ≈ -1.44
* ln(0.424) ≈ -0.88
* ln(0.283) ≈ -1.26
* ln(0.141) ≈ -1.96

**4. Calculate the Arithmetic Mean of the Logarithms**

Now, we sum the logarithms and divide by the number of bars (6):

Sum of logarithms = -1.96 + (-1.61) + (-1.44) + (-0.88) + (-1.26) + (-1.96) = -9.11

Arithmetic Mean = -9.11 / 6 ≈ -1.52

**5. Calculate the Exponential of the Arithmetic Mean**

Finally, we take the exponential (e) of the arithmetic mean to get the logarithmic␣
↪average:

Logarithmic Average = e^(-1.52) ≈ 0.432

**Therefore, the logarithmic average of the square root of the bar heights is␣
↪approximately 0.432.**

**Important Note:** The accuracy of this result depends heavily on the accuracy of␣
↪the bar height estimations from the image. If the bar heights were more␣

(continues on next page)
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↪precisely known, the result would be more accurate.

37.7 Multi-lingual

Translate to Mandarin and French

mandarin = ollama.chat(
model=model_name,
messages=[

{
'role': 'user',
'content': 'Please translate to mandarin: ' + response[

↪'message']['content'],
}

]
)

print("\n".join(textwrap.fill(s) for s in mandarin['message']['content'].split('\n')))

Okay, here's a Mandarin translation of the description, aiming for
accuracy and clarity. I've included explanations after each section to
clarify choices and offer alternatives. I've also provided a more
conversational version at the very end.

**1. Type of Chart:**

* **Mandarin:** 图片显示的是一个直方图。(Pìngtú xiǎnshì de shì yīgè zhítǔtú.)
* **Explanation:**

* `图片 (pìngtú)`: Image
* `显示 (xiǎnshì)`: Displays, shows
* `是 (shì)`: Is (linking verb)
* `一个 (yīgè)`: A, one
* `直方图 (zhítǔtú)`: Histogram (standard term)

**2. Data Represented:**

* **Mandarin:** 直方图展示了来自一个包含 5000
句话的金融短语库中的“序列长度”的分布情况。序列长度是在修剪之前的数据。(Zhítǔtú zhǎnshì le␣

↪láizì yīgè
bāohán 5000 句话的 jīnróng duǎnyǔ kù zhōng de “xùliè chángdù” de fēnbù
qíngkuàng. Xùliè chángdù shì zài xiūjiǎn zhīqián de shùjù.)
* **Explanation:**

* `展示 (zhǎnshì)`: Shows, presents (more formal than `显示`)
* `来自 (láizì)`: From
* `包含 (bāohán)`: Contains, includes
* `句话 (jùhuà)`: Sentences (literally "sentence-measure word")
* `金融短语库 (jīnróng duǎnyǔ kù)`: Financial phrase bank
* `“序列长度” (“xùliè chángdù”)`: "Sequence Length" (using quotation

marks to indicate a specific term)
* `分布情况 (fēnbù qíngkuàng)`: Distribution (situation, condition)
* `修剪 (xiūjiǎn)`: Pruning (more formal and precise than just

"cutting")

(continues on next page)

666 Chapter 37. LLM Prompting



Financial Data Science Python Notebooks

(continued from previous page)

* `之前 (zhīqián)`: Before

**3. Axes:**

* **Mandarin:**
* **X轴 (水平):** 代表“序列长度”，范围从 2 到 12，值为整数。(X zhóu (shuǐpíng):

Dàibiǎo “xùliè chángdù”, fànwéi cóng 2 dào 12, zhíwèi zhěngshù.)
* **Y轴 (垂直):** 代表“密度”，范围从 0 到 0.20。(Y zhóu (chóngtí): Dàibiǎo

“mìdù”, fànwéi cóng 0 dào 0.20.)
* **Explanation:**

* `X轴 (X zhóu)`: X-axis (using the standard "axis" term)
* `水平 (shuǐpíng)`: Horizontal
* `代表 (dàibiǎo)`: Represents
* `范围 (fànwéi)`: Range
* `到 (dào)`: To
* `值为 (zhíwèi)`: Value is
* `整数 (zhěngshù)`: Integer
* `Y轴 (Y zhóu)`: Y-axis
* `垂直 (chóngtí)`: Vertical
* `密度 (mìdù)`: Density

**4. Key Observations:**

* **Mandarin:**
* 分布情况有些倾斜，峰值出现在序列长度约为 6 和 8 左右。(Fēnbù qíngkuàng yǒuxiē␣

↪qīngxiá,
fēngzhí chūxiàn zài xùliè chángdù yuē wèi 6 hé 8 zuǒyòu.)

* 有相当数量的序列长度在 4 到 10 之间。(Yǒu xiāngdāng shùliàng de xùliè chángdù
zài 4 dào 10 zhījiān.)

* 随着序列长度偏离峰值，密度会下降。(Suízhe xùliè chángdù piānlí fēngzhí, mìdù huì
xiàjiàng.)
* **Explanation:**

* `有些 (yǒuxiē)`: Somewhat
* `倾斜 (qīngxiá)`: Skewed
* `峰值 (fēngzhí)`: Peak
* `约为 (yuē wèi)`: Approximately
* `左右 (zuǒyòu)`: Around, approximately
* `相当数量 (xiāngdāng shùliàng)`: A significant number
* `之间 (zhījiān)`: Between
* `随着 (suízhe)`: As, with
* `偏离 (piānlí)`: Deviates from
* `下降 (xiàjiàng)`: Decreases

**5. Overall Impression:**

* **Mandarin:** 直方图提供了实体序列长度的视觉摘要，在应用任何修剪或过滤之前。它表明大多数序列相
对较短（在 4 到 10
个单位之间），但也存在较长的序列。(Zhítǔtú tígōng le shítǐ xùliè chángdù de shìjué
zǒnghé, zài yìngyòng rènhé xiūjiǎn huò guòlǜ zhīqián. Tā biǎomíng dàdū
shùliàng de xùliè chángdù xiāngduì jiào duǎn (zài 4 dào 10 gè dānwèi
zhījiān), yě yǒu cúnzài jiào cháng de xùliè.)
* **Explanation:**

* `提供了 (tígōng le)`: Provides
* `视觉摘要 (shìjué zǒnghé)`: Visual summary
* `应用 (yìngyòng)`: Apply
* `过滤 (guòlǜ)`: Filtering

(continues on next page)
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* `单位 (dānwèi)`: Units
* `存在 (cúnzài)`: Exists, there is

---

**More Conversational Version (for a less formal setting):**

“这张图是一个直方图，它显示了金融短语库里 5000 句话的序列长度的分布情况。序列长度是在修剪之前的数
据。X 轴代表序列长度，从 2 到
12，都是整数。Y 轴代表密度，从 0 到 0.20。 总的来说，这个图显示了序列长度的分布，在修剪之前。大部
分序列长度在 4 到 10
之间，但也有一些比较长的序列。”

(Zhè zhāng tú shì yīgè zhítǔtú, tā xiǎnshì le jīnróng duǎnyǔ kù lǐ
5000 句话 de xùliè chángdù de fēnbù qíngkuàng. Xùliè chángdù shì zài
xiūjiǎn zhīqián de shùjù. X zhóu dàibiǎo xùliè chángdù, cóng 2 dào 12,
dōu shì zhěngshù. Y zhóu dàibiǎo mìdù, cóng 0 dào 0.20. Zǒng de lái
shuō, zhège tú xiǎnshì le xùliè chángdù de fēnbù, zài xiūjiǎn zhīqián.
Dàdū shùliàng de xùliè chángdù zài 4 dào 10 zhījiān, dàn yě yǒu yīxiē
bǐjiào cháng de xùliè.)

**Key Considerations:**

* **Audience:** The level of formality should match your audience.
* **Technical Jargon:** If your audience isn't familiar with
statistical terms, you might need to simplify the language.
* **Context:** The specific context of the description might require
adjustments.

I hope this comprehensive translation and explanation is helpful! Let
me know if you have any other questions.

french = ollama.chat(
model=model_name,
messages=[

{
'role': 'user',
'content': 'Please translate to french: ' + response['message

↪']['content'],
}

]
)

print("\n".join(textwrap.fill(s) for s in french['message']['content'].split('\n')))

Okay, here's a French translation of the description, aiming for
accuracy and clarity. I've included a couple of options for certain
phrases to give you some flexibility. I've also added notes after
each section explaining choices made.

**Option 1 (More Formal/Technical):**

Voici une description de l'image que vous avez envoyée :

(continues on next page)
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**Type de graphique :**

L'image présente un histogramme. *(Straightforward translation)*

**Données représentées :**

L'histogramme illustre la distribution des "longueurs de séquences"
(probablement faisant référence à la longueur des séquences d'entités)
provenant d'une banque de phrases financières composée de 5000
phrases. Les longueurs de séquences sont représentées avant élagage.
*(“Élagage” is a good technical term for pruning)*

**Axes :**

* **Axe des abscisses (horizontal) :** Représente la "Longueur de
séquence," variant de 2 à 12, avec des valeurs entières. *(“Axe des
abscisses” is the formal term for the x-axis)*
* **Axe des ordonnées (vertical) :** Représente la "Densité,"
variant de 0 à 0,20. *(“Axe des ordonnées” is the formal term for the
y-axis)*

**Observations principales :**

* La distribution est quelque peu asymétrique, avec un pic autour
des longueurs de séquence de 6 et 8. *(“Asymétrique” is the best
translation for skewed)*
* Il existe un nombre important de séquences de longueurs comprises
entre 4 et 10.
* La densité diminue à mesure que la longueur de la séquence
s'éloigne des valeurs de pic.

