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Basics of Statistical Learning Terminology

Terminology

Bias-Variance trade-off – the challenge of finding a model for which both the
variance and squared variance of test set performance is low.

Training data used to develop the model – run through algorithms,
adjust hyperparameters

Validation data used to measure fitness of algorithms and selected
parameters

Testing data should only be used one at the end of model
development process – final measure of model performance

Cross-Validation estimates the test error rate by holding a subset of training
observations from the fitting process

Train-Validate-Test:

1 Split the data into training and test sets.

2 Split the training data into k folds (for k-fold cross validation) – find
model and hyperparameters with lowest CV error

3 Train a model on all the training data using the optimal hyperparameters

4 Test the model on the test data
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Data Transformations Data

Data

Types

Numeric (continuous, discrete)

Nonnumeric
- Character (string)
- Factor (categorical): Ordered or Unordered (levels)

Boolean/binary/indicator
- Binarized

Date/time, geospatial (latitude and longitude)

Unstructured: Information that doesn’t naturally fit into a tabular
structure, e.g. text and video

Dimensionality

Number of variables (columns) in data set

Categorical variable: high dimensional (number of levels), granularity

Low exposure (or occurrence)

Unstable and unintuitive results when large number of variable levels

Difficult to comprehend
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Unsupervised Learning Techniques Unsupervised Feature Construction

Unsupervised Feature Construction

PCA

Summarizes data set (i.e. dimension reduction) by maximizing variance

Creates numerical features called principal components

Original variables are typically scaled

Principal components are uncorrelated to each other

Consecutive principal components explain less variance

Use scree plot to visualize variance explained and determine smallest
number required

Can be used to address collinearity

Cluster

Group observations that are similar in the same cluster

Creates a factor based on the groupings

Original variables are typically scaled
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Unsupervised Learning Techniques Principal Components Analysis

Principal Components Analysis

Variance is a measure of the spread of a data distribution

Projection onto a direction of maximal variance minimizes distance from
an old higher dimensional data point to its new transformed value

Minimizes information loss, retaining maximum amount of information from
the original data
These directions are just linear combinations of the input variables and can
be used as summary variables themselves

PCA finds directions of maximum variance that are mutually orthogonal
(perpendicular)

General properties:
Maximum number of PC’s is min(number of variables, number of data
points)
The more variance of data explained, the higher that PC is ranked

Assume each raw variable has been centered and scaled. If range and scale
of the variables are similar or in same units of measure, covariance is
appropriate need not scaling
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Unsupervised Learning Techniques Principal Components Analysis

Principal Components Analysis

For the i ’th row, the p’th PC is:

PC
(p)
i = w

(p)
1 xi1 + . . . + w

(p)
n xin

Coefficients w
(p)
j are called loadings or weights or rotations for the pth PC

Sum of squares of loadings constrained equal to one

Because the average is zero due to centering, the goal is max
∑

i∈m PC
(p)2
i

Subject to
∑

j∈n w
(1)2
j = 1

Subsequence PC’s determined same way with additional constraint the
latest loadings must be orthogonal to the previous loadings:∑

j∈n w
(r)
j w

(p)
j = 0forr = 1, 2..p − 1

First component is normalized linear combination z1 =
∑

i∈p φi1xi

normalized
∑
φ(1) = 1

loadings φ1 of first PC
maximum

∑
z2
i1 ∼ sample variance of zi1

Loading vector φ is direction in feature space where data varies most

Project X onto this direction ⇒ projected values are the scores z

Low dimensional space closest to the n observations

Z2 is uncorrelated to Z1 ⇐⇒ φ2 is orthogonal to direction φ1.
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Unsupervised Learning Techniques Principal Components Analysis

Principal Components Analysis

When to use:

Feature transformation – PC’s are linear combinations of original

Feature extraction – principal components

Feature selection – fewer variables needed to capture most information

Visualize high-dimensional data

Important preprocessing step for other algorithms that work better with
fewer inputs

Finding latent as opposed to measurable variables
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Unsupervised Learning Techniques K-Means Clustering

K-Means Clustering

Assign each observation to a similarity grouping: one of k groups

K-means defines a group by its center, each observation is then assigned
to the group with the closest center

Find centers that minimize objective function, using iterative algorithm:
Pick some random centers
Assign each observation to the group that has the closest center
Calculate new centers for the groups formed in Step 2
If the difference in objective function is below some threshold, stop. Else
repeat from reassign

Objective is
∑

i∈k
∑

j∈p(xi j − x̄kj)
2 always improves, finds local minimum

Algorithm needs to be repeated for different initial cluster assignments

Should always standardize, so that algorithm places equal weights on all
features when determining where clusters should be

Algorithm needs to be repeated for each number of clusters k.

Curse of dimensionality: as number of dimensions increases, the data
points on average are the same distance away from each other, clustering
techniques become almost meaningless

Elbow method for selecting k – as soon as amount of additional variance
being explained by a new cluster drops off
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Unsupervised Learning Techniques Hiearchical Clustering

Hiearchical Clustering

Agglomerative approach: starts by considering each observation as its
cluster, then gradually grouping them with nearby clusters – bottom-up

Linkage function – as clusters contain multiple points, closest clusters is
ambiguous statement

Single: minimum distance between cluster points
Complete: distance between two further elements of two clusters
Average: Average pairwise dissimilarity between cluster points
Centroid: Dissimilarity between cluster centroids 00 but inversion can occur
where fuse at height below individual clusters

Creates clusters by joining the two closest observations, then the next two
closest, until all observations are in a single cluster

Algorithm does not need to be repeated for each number of clusters k

Produces a dendrogram: similarity of observations from location on
vertical axis where branches containing observations fuse. Height of cut
controls number of clusters obtained

Typically avoided for large datasets

Not robust to perturbations in data
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Unsupervised Learning Techniques Hiearchical Clustering

Hiearchical Clustering

Algorithm

1 Select the dissimilarity measure and linkage.

2 Treat each observation as its own cluster
3 For k = n, n − 1, ..., 2 :

Compute the inter-cluster dissimilarity between all k clusters
The two clusters with the lowest inter-cluster dissimilarity are fused; the
dissimilarity indicates the height in the dendrogram at which the two
clusters join

Choices

1 Should features be standardized?

2 What dissimilarity measure?

3 What linkage?

4 Where to cut dendogram to obtain clusters?
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Linear Models Review of OLS

Review of OLS

Linear relationship target and predictors

Additive error term

Independent observations

Minimize SSE = SSR =
∑

i (ŷ–yi )
2 (if gaussian noise, then is also MLE)

X is called “design matrix”

Check Assumptions:

Mean of residuals is zero
- Variance is constant (homoscedasticity) – residual plots
- Residuals have no autocorrelation
- Residuals and Predictor variables are uncorrelated
- Residuals have a normal distribution – qq-plot

Limitations
- Target maybe positive, binary or variance depends on the mean
- Linear models are sensitive to outliers
- Nonlinear relationships (but may be transformations)
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Linear Models Estimation

Estimation

The simple linear regression (SLR) model relates a continuous response
variable yi with one predictor variable xi and an error term εi :
yi = f (xi ) + εi = a + bxi + εi
Coefficent estimates are chosen to minimize the residual sum of squares:

Slope b̂ =

∑n
i=1(xi − x̄)(yi − ŷ)∑n

i=1(xi − x̄)2

Intercept: â = ȳ − b̂x̄

Residual is the difference between the observed response value and the
response value predicted by the model, ei = yi − ŷi .
Residual sum of squares (RSS) over all observations is
RSS = e2

1 + e2
2 + ...+ e2

n or equivalently RSS =
∑n

i=1(yi − ŷi )
2.

Mean square error (MSE) is an estimate of the variance of the residuals
s2 = σ̂2 = 1

n−2

∑n
i=1(yi − ŷi )

2.
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Linear Models Confidence Intervals

Confidence Intervals

Residual standard error (RSE) or residual standard deviation is the estimate
of the (square root of the) variance of the residuals.
Standard errors associated with linear regression coefficient and mean
response estimates are:

Slope: se(b̂) =

√
s2∑n

i=1(xi − x)2

Intercept: se(â) =

√
s2[

1

n
+

x2∑n
i=1(xi − x)2

]

Mean response: se(ŷ) =

√
s2[

1

n
+

(x − x̄)2∑n
i=1(xi − x̄)2

]

Prediction of a new response: se(ŷn+1) =

√
s2(1 +

1

n
+

(x − x̄)2∑n
i=1(xi − x̄)2

)
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Linear Models Inferences

Inferences

t-statistic or t-ratio t(bj) =
bj

se(bj)
can be interpreted to be the number of

standard errors that bj is away from zero. In a t-test, the null hypothesis
(H0 : βj = 0) is rejected in favor of the alternative if the absolute value of the
t-ratio |t(bj)| exceeds a t-value, denoted tn−(k+1),1−α

2
, equal to the (1− α

2
)th

percentile from the t-distribution using df = n − (k + 1) degrees of freedom.