**Impression générale :**

L'histogramme fournit un résumé visuel de la longueur des séquences
d'entités, avant toute élagage ou filtrage. Il suggère que la plupart
des séquences sont relativement courtes (entre 4 et 10 unités), mais
qu'il existe également une présence de séquences plus longues.

**Option 2 (Slightly Less Formal):**

Voici une description de l'image que vous avez envoyée :

**Type de graphique :**

L'image montre un histogramme. *(“Montre” is a simpler verb than
“présente”)

**Données représentées :**

L'histogramme illustre la distribution des "longueurs de séquences"
(probablement la longueur des séquences d'entités) provenant d'une
banque de phrases financières contenant 5000 phrases. Les longueurs de
séquences sont représentées avant l'élagage. *(“Contenant” is a
simpler alternative to “composée de”)

**Axes :**

(continues on next page)
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* **Axe horizontal :** Représente la "Longueur de séquence," allant
de 2 à 12, avec des valeurs entières. *(Omitting "des abscisses" makes
it less formal)*
* **Axe vertical :** Représente la "Densité," allant de 0 à 0,20.
*(Omitting "des ordonnées" makes it less formal)*

**Observations principales :**

* La distribution est un peu asymétrique, avec un pic autour des
longueurs de séquence de 6 et 8. *(“Un peu” is a simpler way to say
“somewhat”)
* On observe un nombre important de séquences de longueurs comprises
entre 4 et 10. *(“On observe” is a more conversational way to say
“there are”)
* La densité diminue à mesure que la longueur de la séquence
s'éloigne des valeurs maximales. *(“Valeurs maximales” is a simpler
alternative to “valeurs de pic”)

**Impression générale :**

L'histogramme donne un aperçu visuel de la longueur des séquences
d'entités, avant tout élagage ou filtrage. Il laisse entendre que la
plupart des séquences sont relativement courtes (entre 4 et 10
unités), mais qu'il existe aussi des séquences plus longues. *(“Laisse
entendre” is a more conversational way to say “suggests”)

**Key Considerations & Notes:**

* **"Pruning":** "Élagage" is the most accurate technical term for
pruning in this context.
* **"Skewed":** "Asymétrique" is the best translation for "skewed"
in a statistical context.
* **Formality:** Option 2 is slightly less formal and might be more
suitable for a broader audience.
* **Context:** The best option will depend on the intended audience
and the overall tone of the document.
* **"Sequence Length":** I'm keeping "longueur de séquence" as it's
the most direct translation. You could potentially rephrase it
depending on the specific terminology used in your field.

To help me refine the translation further, could you tell me:

* Who is the intended audience for this translation?
* What is the overall tone of the document?

References:
Malo, P., Sinha, A., Takala, P., Korhonen, P. and Wallenius, J. (2014): “Good debt or bad debt: Detecting semantic
orientations in economic texts.”Journal of the American Society for Information Science and Technology.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le and Denny Zhou,
2023, Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, https://arxiv.org/abs/2201.11903
Greg Durrett, 2023,“CS388 Natural Language Processing course materisl”, retrieved from https://www.cs.utexas.edu/
~gdurrett/courses/online-course/materials.html
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CHAPTER

THIRTYEIGHT

LLM AGENTS

The true sign of intelligence is not knowledge but imagination - Albert Einstein
We introduce the capabilities of LLM agents using chatbots with memory, retrieval-augmented generation (RAG), and
multi-agent collaboration. Employing Microsoft’s Phi-4-mini model, a ChromaDB vector store and sentence embedding
models via Ollama, we demonstrate how LLMs can be enhanced to improve factual accuracy and support long-context
reasoning. The final application centers around measuring the value of corporate philanthropy, illustrating how agents
can ground their reasoning in retrieved knowledge and engage in multi-role dialogue to develop actionable plans.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig,␣

↪logging
import io
import soundfile
import matplotlib.pyplot as plt
from PIL import Image
from tqdm import tqdm
from pprint import pprint
import warnings
import textwrap
def wrap(text):

"""Helper to wrap text for pretty printing"""
return "\n".join([textwrap.fill(s, width=80) for s in text.split('\n')])

torch.random.manual_seed(0)
logging.set_verbosity_error()
# display gpu and memory
gpu_stats = torch.cuda.get_device_properties(0)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")

GPU = NVIDIA GeForce RTX 3080 Laptop GPU. Max memory = 15.739 GB.
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38.1 Microsoft Phi-4 model

The Microsoft Phi-4 family is designed for compactness and strong reasoning across modalities. Released in February
2024, Phi-4-multimodal is a 5.6B parameter model which processes audio, vision, and language simultaneously within
the same representation space. Its capabilities include:

• Instruction following: Instruct-tuned for multi-turn conversation, summarization, Q&A
• Math and code reasoning: Fine-tuned on mathematical and coding data
• Multilingual: Supports multiple languages with cross-lingual reasoning
• Vision: integrates a visual encoder that converts image inputs into embeddings, supporting tasks such as

– OCR (Optical Character Recognition)
– chart and table understanding
– image-based reasoning (e.g., figures, diagrams)

• Audio Capabilities: a specialized audio encoder for speech inputs, supporting:
– Automatic Speech Recognition (ASR)
– Multilingual speech translation

https://azure.microsoft.com/en-us/blog/empowering-innovation-the-next-generation-of-the-phi-family/

# load and configures Phi-4-mini-instruct using HuggingFace
model_path = "microsoft/Phi-4-mini-instruct"
model_path = "microsoft/Phi-4-multimodal-instruct"

with warnings.catch_warnings(): # ignore small sample warnings
warnings.simplefilter("ignore")
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)

print(processor.tokenizer)

model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype='auto',
_attn_implementation='flash_attention_2',
# _attn_implementation='eager', # 'flash_attention_2',

).cuda()

GPT2TokenizerFast(name_or_path='microsoft/Phi-4-multimodal-instruct', vocab_
↪size=200019, model_max_length=131072, is_fast=True, padding_side='right',␣
↪truncation_side='right', special_tokens={'bos_token': '<|endoftext|>', 'eos_token
↪': '<|endoftext|>', 'unk_token': '<|endoftext|>', 'pad_token': '<|endoftext|>'},␣
↪clean_up_tokenization_spaces=False, added_tokens_decoder={

199999: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_
↪word=False, normalized=False, special=True),

200010: AddedToken("<|endoftext10|>", rstrip=False, lstrip=False, single_
↪word=False, normalized=False, special=True),

200011: AddedToken("<|endoftext11|>", rstrip=False, lstrip=False, single_
↪word=False, normalized=False, special=True),

200018: AddedToken("<|endofprompt|>", rstrip=False, lstrip=False, single_
↪word=False, normalized=False, special=True),

200019: AddedToken("<|assistant|>", rstrip=True, lstrip=False, single_

(continues on next page)
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↪word=False, normalized=False, special=True),
200020: AddedToken("<|end|>", rstrip=True, lstrip=False, single_word=False,

↪ normalized=False, special=True),
200021: AddedToken("<|user|>", rstrip=True, lstrip=False, single_

↪word=False, normalized=False, special=True),
200022: AddedToken("<|system|>", rstrip=True, lstrip=False, single_

↪word=False, normalized=False, special=True),
200023: AddedToken("<|tool|>", rstrip=True, lstrip=False, single_

↪word=False, normalized=False, special=False),
200024: AddedToken("<|/tool|>", rstrip=True, lstrip=False, single_

↪word=False, normalized=False, special=False),
200025: AddedToken("<|tool_call|>", rstrip=True, lstrip=False, single_

↪word=False, normalized=False, special=False),
200026: AddedToken("<|/tool_call|>", rstrip=True, lstrip=False, single_

↪word=False, normalized=False, special=False),
200027: AddedToken("<|tool_response|>", rstrip=True, lstrip=False, single_

↪word=False, normalized=False, special=False),
200028: AddedToken("<|tag|>", rstrip=True, lstrip=False, single_word=False,

↪ normalized=False, special=True),
}
)

Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]

Memory usage

def cuda_memory():
"""Show GPU memory free"""
if torch.cuda.is_available():

device = torch.device('cuda')
total_memory = torch.cuda.get_device_properties(device).total_memory
reserved_memory = torch.cuda.memory_reserved(device)
allocated_memory = torch.cuda.memory_allocated(device)
free_memory = total_memory - reserved_memory
print(f"Total memory: {total_memory / (1024**3):.2f} GB")
print(f"Reserved memory: {reserved_memory / (1024**3):.2f} GB")
print(f"Allocated memory: {allocated_memory / (1024**3):.2f} GB")
print(f"Free memory: {free_memory / (1024**3):.2f} GB")

cuda_memory()

Total memory: 15.74 GB
Reserved memory: 10.45 GB
Allocated memory: 10.42 GB
Free memory: 5.29 GB

Generate model response

generation_args = {
"max_new_tokens": 512,
#"return_full_text": False,
"temperature": 0.6, # nonzero so that chat responses can vary slightly
"do_sample": True, # False,

}

(continues on next page)
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generation_config = GenerationConfig.from_pretrained(model_path,
'generation_config.json')