F-test whether all regression slope coefficients are zero H0 : b1 = ... = bp = 0,
versus the alternative Ha : at least one bj is non-zero. This hypothesis test is
performed by computing the F-statistic.

F =
(TSS − RSS)/p

RSS/(n − p − 1)

Partial F-test to test that a particular subset of q of the coefficients are zero.
We fit a second model that uses all the variables except those last q, then
compute residual sum of squares for that model and the appropriate F-statistic

F =
(RSSq − RSS)/(p − q)

RSS/(n − p − 1)
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Linear Models Multiple Linear Regression

Linear Regression Assumptions

With multiple regressors, the linear model y = b0 + b1x1 + ...+ bkxk + ε has
coefficient estimates: b̂ = (XTX )−1XT y

The coefficient bj quantifies the association between the jth predictor and
the response. It is the average effect on Y of a one unit increase in Xj ,
holding all other predictors fixed.

Observables Representation Error Representation
F1. E [yi ] = b0 + b1xi1 + ... + bkxik . E1. yi = b0 + b1xi1 + ... + bkxik + εi .
F2. {xi1, ..., xik} are non-stochastic variables. E2. {xi1, ..., xik} are nonstochastic variables.
F3. Var(yi ) = σ2. E3. E [εi ] = 0 and Var(εi ) = σ2.
F4. {yi} are independent random variables. E4. {εi} are independent random variables.
F5. {yi} are normally distributed. E5. {εi} are normally distributed.

1 Under assumptions F1-F4, the least squares regression estimator
b = (X ′X )−1X ′y is an unbiased estimator of the parameter vector b;

2 has variance-covariance matrix Var(b) = σ2(X ′X )−1,

3 and standard error bj se(bj) = σ
√

(X ′X )−1
[j+1,j+1].

4 Under assumption F1-F5, the least squares stimator is normally distributed.

Terence Lim PA/SRM 2022 Study Notes
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Linear Models Collinearity

Collinearity

When one explanatory variable is, or nearly is, a linear combination of the other
explanatory variable.

1 Does not preclude us from getting good fits nor from making predictions.

2 Estimates of error variances and tests of model adequacy are still reliable.

3 Standard errors of regression coefficients are greater, reducing power of the
hypothesis test (probability of correctly detecting a non-zero coefficient)

The variance inflation factor (VIF) of each predictor variable to assess
multicollinearity:

VIFj =
1

1− R2
j

, j = 1, 2, ..., k

where Rj is the multiple correlation coefficient between xj as the response and
linear combinations of the other x ’s

Equivalent to ratio of the variance of a coefficient estimate when fitting
the full model divided by the variance of of the coefficient estimate if fit
on its own.

A larger VIFj associated with a larger standard error of the jth slope, bj .

A VIF value that exceeds 5 or 10 indicates a problematic amount.
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Linear Models Residual Analysis

Residual Analysis

With the ith residual ei = yi − ŷi and s the residual standard deviation,
commonly-used definitions for standardizing residuals are:

standardized residual ei

s
√

1−hii
, where hii = xT

i (XTX )−1xi is the ith leverage of

the explanatory variables. The denominator is the estimated
standard error for ei .

studentized residual ei

s(i)

√
1−hii

, where s(i) is the residual standard deviation

when running a regression after deleting the ith observation.
Omits effect on the denominator from a large residual.

Potential problems for a linear regression model

1 Non-linearity of the data

2 Correlation of error terms

3 Non-constant variance of error terms (heteroscedasticity)

4 Outliers

5 High leverage points

Terence Lim PA/SRM 2022 Study Notes
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Linear Models Heteroskedasticity

Heteroskedasticity

How to test for heteroscedasticity:

1 Fit a regression model and calculate the model residuals, ei .

2 Calculate squared standardized residuals, e∗2
i = e2

i /s
2.

3 Fit a regression model of e∗2
i on a known vector of p variables zi .

4 The test statistic is LM = (SSRz)/2, where SSRz is the regression sum of
squares from the model fit in the previous step.

5 Reject the null hypothesis if LM exceeds a percentile from a chi-square
distribution with p degrees of freedom. The percentile is one minus the
significance level of the test.