Helpers to format content to prompt for response

def create_content(query, image=None, audio=None):
"""Formats a message content string"""
image_prompt = '' if image is None else '<|image_1|>'
audio_prompt = '' if audio is None else '<|audio_1|>'
prompt = f'{image_prompt}{audio_prompt}{query}'
return prompt

def create_prompt(query, image=None, audio=None):
"""Generate a single prompt for inference response"""
user_prompt = '<|user|>'
assistant_prompt = '<|assistant|>'
prompt_suffix = '<|end|>'
content = create_content(query, image=image, audio=audio)
prompt = f'{user_prompt}{content}{prompt_suffix}{assistant_prompt}'
return prompt

def pipe(query, image=None, audio=None, verbose=False, **kwargs):
"""Pipeline to format and send query, and generate and decode response"""
if isinstance(query, list): # query input is given as a list of messages

prompt = processor.tokenizer.apply_chat_template(query,
tokenize=False,
add_generation_prompt=True)

# remove last <|endoftext|> if it is there, which is used for training, not␣
↪inference.

# For training, make sure to add <|endoftext|> in the end.
if prompt.endswith('<|endoftext|>'):

prompt = prompt.rstrip('<|endoftext|>')
elif isinstance(query, str): # query input is given as a string

prompt = create_prompt(query, image=image, audio=audio)
else:

raise Exception('Invalid prompt format, must be str or list of messages')
if verbose:

print(prompt)
inputs = processor(prompt, images=image, audios=audio, return_tensors='pt').to(

↪'cuda:0')

with warnings.catch_warnings(): # ignore small sample warnings ␣
↪

warnings.simplefilter("ignore")

generate_ids = model.generate(
**inputs,
generation_config=generation_config,
# https://huggingface.co/microsoft/Phi-4-multimodal-instruct/discussions/

↪46
num_logits_to_keep=1,
**kwargs,

)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(

generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

(continues on next page)
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return response

38.2 Chatbot

A chatbot simulates ongoing dialogue between a user and an LLM. By appending previous user inputs and model responses
into the prompt, the chatbot maintains conversational memory. This enables it to handle follow-up questions, build on
earlier answers, and maintain topic continuity over multiple turns. During a chat session, the prompt is iteratively expanded
to include each previous exchange. This accumulated memory allows the model to generate responses that take prior
context into account.
Simulate user queries

# Simulate a sequence of user queries to be processed
sequence_user_queries = [

"What are the challenges to measuring the value of corporate philanthropy?",
"Please suggest some solutions.",
"Thank you, please concisely summarize into an action plan."

]

38.2.1 Memory

During a chat session, the prompt is iteratively expanded to include each previous exchange. This accumulated memory
allows the model to generate responses that take prior context into account. The final response is displayed, along with
the complete prompt history used in that turn—demonstrating how memory accumulation influences generation.

# Prompt grows over time with user and assistant turns.
memory = [] # memory of past AI-assistant turns
for turn in range(len(sequence_user_queries)):

# Add initial user query
query = sequence_user_queries[0]
messages = [{"role": "user", "content": query}]

# 3. Loop through past turns of AI response and user prompts
for response, query in zip(memory, sequence_user_queries[1:len(memory)+1]):

# Add AI assistant's response
messages.append({"role": "assistant", "content": response})

# Add user's next query
messages.append({"role": "user", "content": query})

# 4. Generate response and save to memory
output = pipe(messages, **generation_args)
memory.append(output)
print(f'----------- {turn=} -----------')
print('QUERY:', query)
print('RESPONSE:')
print(wrap(memory[-1]))
print()
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33%|███▎ | 1/3 [00:21<00:42, 21.09s/it]

----------- turn=0 -----------
QUERY: What are the challenges to measuring the value of corporate philanthropy?
RESPONSE:
Measuring the value of corporate philanthropy presents several challenges,
including:

1. Lack of standardized metrics: There is no universally accepted way to measure
the impact of corporate philanthropy. Different organizations may use different
metrics, making it difficult to compare and assess the value of their
philanthropic efforts.

2. Difficulty in quantifying social impact: Corporate philanthropy often aims to
address complex social issues, making it challenging to quantify the impact.
Social impact can be long-term and may not be immediately visible, requiring a
long-term perspective to assess the value of corporate philanthropy.

3. Lack of transparency: Corporate philanthropy can be seen as a way for
companies to boost their public image, rather than a genuine effort to make a
positive impact. This lack of transparency can make it difficult to assess the
true value of corporate philanthropy.

4. Difficulty in attributing outcomes: It can be challenging to attribute
specific outcomes to corporate philanthropy, as social issues are often
influenced by multiple factors. This makes it difficult to determine the direct
impact of corporate philanthropy on a particular issue.

5. Conflicts of interest: Corporate philanthropy can sometimes be driven by a
company's strategic interests, rather than a genuine desire to make a positive
impact. This can create conflicts of interest and make it difficult to assess
the true value of corporate philanthropy.

6. Lack of accountability: Without clear guidelines and accountability
mechanisms, it can be challenging to ensure that corporate philanthropy is
effective and achieves its intended goals. This can result in wasted resources
and missed opportunities to make a positive impact.

7. Limited resources: Corporate philanthropy is often limited by a company's
financial resources. This can make it difficult to measure the value of
corporate philanthropy, as it may not be possible to address all the social
issues that a company wants to support.

Overall, measuring the value of corporate philanthropy requires a comprehensive
approach that takes into account the complex nature of social issues and the
various factors that influence corporate philanthropy. It is essential for
companies to be transparent, accountable, and focused on creating a positive
social impact.

67%|██████▋ | 2/3 [00:43<00:21, 21.72s/it]

----------- turn=1 -----------
QUERY: Please suggest some solutions.
RESPONSE:
To address the challenges of measuring the value of corporate philanthropy, the

(continues on next page)
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following solutions can be considered:

1. Develop standardized metrics: Establishing universally accepted metrics and
guidelines for measuring the impact of corporate philanthropy can help
organizations compare and assess their efforts more effectively. These metrics
could include both quantitative and qualitative measures, such as the number of
people served, the amount of money donated, and the long-term impact on
communities.

2. Focus on social impact: Companies should prioritize measuring the social
impact of their philanthropic efforts, rather than just financial outcomes. This
can be done by setting clear goals and objectives, tracking progress over time,
and using both quantitative and qualitative data to assess the impact on the
communities and individuals they serve.

3. Increase transparency: Companies should be transparent about their
philanthropic efforts, including the reasons behind their giving, the selection
process for grants, and the outcomes achieved. This can help build trust with
stakeholders and ensure that corporate philanthropy is genuinely focused on
making a positive impact.

4. Improve attribution methods: To better attribute outcomes to corporate
philanthropy, companies can use a combination of data analysis, case studies,
and stakeholder feedback. This can help identify the direct and indirect impact
of their efforts and better understand how their contributions are making a
difference.

5. Address conflicts of interest: Companies should be mindful of potential
conflicts of interest and ensure that their philanthropic efforts are not solely
driven by a desire to boost their public image. This can be achieved by
involving external stakeholders, such as nonprofit partners or community
leaders, in the decision-making process.

6. Establish accountability mechanisms: Companies should establish clear
accountability mechanisms, such as third-party evaluations or independent
audits, to ensure that their philanthropic efforts are effective and achieving
their intended goals. This can help build trust with stakeholders and provide a
basis for continuous improvement.

7. Leverage partnerships: Companies can collaborate with nonprofit
organizations, community groups, and other stakeholders to maximize the impact
of their philanthropic contributions. By leveraging the expertise and resources
of others, companies can address complex social issues more effectively and
ensure that their efforts are making a meaningful difference.

By implementing these solutions, companies can improve their ability to measure
the value of corporate philanthropy and demonstrate the positive social impact
of their efforts.

100%|██████████| 3/3 [00:59<00:00, 19.80s/it]

----------- turn=2 -----------
QUERY: Thank you, please concisely summarize into an action plan.
RESPONSE:
Action Plan for Measuring the Value of Corporate Philanthropy:

(continues on next page)

38.2. Chatbot 679



Financial Data Science Python Notebooks

(continued from previous page)

1. Develop standardized metrics:
- Establish universal guidelines and metrics for measuring the impact of

corporate philanthropy.
- Include both quantitative and qualitative measures, such as the number of

people served, amount of money donated, and long-term community impact.

2. Focus on social impact:
- Set clear goals and objectives for philanthropic efforts.
- Track progress over time using both quantitative and qualitative data.
- Assess the impact on communities and individuals served.

3. Increase transparency:
- Be transparent about philanthropic efforts, including selection processes,

outcomes, and reasons behind giving.
- Share information with stakeholders to build trust and demonstrate genuine

impact.

4. Improve attribution methods:
- Use data analysis, case studies, and stakeholder feedback to better

attribute outcomes to corporate philanthropy.
- Identify direct and indirect impacts of philanthropic efforts.

5. Address conflicts of interest:
- Involve external stakeholders, such as nonprofit partners or community

leaders, in decision-making processes.
- Ensure philanthropic efforts are not solely driven by a desire to boost

public image.

6. Establish accountability mechanisms:
- Implement third-party evaluations, independent audits, or other

accountability mechanisms to ensure effectiveness and achievement of goals.
- Use findings to continuously improve philanthropic efforts.

7. Leverage partnerships:
- Collaborate with nonprofit organizations, community groups, and other

stakeholders to maximize impact.
- Leverage their expertise and resources to address complex social issues

more effectively.

By following this action plan, companies can improve their ability to measure
the value of corporate philanthropy and demonstrate the positive social impact
of their efforts.

Show the final response from the last turn of the Chatbot

print('FINAL ANSWER:')
print(wrap(output))

FINAL ANSWER:
Action Plan for Measuring the Value of Corporate Philanthropy:

(continues on next page)
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1. Develop standardized metrics:
- Establish universal guidelines and metrics for measuring the impact of

corporate philanthropy.
- Include both quantitative and qualitative measures, such as the number of

people served, amount of money donated, and long-term community impact.

2. Focus on social impact:
- Set clear goals and objectives for philanthropic efforts.
- Track progress over time using both quantitative and qualitative data.
- Assess the impact on communities and individuals served.

3. Increase transparency:
- Be transparent about philanthropic efforts, including selection processes,

outcomes, and reasons behind giving.
- Share information with stakeholders to build trust and demonstrate genuine

impact.

4. Improve attribution methods:
- Use data analysis, case studies, and stakeholder feedback to better

attribute outcomes to corporate philanthropy.
- Identify direct and indirect impacts of philanthropic efforts.

5. Address conflicts of interest:
- Involve external stakeholders, such as nonprofit partners or community

leaders, in decision-making processes.
- Ensure philanthropic efforts are not solely driven by a desire to boost

public image.

6. Establish accountability mechanisms:
- Implement third-party evaluations, independent audits, or other

accountability mechanisms to ensure effectiveness and achievement of goals.
- Use findings to continuously improve philanthropic efforts.

7. Leverage partnerships:
- Collaborate with nonprofit organizations, community groups, and other

stakeholders to maximize impact.
- Leverage their expertise and resources to address complex social issues

more effectively.

By following this action plan, companies can improve their ability to measure
the value of corporate philanthropy and demonstrate the positive social impact
of their efforts.

38.3 Retrieval-augmented generation

One major challenge in standard LLMs is hallucination, where the model produces text that sounds believable but is
actually false or unsupported by facts. Because LLMs are trained to model word sequences rather than factual accuracy,
they can sometimes generate convincing yet misleading statements—especially when no clear answer exists in their train-
ing data. For example, Hicks et al. (2024) argue that LLMs are“bullshit machines”that prioritize fluent language over
truth. Similarly, Mahowald et al. (2023) caution against assuming that skill with language equates to actual reasoning or
understanding.
RAG addresses this issue by anchoring the model’s responses in retrieved documents, making the output more factually
reliable. In a common implementation known as prompt-based in-context retrieval, the system first retrieves information
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from an external knowledge base, and then it generates a response based on that retrieved content. The LLM is prompted
with the relevant document and instructed to answer solely based on that information, similar to reading a reference article
before answering a question, allowing for better factual accuracy and handling of long-context tasks. RAG is increasingly
used in several practical domains:

• Search-Augmented LLMs improve accuracy in fact-checking and open-domain Q&A tasks.
• Enterprise Applications enable better handling of legal, financial, and medical documents.
• Personalized AI Assistants can use retrieval to support domain-specific queries using private or proprietary knowl-

edge bases (e.g., for customer service).
For evaluating closed-domain question-answering (QA) LLMs, benchmarks such as SQuAD (Stanford Question An-
swering Dataset) HotpotQA are used, focusing on a system’s ability to answer questions within specific documents,
including tasks like complex document comprehension and multi-hop reasoning. This task differs from open-domain
QA, where LLMs are expected to draw knowledge from a vast, unrestricted knowledge base.
More advanced data structures have also been employed for RAG, such as RAPTOR by Sarthi et al (2024), which
organizes data and recursive summaries in a tree structure, integrating information across lengthy documents for better
performance on complex, multi-step reasoning tasks
The LangChain framework offers flexible tools for loading and preprocessing input documents of many formats. A
textbook is read and divided into chunks of roughly 1,000 characters with some overlap. These chunks provide manageable
input sizes for retrieval while maintaining continuity. The text itself outlines how companies can measure philanthropic
value through social, business, and investor-oriented metrics, and forms the knowledge base for grounding agent responses.

# LangChain to loads and split documents into chunks for retrieval
from langchain_community.document_loaders import TextLoader,␣

↪UnstructuredMarkdownLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter

# Loads markdown file (MVCP.md) and split into overlapping chunks
loader = TextLoader('assets/MVCP.md')
document = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunked_documents = text_splitter.split_documents(document)

print('Number of chunks:', len(chunked_documents))
print(wrap(str(chunked_documents[:2])))

Number of chunks: 196
[Document(metadata={'source': 'assets/MVCP.md'}, page_content='MEASURING THE
VALUE OF CORPORATE PHILANTHROPY: SOCIAL IMPACT, BUSINESS BENEFITS, AND INVESTOR
RETURNS\nby\nTerence Lim, Ph.D.\nReport Author and Manager, Standards and
Measurement,\nCommittee Encouraging Corporate Philanthropy\n(through the
2008–2009 Goldman Sachs Public Service Program)\n\nHow to measure the value and
results of corporate philanthropy remains\none of corporate giving
professionals’ greatest challenges. Social and\nbusiness benefits are often
long-term or intangible, which make\nsystematic measurement complex. And yet:
Corporate philanthropy faces\nincreasing pressures to show it is as
strategic,cost-effective, and value-enhancing\nas possible. The industry faces a
critical need to assess current practices and\nmeasurement trends, clarify the
demands practitioners face for impact evidence,\nand identify the most promising
steps forward in order to make progress on these\nchallenges.'),
Document(metadata={'source': 'assets/MVCP.md'}, page_content='This report aims
to meet that need, by providing the corporate\nphilanthropic community with a

(continues on next page)
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review of recent measurement studies, models,\nand evidence drawn from
complementary business disciplines as well as the social\nsector. Rather than
present an other compendium of narrative accounts and case\nstudies, we endeavor
to generalize the most valuable concepts and to recognize\nthe strengths and
limitations of various measurement approaches. In conjunction\nwith the
annotated references that follow, the analysis herein should provide
an\nexcellent starting point for companies wishing to adapt current
methodologies in\nthe field to their own corporate giving programs.\nTo realize
meaningful benefits, philanthropy cannot be treated as just\nanother "check in
the box," but rather must be executed no less professionally,\nproactively, and
strategically than other core business activities. Our hope is\nthat this work
will enlighten giving professionals, CEOs, and the investor')]

38.3.1 ChromaDB vector database

ChromaDB is an open-source vector store used to store and retrieve text embeddings. It enables fast and efficient semantic
search, allowing the system to find the most relevant document chunks based on a given query.
For compatibility, ChromaDB requires SQLite version 3.35 or higher. If the system uses an older version, apply this
workaround patch: Install pysqlite3-binary, then enter the following three lines in sqlite_version.py to swap the packages.

# kludge to hack ChromaDB to use lower version of SQLite
with open('sqlite_version.py', 'w') as f:

f.write('''__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

'''.strip())
import sqlite_version

# ChromaDB vector store to store and retrieve document embeddings.
import chromadb
client = chromadb.Client()
try:

client.delete_collection(name="docs")
except:

pass
#collection = client.get_or_create_collection(name="docs")
collection = client.create_collection(name="docs")

The sentence embeddings for both documents and queries are generated using the mxbai-embed-largemodel served
via Ollama. This embedding model, which reached state-of-the-art performance in April 2024, was trained on over 700
million high-quality sentence pairs and fine-tuned on 30 million triplets. These embeddings are stored in ChromaDB to
support rapid document retrieval.

# Ollama for generating sentence embeddings using mxbai-embed-large model
# !ollama pull mxbai-embed-large
import ollama

# store chunk embeddings in a vector database
for i, d in enumerate(chunked_documents):

response = ollama.embeddings(model="mxbai-embed-large", prompt=d.page_content)
embedding = response["embedding"]
collection.add(

(continues on next page)
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ids=[str(i)],
embeddings=[embedding],
documents=[d.page_content],

)

38.3.2 Retrieval

The retrieval pipeline consists of four main steps:
• A user query is written in natural language.
• The query is embedded using the same model as the document chunks.
• The top 5 most semantically similar chunks are retrieved from the ChromaDB vector store.
• A new prompt is constructed by combining the user’s question with the retrieved content for generation.