Heteroscedasticity may be handled by:

1 Define the empirical, or robust, estimate of the variance covariance matrix
as ˆVar(b) = (X ′X )−1(

∑n
i=1 e

2
i xix

′
i )(X ′X )−1 to adjust the corresponding

“heteroscedasticity-consistent” standard errors.

2 Use a variation of least squares estimation by weighting observations.

3 Transform the dependent variable, typically with a logarithmic
transformation.

Terence Lim PA/SRM 2022 Study Notes
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Linear Models Outliers

Outliers

An outlier is a point for which its response value is far from the value predicted
by the model. Outliers can arise for a variety of reasons, such as incorrect
recording of an observation during data collection. Removing the outlier may
(or may not) have little effect on the least squares line, but can affect the RSE
and hence interpretation of the fit.
Options for handling outliers:

1 Include the observation in the usual summary statistics but comment on
its effects.

2 Delete the observation from the dataset.

3 Create a binary variable to indicate the presence of an outlier.

Terence Lim PA/SRM 2022 Study Notes
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Linear Models Leverage

Leverage

Removing the high leverage observation may have substantial impact on the
estimated least squares line.

Hat matrix H = X (XTX )−1XT , is the projection matrix that expresses the
values of the response variable as linear combinations of the
predictor variables: ŷ = Hy .

Leverage forith observation is hii = x ′i (X ′X )−1xi .A widely adopted
convention is to declare an observation to be a high leverage
point if the leverage exceeds three times the average, that is, if
hii > 3(k + 1)/n.

Cook’s distance considers both the response and the explanatory variables:

Di =
∑n

j=1(ŷj−ŷj(i))2

(k+1)s2 = ( ei
se(ei )

)2 hii
(k+1)(1−hii )

, where ŷj(i) is the

prediction of the jth observation.

Handling high leverage points:

1 Include observation in the summary statistics but comment on its effect.

2 Delete the observation from the datase if deemed not representative of
some larger population.

3 Choose another variable to represent the information.

4 Use a nonlinear transformation of an explanatory variable
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Linear Models Model Evaluation and Validation

Model Evaluation and Validation

Model Selection and Validation

Hypothesis test, significance of predictor, t-test, p-value

R-square, adjusted-R-square, F-test

Deviance is measure of goodness of fit for GLM (similar to SSE for OLS)

Penalized likelihood by number of parameters
- AIC: based on deviance, penalizes more complicated model = 2k − 2 ln L
- BIC is more conservative and results in simpler models = ln(n)k − 2 ln L

Null and Residual Deviance, and AIC

Null deviance = 2(LLsat − LLnull)
- Saturated model has one parameter per observation
- Null model is intercept-only model

Residual deviance = 2(LLsat–LL)

AIC = 2p − 2LL (low AIC is good ⇒ high LL and small p)
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Linear Models Residuals

Residuals

Types of residuals

Response = observed – predicted

Working = (observed – predicted) / predicted

Pearson = (observed – predicted) / sqrt(predicted)

Deviance = sign(observed – predicted) deviance

Fixing Residuals

Heteroscedasticity: transform a variable

Nonlinear: transform variable, or need a non-linear model

Outlier: data entry error, assess impact (do model coefficients change)

Residuals vs Fitted graph: check homogeneity of variance and linearity of
relationship

Normal Q-Q: normality of distribution of residuals

Scale-Location: Similar to Residuals vs Fitted, but with Y-axis
standardized

Residuals vs Leverage: detect observations with large impact on model
and considered for removal
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Linear Models Feature Selection

Feature Selection

Forward and backward stepwise selection

Regularization: glmnet() to penalize size of coefficients

Ridge Regression (X ′X + λI )−1X ′Y : penalize sum of squared parameters

minSSE + λ

p∑
j=1

b2
j

Lasso penalize absolute value of parameters – allows for
deletion of feature

min SSE + λ

p∑
j=1

|bj |

Elastic net mixing coefficient alpha (0 is ridge, 1 is lasso)
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Linear Models Regularization

Regularization

Model Complexity, Bias and Variance

Loss: Average squared difference between the predicted values and the
target values

Bias: expected loss from model not being flexible enough to capture the
underlying signal

Variance: Expected loss from the model overfitting to a specific instance
of the data

Process noise: When making predictions, there is always some error that
cannot be avoided, even if we know the true model and parameters

Cp, AIC, BIC: performs an adjustment to the training error that accounts
for potential overfitting: hence variable selection is an indirect method for
reducing variance