# A sample question prompt
query = "What are the challenges to measuring the value of corporate philanthropy?"

Embed the prompt query

# generate an embedding for the query
response = ollama.embeddings(
prompt=query,
model="mxbai-embed-large"

)
len(response['embedding']) # vector length

1024

Retrieve the 5 most similar document chunks from the vector database

# ses ChromaDB to find top 5 most similar chunks
results = collection.query(
query_embeddings=[response["embedding"]],
n_results=5,

)
for data in results['documents'][0]:
print(textwrap.fill(data))

MEASURING THE VALUE OF CORPORATE PHILANTHROPY: SOCIAL IMPACT, BUSINESS
BENEFITS, AND INVESTOR RETURNS by Terence Lim, Ph.D. Report Author and
Manager, Standards and Measurement, Committee Encouraging Corporate
Philanthropy (through the 2008–2009 Goldman Sachs Public Service
Program) How to measure the value and results of corporate
philanthropy remains one of corporate giving professionals’ greatest
challenges. Social and business benefits are often long-term or
intangible, which make systematic measurement complex. And yet:
Corporate philanthropy faces increasing pressures to show it is as
strategic,cost-effective, and value-enhancing as possible. The
industry faces a critical need to assess current practices and
measurement trends, clarify the demands practitioners face for impact

(continues on next page)
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evidence, and identify the most promising steps forward in order to
make progress on these challenges.
detailed insights into the related measurement process which can help
demonstrate understanding of what drives long term business success
quality of management and superior potential to create financial
value. The value of corporate philanthropy is measurable; as with many
elements of business, however, it cannot always be measured as
precisely as we would like. What gets measured gets managed goes the
old adage; indeed measurement plays a crucial role in enabling
companies to reach their full potential both philanthropically and as
more successful and sustainable enterprises overall.
This report aims to meet that need, by providing the corporate
philanthropic community with a review of recent measurement studies,
models, and evidence drawn from complementary business disciplines as
well as the social sector. Rather than present an other compendium of
narrative accounts and case studies, we endeavor to generalize the
most valuable concepts and to recognize the strengths and limitations
of various measurement approaches. In conjunction with the annotated
references that follow, the analysis herein should provide an
excellent starting point for companies wishing to adapt current
methodologies in the field to their own corporate giving programs. To
realize meaningful benefits, philanthropy cannot be treated as just
another "check in the box," but rather must be executed no less
professionally, proactively, and strategically than other core
business activities. Our hope is that this work will enlighten giving
professionals, CEOs, and the investor
Corporate philanthropy is as vital as ever to business and society but
it faces steep pressures to demonstrate that it is also cost effective
and aligned with corporate needs. Indeed many corporate giving
professionals cite measurement as their primary management challenge.
Social and business benefits are often long-term, intangible or both
and a systematic measurement of these results can be complex. Social
change takes time. The missions and intervention strategies involved
are diverse. For these reasons, the field of corporate philanthropy
has been unable to determine a shared definition or method of
measurement for social impact. Similarly, the financial value of
enhancing intangibles such as a company's reputational and human
capital cannot be measured directly and may not be converted into
tangible bottom line profits in the near term. Corporate givers and
grant recipients often useless formal anecdotal methods to convey
impact. While stories
### Summary The attractiveness of these ROI methods for calculating
corporate philanthropy's social returns is in bringing businesslike
quantitative frameworks to evaluating and comparing the effectiveness
of diverse social programs, and aggregating their social impact.
However these sophisticated methodologies place heavy demands on data
collection assumptions and value judgments underlying the analysis.
Funders must assemble data and calculations on the program's monetary
benefits and make subjective judgments on the relative value of
different types of social changes. Corporate funders need to be
knowledgeable and thoughtful about these limitations and typically
should not rely solely on ROI when evaluating grants. Proponents of
these methods note that the benefits of ROI analysis lie more in
encouraging funders to lay bare the assumptions and trade-offs that
may already be involved in their grant making decisions.
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38.3.3 Generation

Construct the prompt combining the query and supporting context retrieved. Then send to the LLM, which generates a
grounded response.

# assembles relevant chunks into a prompt alongside the original question
prompt = f"""
Only use relevant information in the following text delimited by triple quotes:

'''{data}.'''

Respond to this prompt: {query}."""

# send a conversation-style chat-template prompt incorporating the retrieved text
messages = [

{"role": "user", "content": prompt},
]
output = pipe(messages, **generation_args)
print('QUERY:', query)
print('RESPONSE:')
print(wrap(output))

QUERY: What are the challenges to measuring the value of corporate philanthropy?
RESPONSE:
The challenges to measuring the value of corporate philanthropy include:

1. Social and business benefits are often long-term or intangible, making
systematic measurement complex.
2. Corporate philanthropy faces increasing pressures to show it is as strategic,
cost-effective, and value-enhancing as possible.
3. The industry faces a critical need to assess current practices and
measurement trends.
4. There is a need to clarify the demands practitioners face for impact
evidence.
5. Identifying the most promising steps forward to make progress on these
challenges.
6. Demonstrating understanding of what drives long-term business success and
quality of management.
7. Measuring the financial value of enhancing intangibles such as a company's
reputational and human capital can be complex and may not be directly
convertible into tangible bottom-line profits in the near term.
8. The measurement of social impact lacks a shared definition or method, and
social change takes time.
9. Missions and intervention strategies in corporate philanthropy are diverse.
10. The use of sophisticated ROI methodologies for evaluating and comparing the
effectiveness of diverse social programs places heavy demands on data collection
assumptions and value judgments underlying the analysis.
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38.4 Multi-agents

In multi-agent workflows, multiple LLM agents play different roles and collaborate to accomplish a shared objective. In
this demonstration, three role-playing agents work together to simulate human-like decision-making processes:

• A Chief Executive Officer (CEO) asks strategic questions about measuring philanthropic value.
• A Chief Giving Officer (CGO) synthesizes responses into an evolving plan.
• An AI Assistant (nicknamed CorGi) uses RAG to answer the CEO’s questions using only retrieved text.

The agents interact with each other over several turns, collaboratively building and refining a plan grounded in the corporate
philanthropy document.

38.4.1 Tool calling

Traditional LLMs are limited in that they cannot retrieve live data or execute real-world functions unless explicitly pro-
grammed. Without tools, they may also make computational errors or respond inconsistently to ambiguous prompts.
Recent advances focus on enabling tool use, where LLMs can:

• Make function calls.
• Use APIs to gather real-time data.
• Perform calculations or database lookups.

The main approaches include:
• Allow the model to generate function calls instead of plain text.
• Zero-Shot Tool Use: Models learn to use tools on-the-fly via structured prompts.
• Fine-Tuned Tool Use: Models are trained to recognize and call specific functions during generation.

AI Assistant agent:
The AI Research Assistant agent responds to queries by leveraging RAG. Its prompt instructs it to only use retrieved
documents to answer and to reply“I don’t know”if the information isn’t found in the text. This strict constraint helps
minimize hallucination and ensures that all responses are grounded in the knowledge base.

# AI assistant agent answers using only retrieved text chunks
def rag_agent(query, n_results=5):

"""Role of a RAG-based question-answering agent"""
response = ollama.embeddings(prompt=query, model="mxbai-embed-large")

results = collection.query(query_embeddings=[response["embedding"]],
n_results=n_results)

text = "\n".join(results['documents'][0])

rag_prompt=f"""
You are a helpful AI research assistant.
Use only the information in the text to succintly answer the question.
Reply "I don't know" if the information is not found in the text.
Text: {text}.
Question: {query}"""

# generate a response combining the prompt and data
output = pipe(rag_prompt, **generation_args)
return output, results['ids'][0]
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Reply to a query using grounded knowledge in the document

pprint(rag_agent("What is corporate philanthropy?"))

('Corporate philanthropy refers to the charitable giving and activities of a '
"company, often aimed at enhancing the company's reputation, addressing "
'employee concerns, and potentially contributing to business value through '
'innovation, market knowledge, and development of new technologies.',
['102', '1', '87', '140', '142'])

Query about a concept not present in the document

pprint(rag_agent("What is corporate greed?"))

('The text does not provide information about what corporate greed is.',
['137', '140', '136', '130', '117'])

38.4.2 Role playing

Chief Giving Officer agent:
This agent summarizes CorGi’s outputs into a coherent strategic plan that can be reviewed by leadership.

# CGO (Chief Giving Officer) agent summarizes answers into a growing plan
def cgo_agent(text):

"""Role of an information-summarizing Chief Giving Officer"""
cgo_prompt = f"""

You are the chief giving officer of a company.
You want to describe an action plan for measuring the value
of your company's corporate philanthropy program.
Use bullet points to summarize the plan using only the
relevant and distinct information in the text.
Text: {text}""".strip()

output = pipe(cgo_prompt, **generation_args)
return output

Chief Executive Officer agent:
This agent reads the current version of the plan and generates new questions to improve or expand it.

# CEO (Chief Executive Officer) agent asks new questions to improve the corporate␣
↪giving plan

def ceo_agent(text, verbose=False):
"""Role as an inquisitive Chief Executive Officer"""
ceo_prompt = f"""

You are the chief executive officer of a company.
You want to know about the plan for measuring the value
of your company's corporate philanthropy program.
Please ask a simple and general question for an idea to
improve the your company's plan that is different than the text.
Text: {text}""".strip()

output = pipe(ceo_prompt, verbose=verbose, **generation_args)
return output
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Over multiple turns, this role-playing setup allows the system to iteratively build a more comprehensive and data-backed
plan.

# iterate over 10 turns to co-develop a full plan
memory = '* Measure the amount of monetary donations.'
docs = []
for turn in range(10):

print(f"Turn {turn+1}...")
question = ceo_agent(memory)
print('CEO >>>', wrap(question))
print('\n------------------------------\n')
answer, doc = rag_agent(question)
docs.extend(doc) # for diagnostics: track the RAG chunks retrieved
print('Corgi-AI >>>', wrap(answer))
print('\n------------------------------\n')
memory = cgo_agent("\n".join([memory, answer]))
print('CGO >>>', wrap(memory))
print('\n------------------------------')

Turn 1...
CEO >>> How might we also consider non-monetary contributions, such as volunteer␣

↪hours
or in-kind donations, in evaluating the overall impact of our corporate
philanthropy program?

------------------------------

Corgi-AI >>> I don't know

------------------------------

CGO >>> - Measure the amount of monetary donations.
- Track the number of volunteer hours contributed.
- Assess the impact of the donations through beneficiary feedback.
- Evaluate the visibility and reach of the philanthropy program through media
coverage and social media engagement.
- Analyze the correlation between philanthropic activities and company
reputation.
- Compare the company’s philanthropic efforts with industry standards.
- Review the alignment of the philanthropy program with the company’s mission
and values.
- Monitor the long-term outcomes of the philanthropic initiatives.
- Collect data on the satisfaction levels of the stakeholders involved in the
program.
- Assess the effectiveness of the philanthropic program in achieving the
company’s social responsibility goals.
- Evaluate the cost-effectiveness of the philanthropy program in relation to the
benefits received.

------------------------------
Turn 2...
CEO >>> How can we incorporate community engagement and local stakeholder input␣

↪into the
evaluation of our company's philanthropy program?

------------------------------

(continues on next page)
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Corgi-AI >>> I don't know

------------------------------

CGO >>> - Measure the amount of monetary donations.
- Track the number of volunteer hours contributed.
- Assess the impact of the donations through beneficiary feedback.
- Evaluate the visibility and reach of the philanthropy program through media
coverage and social media engagement.
- Analyze the correlation between philanthropic activities and company
reputation.
- Compare the company’s philanthropic efforts with industry standards.
- Review the alignment of the philanthropy program with the company’s mission
and values.
- Monitor the long-term outcomes of the philanthropic initiatives.
- Collect data on the satisfaction levels of the stakeholders involved in the
program.
- Assess the effectiveness of the philanthropy program in achieving the
company’s social responsibility goals.
- Evaluate the cost-effectiveness of the philanthropy program in relation to the
benefits received.

------------------------------
Turn 3...
CEO >>> Considering the diverse facets of our corporate philanthropy program, what
innovative metrics could we implement to better understand its cultural and
employee engagement impact within our organization?

------------------------------

Corgi-AI >>> To better understand the cultural and employee engagement impact␣
↪within the

organization, the company could implement metrics such as internal surveys to
assess employee needs and identity, measure the extent to which philanthropic
programs are meeting these needs, and evaluate the relative importance different
employee segments attach to intrinsic needs. Additionally, the company could
analyze the benefits of philanthropy in terms of employee engagement, customer
loyalty, reputation capital, and market opportunities, and identify key
intermediate outcomes that could yield desired business behaviors and benefits.
These metrics could be developed by leveraging models and evidence from related
business disciplines.

------------------------------

CGO >>> - Measure the amount of monetary donations.
- Track the number of volunteer hours contributed.
- Assess the impact of the donations through beneficiary feedback.
- Evaluate the visibility and reach of the philanthropy program through media
coverage and social media engagement.
- Analyze the correlation between philanthropic activities and company
reputation.
- Review the alignment of the philanthropy program with the company’s mission
and values.
- Monitor the long-term outcomes of the philanthropic initiatives.
- Collect data on the satisfaction levels of the stakeholders involved in the
program.

(continues on next page)
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- Assess the effectiveness of the philanthropy program in achieving the
company’s social responsibility goals.
- Evaluate the cost-effectiveness of the philanthropy program in relation to the
benefits received.
- Implement internal surveys to assess employee needs and identity.
- Measure the extent to which philanthropic programs are meeting these needs.
- Evaluate the relative importance different employee segments attach to
intrinsic needs.
- Analyze the benefits of philanthropy in terms of employee engagement, customer
loyalty, reputation capital, and market opportunities.
- Identify key intermediate outcomes that could yield desired business behaviors
and benefits.

------------------------------
Turn 4...
CEO >>> How can we integrate community engagement and environmental sustainability␣

↪into
our corporate philanthropy program to further align with our company's values
and enhance our overall impact?

------------------------------

Corgi-AI >>> I don't know.

------------------------------

CGO >>> - Measure the amount of monetary donations.
- Track the number of volunteer hours contributed.
- Assess the impact of the donations through beneficiary feedback.
- Evaluate the visibility and reach of the philanthropy program through media
coverage and social media engagement.
- Analyze the correlation between philanthropic activities and company
reputation.
- Review the alignment of the philanthropy program with the company’s mission
and values.
- Monitor the long-term outcomes of the philanthropic initiatives.
- Collect data on the satisfaction levels of the stakeholders involved in the
program.
- Assess the effectiveness of the philanthropy program in achieving the
company’s social responsibility goals.
- Evaluate the cost-effectiveness of the philanthropy program in relation to the
benefits received.
- Measure the extent to which philanthropic programs are meeting employee needs.
- Evaluate the relative importance different employee segments attach to
intrinsic needs.
- Analyze the benefits of philanthropy in terms of employee engagement, customer
loyalty, reputation capital, and market opportunities.
- Identify key intermediate outcomes that could yield desired business behaviors
and benefits.

------------------------------
Turn 5...
CEO >>> How can we integrate employee feedback and participation to further␣

↪enhance the
effectiveness of our corporate philanthropy program?

(continues on next page)
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------------------------------

Corgi-AI >>> To further enhance the effectiveness of the corporate philanthropy␣
↪program,

integrating employee feedback and participation can be achieved by using
internal surveys to assess the extent to which the philanthropic program meets
employee needs and creates a greater sense of identity between employee and
employer. This assessment should consider the relative importance that different
employee segments attach to different intrinsic needs. Additionally, improving
employees' sense of status, prestige, belonging within the work group and
organization, and emotional rewards inherent in their work can be achieved
through corporate philanthropic initiatives. These initiatives can also help
employee recruitment, as evidenced by the 2004 corporate community involvement
survey by Deloitte LLP, which found that 72% of employed Americans trying to
decide between two jobs offering the same location job description pay and
benefits would choose to work for the company that also supports charitable
causes. By systematically measuring the impact of corporate philanthropy,
companies can provide data-based evidence of its positive effects and make a
more persuasive case for why companies should engage in philanthropic causes.

------------------------------

CGO >>> - Measure the amount of monetary donations
- Track the number of volunteer hours contributed
- Assess the impact of the donations through beneficiary feedback
- Evaluate the visibility and reach of the philanthropy program through media
coverage and social media engagement
- Analyze the correlation between philanthropic activities and company
reputation
- Review the alignment of the philanthropy program with the company’s mission
and values
- Monitor the long-term outcomes of the philanthropic initiatives
- Collect data on the satisfaction levels of the stakeholders involved in the
program
- Assess the effectiveness of the philanthropy program in achieving the
company’s social responsibility goals
- Evaluate the cost-effectiveness of the philanthropy program in relation to the
benefits received
- Measure the extent to which philanthropic programs are meeting employee needs
- Evaluate the relative importance different employee segments attach to
intrinsic needs
- Analyze the benefits of philanthropy in terms of employee engagement, customer
loyalty, reputation capital, and market opportunities
- Identify key intermediate outcomes that could yield desired business behaviors
and benefits
- Use internal surveys to assess the extent to which the philanthropic program
meets employee needs and creates a greater sense of identity between employee
and employer
- Consider the relative importance that different employee segments attach to
different intrinsic needs
- Improve employees' sense of status, prestige, belonging within the work group
and organization, and emotional rewards inherent in their work through corporate
philanthropic initiatives
- Leverage the positive impact of corporate philanthropy on employee recruitment
- Systematically measure the impact of corporate philanthropy to provide data-
based evidence of its positive effects and make a more persuasive case for why

(continues on next page)
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companies should engage in philanthropic causes.

------------------------------
Turn 6...
CEO >>> How can we incorporate the perspectives of the communities we aim to serve␣

↪into
the evaluation of our corporate philanthropy program's effectiveness?

------------------------------

Corgi-AI >>> The text does not provide specific information on how to incorporate␣
↪the

perspectives of the communities served into the evaluation of a corporate
philanthropy program's effectiveness.

------------------------------

CGO >>> - Measure the amount of monetary donations
- Track the number of volunteer hours contributed
- Assess the impact of donations through beneficiary feedback
- Evaluate the visibility and reach of the philanthropy program through media
coverage and social media engagement
- Analyze the correlation between philanthropic activities and company
reputation
- Review the alignment of the philanthropy program with the company’s mission
and values
- Monitor the long-term outcomes of the philanthropic initiatives
- Collect data on the satisfaction levels of the stakeholders involved in the
program
- Assess the effectiveness of the philanthropy program in achieving the
company’s social responsibility goals
- Evaluate the cost-effectiveness of the philanthropy program in relation to the
benefits received
- Measure the extent to which philanthropic programs are meeting employee needs
- Evaluate the relative importance different employee segments attach to
intrinsic needs
- Analyze the benefits of philanthropy in terms of employee engagement, customer
loyalty, reputation capital, and market opportunities
- Identify key intermediate outcomes that could yield desired business behaviors
and benefits
- Use internal surveys to assess the extent to which the philanthropic program
meets employee needs and creates a greater sense of identity between employee
and employer
- Leverage the positive impact of corporate philanthropy on employee recruitment
- Systematically measure the impact of corporate philanthropy to provide data-
based evidence of its positive effects and make a more persuasive case for why
companies should engage in philanthropic causes.

------------------------------
Turn 7...
CEO >>> How can we integrate the evaluation of employee well-being and␣

↪satisfaction as a
key performance indicator in our corporate philanthropy program's success
measurement?

------------------------------

(continues on next page)
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Corgi-AI >>> To integrate the evaluation of employee well-being and satisfaction␣
↪as a key

performance indicator in the corporate philanthropy program's success
measurement, we can use internal surveys to assess the extent to which the
philanthropic program is meeting employee needs and creating a greater sense of
identity between employee and employer. This assessment should take into account
the relative importance that different employee segments attach to different
intrinsic needs.

------------------------------

CGO >>> - Measure the amount of monetary donations
- Track the number of volunteer hours contributed
- Assess the impact of donations through beneficiary feedback
- Evaluate the visibility and reach of the philanthropy program through media
coverage and social media engagement
- Analyze the correlation between philanthropic activities and company
reputation
- Review the alignment of the philanthropy program with the company’s mission
and values
- Monitor the long-term outcomes of the philanthropic initiatives
- Collect data on the satisfaction levels of the stakeholders involved in the
program
- Assess the effectiveness of the philanthropy program in achieving the
company’s social responsibility goals
- Evaluate the cost-effectiveness of the philanthropy program in relation to the
benefits received
- Measure the extent to which philanthropic programs are meeting employee needs
- Evaluate the relative importance different employee segments attach to
intrinsic needs
- Analyze the benefits of philanthropy in terms of employee engagement, customer
loyalty, reputation capital, and market opportunities
- Identify key intermediate outcomes that could yield desired business behaviors
and benefits
- Use internal surveys to assess the extent to which the philanthropic program
meets employee needs and creating a greater sense of identity between employee
and employer
- Leverage the positive impact of corporate philanthropy on employee recruitment
- Integrate the evaluation of employee well-being and satisfaction as a key
performance indicator in the corporate philanthropy program's success
measurement.

------------------------------
Turn 8...
CEO >>> How can we incorporate a system to measure the long-term social and
environmental impact of our corporate philanthropy initiatives on the
communities and ecosystems we support?

------------------------------

Corgi-AI >>> To incorporate a system to measure the long-term social and␣
↪environmental impact

of corporate philanthropy initiatives, we can review recent measurement studies,
models, and evidence from complementary business disciplines and the social
sector. We can generalize the most valuable concepts and recognize the strengths

(continues on next page)
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and limitations of various measurement approaches. We can also consult resources
like the TRASI database, which identifies 150 different approaches currently
used to measure the social impact of programs. Additionally, we can use social
performance and financial performance literature to understand the link between
corporate social performance and financial performance. Finally, we can adapt
current methodologies in the field to our own corporate giving programs.

------------------------------

CGO >>> - Measure the amount of monetary donations
- Track the number of volunteer hours contributed
- Assess the impact of donations through beneficiary feedback
- Evaluate the visibility and reach of the philanthropy program through media
coverage and social media engagement
- Analyze the correlation between philanthropic activities and company
reputation
- Review the alignment of the philanthropy program with the company’s mission
and values
- Monitor the long-term outcomes of the philanthropic initiatives
- Collect data on the satisfaction levels of the stakeholders involved in the
program
- Assess the effectiveness of the philanthropy program in achieving the
company’s social responsibility goals
- Evaluate the cost-effectiveness of the philanthropy program in relation to the
benefits received
- Measure the extent to which philanthropic programs are meeting employee needs
- Evaluate the relative importance different employee segments attach to
intrinsic needs
- Analyze the benefits of philanthropy in terms of employee engagement, customer
loyalty, reputation capital, and market opportunities
- Identify key intermediate outcomes that could yield desired business behaviors
and benefits
- Use internal surveys to assess the extent to which the philanthropic program
meets employee needs and creating a greater sense of identity between employee
and employer
- Leverage the positive impact of corporate philanthropy on employee recruitment
- Integrate the evaluation of employee well-being and satisfaction as a key
performance indicator in the corporate philanthropy program's success
measurement.
- Incorporate a system to measure the long-term social and environmental impact
of corporate philanthropy initiatives
- Review recent measurement studies, models, and evidence from complementary
business disciplines and the social sector
- Generalize the most valuable concepts and recognize the strengths and
limitations of various measurement approaches
- Consult resources like the TRASI database, which identifies 150 different
approaches currently used to measure the social impact of programs
- Use social performance and financial performance literature to understand the
link between corporate social performance and financial performance
- Adapt current methodologies in the field to our own corporate giving programs.

------------------------------
Turn 9...
CEO >>> How can we integrate employee perspectives more deeply into our corporate
philanthropy program's success measurement to ensure alignment with our
company's culture and values while also fostering employee engagement and

(continues on next page)
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satisfaction?

------------------------------

Corgi-AI >>> To integrate employee perspectives more deeply into our corporate␣
↪philanthropy

program's success measurement, we should consider the following steps:

1. Conduct internal surveys to assess the extent to which the philanthropic
program is meeting employee needs and creating a greater sense of identity
between employee and employer.
2. Take into account the relative importance that different employee segments
attach to different intrinsic needs.
3. Analyze the conversations and analyses summarized above to identify potential
areas for improvement and alignment with our company's culture and values.
4. Consider complementary disciplines such as human resources, marketing, risk
management, and capital budgeting to improve measurement methods and identify
long-term financial benefits.
5. Document success in attracting top candidates based on their exposure to the
company's corporate philanthropy program.

By following these steps, we can better understand and measure the impact of our
corporate philanthropy program on employee engagement, satisfaction, and
alignment with our company's culture and values.

------------------------------

CGO >>> - Measure the monetary donations and volunteer hours.
- Assess the impact through beneficiary feedback, media coverage, social media
engagement, and company reputation.
- Review the alignment with the company's mission and values, long-term
outcomes, and stakeholder satisfaction.
- Analyze the philanthropy program's effectiveness in achieving social
responsibility goals, cost-effectiveness, and meeting employee needs.
- Evaluate the importance of philanthropy for different employee segments,
benefits in terms of engagement, loyalty, reputation, and market opportunities.
- Identify key intermediate outcomes for business behaviors and benefits.
- Use internal surveys to assess meeting employee needs and creating a sense of
identity.
- Leverage philanthropy's impact on employee recruitment.
- Integrate employee well-being and satisfaction as KPIs.
- Measure the long-term social and environmental impact.
- Review measurement studies, models, and evidence from complementary
disciplines.
- Consult resources like the TRASI database for social impact measurement
approaches.
- Understand the link between corporate social and financial performance.
- Adapt current methodologies to our corporate giving programs.
- Conduct internal surveys for employee needs and identity.
- Consider intrinsic needs of different employee segments.
- Analyze conversations and analyses for improvement and alignment.
- Include complementary disciplines for measurement and long-term benefits.
- Document success in attracting top candidates through the program.

------------------------------
Turn 10...

(continues on next page)
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CEO >>> How can we incorporate a more holistic approach to measure the intangible
benefits, such as employee morale and community relations, in addition to the
tangible outcomes of our corporate philanthropy program?

------------------------------

Corgi-AI >>> To incorporate a more holistic approach to measure the intangible␣
↪benefits of

corporate philanthropy, such as employee morale and community relations, in
addition to tangible outcomes, we should consider the following strategies:

1. Develop clear strategies by which philanthropic initiatives contribute
towards strategic business needs, such as improved employee engagement, customer
loyalty, reputational risk, and growth opportunities. This involves
understanding the mechanisms by which these business benefits are expected to be
achieved.

2. Utilize complementary disciplines such as human resources, marketing, risk
management, and capital budgeting to improve measurement methods. This includes
applying modeling approaches for valuing future cash flows, analyzing scenarios,
and calibrating expected monetary profits linked to the behaviors of loyal
customers and engaged employees.

3. Conduct measurement studies, models, and gather evidence from complementary
business disciplines and the social sector. This can provide a starting point
for adapting current methodologies in the field to corporate giving programs.

4. Recognize the strengths and limitations of various measurement approaches and
generalize the most valuable concepts from recent measurement studies and
evidence.

5. Treat philanthropy as a professional, proactive, and strategic activity, not
just another "check in the box." This involves executing corporate philanthropy
with the same level of professionalism and strategic planning as other core
business activities.

By implementing these strategies, companies can better articulate and quantify
the long-term financial benefits and intangible assets created by philanthropic
initiatives, thereby making a more persuasive business case for their investment
in corporate philanthropy.

------------------------------

CGO >>> - Develop strategies linking philanthropic initiatives to strategic␣
↪business

needs (employee engagement, customer loyalty, reputational risk, growth
opportunities).
- Utilize complementary disciplines (human resources, marketing, risk
management, capital budgeting) for improved measurement methods.
- Conduct measurement studies, models, and gather evidence from complementary
business disciplines and the social sector.
- Recognize strengths and limitations of measurement approaches, applying
valuable concepts from recent studies.
- Treat philanthropy as a professional, strategic activity.
- Articulate and quantify long-term financial benefits and intangible assets
created by philanthropy.

(continues on next page)
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- Leverage internal surveys to assess employee needs, identity, and benefits
(engagement, loyalty, reputation, market opportunities).
- Evaluate philanthropy's impact on employee recruitment and well-being.
- Measure long-term social and environmental impact.
- Integrate employee well-being and satisfaction as KPIs.
- Document success in attracting top candidates through the program.
- Consult resources like the TRASI database for social impact measurement
approaches.
- Understand the link between corporate social and financial performance.
- Adapt current methodologies to corporate giving programs.
- Analyze conversations and analyses for improvement and alignment.

------------------------------

# Display the final turn
print("FINAL ANSWER")
print(wrap(memory))

FINAL ANSWER
- Develop strategies linking philanthropic initiatives to strategic business
needs (employee engagement, customer loyalty, reputational risk, growth
opportunities).
- Utilize complementary disciplines (human resources, marketing, risk
management, capital budgeting) for improved measurement methods.
- Conduct measurement studies, models, and gather evidence from complementary
business disciplines and the social sector.
- Recognize strengths and limitations of measurement approaches, applying
valuable concepts from recent studies.
- Treat philanthropy as a professional, strategic activity.
- Articulate and quantify long-term financial benefits and intangible assets
created by philanthropy.
- Leverage internal surveys to assess employee needs, identity, and benefits
(engagement, loyalty, reputation, market opportunities).
- Evaluate philanthropy's impact on employee recruitment and well-being.
- Measure long-term social and environmental impact.
- Integrate employee well-being and satisfaction as KPIs.
- Document success in attracting top candidates through the program.
- Consult resources like the TRASI database for social impact measurement
approaches.
- Understand the link between corporate social and financial performance.
- Adapt current methodologies to corporate giving programs.
- Analyze conversations and analyses for improvement and alignment.

For attribution, show the source reference documents which supported the responses.

# source document IDs of text chunks retrieved are tracked for attribution
print("Source documents reference id's:")
print(set(docs))

Source documents reference id's:
{'87', '190', '95', '84', '5', '12', '195', '86', '97', '0', '8', '102', '103', '4

↪', '88', '151', '152', '1', '9'}
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38.5 Multimodal

38.5.1 Multi-lingual

LLM agents built on the Phi-4-multimodal model can take advantage of its multilingual capabilities, supporting over
20 languages including English, French, German, Hindi, Italian, Portuguese, Spanish, and Thai. To evaluate language-
specific performance, benchmarks and leaderboards based on MMLU and other open datasets are available. For example:
https://huggingface.co/spaces/uonlp/open_multilingual_llm_leaderboard

# Translate english to french
french = pipe(f"Please translate to French: {memory}", max_new_tokens=512)
print(wrap(french))

- Développer des stratégies reliant les initiatives philanthropiques aux besoins
stratégiques des affaires (engagement des employés, fidélité des clients, risque
de réputation, opportunités de croissance).
- Utiliser des disciplines complémentaires (ressources humaines, marketing,
gestion des risques, budgétisation des capitaux) pour des méthodes de mesure
améliorées.
- Conduire des études de mesure, des modèles et rassembler des preuves des
disciplines commerciales complémentaires et du secteur social.
- Reconnaître les forces et les limites des approches de mesure, en appliquant
des concepts précieux des études récentes.
- Traiter la philanthropie comme une activité professionnelle et stratégique.
- Articuler et quantifier les avantages financiers à long terme et les actifs
intangibles créés par la philanthropie.
- Utiliser des enquêtes internes pour évaluer les besoins, l'identité et les
avantages des employés (engagement, fidélité, réputation, opportunités de
marché).
- Évaluer l'impact de la philanthropie sur la recrutement des employés et leur
bien-être.
- Mesurer l'impact à long terme social et environnemental.
- Intégrer le bien-être et la satisfaction des employés comme indicateurs de
performance (KPIs).
- Documenter le succès dans l'attraction de candidats exceptionnels grâce au
programme.
- Consulter des ressources comme la base de données TRASI pour les approches de
mesure de l'impact social.
- Comprendre la relation entre la performance sociale et financière de
l'entreprise.
- Adapter les méthodologies actuelles aux programmes de dons d'entreprise.
- Analyser les conversations et les analyses pour l'amélioration et
l'alignement.

# Translate back to english
print(wrap(pipe(f"Please translate to English: {french}", max_new_tokens=512)))

- Develop strategies that link philanthropic initiatives to the strategic
business needs (employee engagement, customer loyalty, reputation risk, growth
opportunities).
- Use complementary disciplines (human resources, marketing, risk management,
capital budgeting) for improved measurement methods.
- Conduct measurement studies, models, and gather evidence of the complementary

(continues on next page)
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commercial disciplines and the social sector.
- Recognize the strengths and limitations of measurement approaches, applying
valuable concepts from recent studies.
- Treat philanthropy as a professional and strategic activity.
- Articulate and quantify the long-term financial benefits and intangible assets
created by philanthropy.
- Use internal surveys to evaluate the needs, identity, and benefits of
employees (engagement, loyalty, reputation, market opportunities).
- Evaluate the impact of philanthropy on employee recruitment and well-being.
- Measure the long-term social and environmental impact.
- Integrate employee well-being and satisfaction as performance indicators
(KPIs).
- Document the success in attracting exceptional candidates through the program.
- Consult resources like the TRASI database for social impact measurement
approaches.
- Understand the relationship between the social performance and financial
performance of the company.
- Adapt current methodologies to corporate donation programs.
- Analyze conversations and analyses for improvement and alignment.

38.5.2 Vision language

Perform optical character recognition (OCR) and chart and table interpretation of figure 6 from the MVCP document.
Multimodal evaluation of agents for image and video analysis can be performed with more comprehensive benchmarks
and datasets, such as:
https://github.com/bradyfu/awesome-multimodal-large-language-models

# Load and display a test image
image = Image.open("assets/lim-fig6.png")
plt.imshow(image)
plt.axis('off')

(np.float64(-0.5), np.float64(953.5), np.float64(785.5), np.float64(-0.5))
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print(wrap(pipe("Describe what is presented in this image", image=image, max_new_
↪tokens=512)))

The image is a diagram titled "Figure 6: A Framework for Measuring Employee
Engagement and Corporate Philanthropy." It is divided into several sections,
each with a specific focus. The top left section is labeled "CORPORATE
PHILANTHROPY ACTIVITIES" and includes examples such as grants and employee
volunteer programs. The top right section is labeled "BUSINESS IMPACT" and lists
outcomes like increased output, sales, and profitability. Below these sections,
there are three main columns. The first column on the left is labeled "EMPLOYEE
NEEDS FULFILLED" and includes points such as self-enhancement, work-life
integration, reputational shield, bridge to company, and collective self-esteem.
The middle column is labeled "INTERMEDIATE OUTCOME TO BE TARGETED AND MEASURED"
and includes "EMPLOYEE ATTITUDES" and "Sense of organizational identification."
The third column on the right is labeled "JOB-RELATED BEHAVIORS" and lists
outcomes like reduced absenteeism, retention, efficiency, co-operative
behaviors, work effort, and advocacy. At the bottom, there is a section labeled
"OTHER MODERATING FACTORS" which includes extrinsic incentives, employee
characteristics, and employee perception of HR practices, work environment,
management, and company capabilities. The source of the diagram is cited as
adapted from Bhattacharya, C. B., Sen, S., & Korschun, D. (2008) and Bartel, C.
(2001).

Probing the model’s image reasoning capabilities:

# Load and display a test image
image = Image.open("assets/MSDTRPL_EC013-H-2020-1602198302.webp")
plt.imshow(image)
plt.axis('off')
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(np.float64(-0.5), np.float64(999.5), np.float64(562.5), np.float64(-0.5))

print(wrap(pipe("What is shown in this image?", image=image, max_new_tokens=512)))

The image depicts a large crowd of people, many of whom are holding up their
hands. The crowd appears to be in a state of excitement or celebration, with
some individuals raising their hands in the air. The people are dressed in a
variety of clothing, including suits and casual attire. The background is filled
with more people, suggesting that this is a public event or gathering.

print(wrap(pipe("Identify the movie that this scene is taken from, and explain your␣
↪reasoning",

image=image, max_new_tokens=128)))

This scene is from the movie 'Forrest Gump.' The reasoning behind this
identification includes the distinctive style of the crowd, the casual yet
significant attire of the individuals, and the overall chaotic yet focused
atmosphere typical of a pivotal moment in the film. The scene captures a moment
of intense public reaction, which is a recurring theme in the movie.

print(wrap(pipe("Please give your best estimate of the number of people in this image
↪",

image=image, max_new_tokens=32)))

There are approximately 30 people visible in the image.

print(wrap(pipe("Briefly recount a specific instance of corporate philanthropy in the␣
↪plot of the movie Trading Places?",

max_new_tokens=512)))
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In the movie "Trading Places," a notable instance of corporate philanthropy
occurs when Louis Winthorpe III, played by Eddie Murphy, and Billy Ray
Valentine, played by Dan Akroyd, are swapped due to a bet. Louis, who is a
successful commodities trader, is given a chance to live a life of luxury and
privilege, while Billy, a struggling street trader, is given Louis' life.

During this period, Louis, who is now living a life of luxury, decides to use
his newfound wealth to help those in need. He donates a significant amount of
money to a local homeless shelter, which is a clear act of corporate
philanthropy. This act not only helps the shelter but also serves as a turning
point in Louis' character development, as he begins to understand the value of
giving back to the community.

This instance of corporate philanthropy in the movie highlights the importance
of using wealth and resources to help those in need, and it also serves as a
reminder that even those who are successful can make a positive impact on
society.

38.5.3 Audio

Finally, perform automatic speech recognition (ASR) and speech translation on an audio input.
Rigorous open benchmark datasets for evaluation are also available, e.g.
https://github.com/huggingface/open_asr_leaderboard

# Perform speech-to-text on an audio file
url = "assets/pork-bellies!.mp3"
audio, samplerate = soundfile.read(url)
response = pipe("Transcribe the audio to text",

audio=[(audio, samplerate)], max_new_tokens=512)
print(wrap(response))

Pork bellies! I have a hunch something very exciting is going to happen in the
pork belly market this morning.

from playsound import playsound
playsound(url) # play the original sound file
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