Regularization: optimize variance versus bias – reduce complexity
- Cross-validation to estimate true model variance, and...
- ...hyperparameter tuning (i.e. control the amount of regularization)

Reducing model complexity:

Potentially improve prediction accuracy

More interpretable models
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Generalized Linear Models GLM

Generalized Linear Models

Generalized assumptions: Given predictor variables,

target variables are independent (unchanged)

target variable’s distribution is member of exponential family (e.g. normal)

expected value of target variable is E [Y ] = g−1(Xβ) (e.g. identity)
- where g is called the (canonical) link function
- and g−1 is its inverse (aka mean function)

Definition: Linear separable if straight line, or hyperplane in more than two
dimensions, completely separates data
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Generalized Linear Models Examples

Examples

Log link function and normal distribution

Y ∼ N(exp(Xβ), σ2) is linear but may be negative (need gamma
distribution for non-negative)

Note: OLS with logY ⇒ Y = (Π exp(Xβ)) exp(ε) is not linear model

Logit link (logistic sigmoid mean)

Binomial distribution for binary variable

Reciprocal link (reciprocal mean)
Log link (exponential mean): ensures positive prediction

Poisson distribution for count variables

Gamma or inverse Gaussian for positive numeric with right skew
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Generalized Linear Models Counts and Aggregate Loss

Counts and Aggregate Loss

Claim counts:

poisson distribution (positive target) and log link (positive prediction):
variance = mean

Gamma distribution with log link (other distributions for positive-valued
data: lognormal, inverse gaussian)

Quasipoisson family – account for overdispersion = variance of response ¿
mean

Tweedie Distribution – unique application for insurance

Compound Poisson Linear Models: R package cplm not in exam

N claims poisson(lambda), each claim has gamma (alpha, beta)
Rightarrow mu = lambda X alpha/beta

Discrete probability at zero, then continuous probability on positive total
claims values
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Generalized Linear Models Interpretation of coefficients

Interpretation of coefficients

Not “is this variable valuable”, but “in the presence of the other variables,
does this variable provide additional value?””

With log link, expected change in response is multiplicative by a factor of
exp(beta)

When predictor is binary, effect is a separation of the response variable by
group represented

With factor variable, each beta represents difference with the base group
(the one left out as predictor)

An interaction occurs when the response depends on a combination of
features, not just in isolation

With logit link: exponentiated coefficients approximate (ignoring
denominator term) multiplicate effect of a unit change in the variable
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Generalized Linear Models Target Distributions and Link Function

Target Distributions and Link Function

Mean Functions and Canonical Links for Selected Distributions:

Distribution Mean function b(θ) Canonical link g(µ) Model
Normal θ µ linear regression
Bernoulli eθ/(1 + eθ) logit(µ) logistic regression
Poisson eθ ln µ poisson regression
Gamma −1/θ −1/µ

Inverse Gaussian (−2θ)
1
2 −1/(2µ2)

Terence Lim PA/SRM 2022 Study Notes



DR
AF
T

30/70

Generalized Linear Models Weights and Offsets

Weights and Offsets

Offset variables

incorporates a measure of exposures (larger exposure ⇒ larger mean)

at times a coefficient’s value is known and does not need to be estimated

e.g. Poisson GLM with log link: lnµ = lnE + η (assumes µ proportional
to E)

Prior weights

incorporate a measure of precision. more precise observations higher
weight

give information about credibility of each observation, model will be more
influenced by these observations
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Generalized Linear Models Diagnostic Tools

Model Assessment in Binary Classification

TN: true negatives

FN: false negatives, i.e. type II errors

FP: false positives, i.e. type I errors

TP: true positives

Accuracy = (TP + TP)/N

Error rate = (FP + FN)/N

Precision = TP / (TP + FP)

Recall = Sensitivity = TPR = TP / (TP + FN)

Specificity = TNR = TN / (TN + FP)

ROC curve: plot of TPR and FPR over a range of cutoff values. (0,0) and
(1,1) always a point on curve

AUC = area under the ROC curve: estimate of model fit
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Time Series Models Time Series

Time Series

Time series can be decomposed a series into three types of patterns:

1 The trend is that part of a series that corresponds to a long-term, slow
evolution of the series. This is the most important part for long-term
forecasts.

2 The seasonal part of the series corresponds to aspects that repeat itself
periodically, say, over a year.

3 The irregular patterns of a series are short-term movements that are
typically harder to anticipate.

Forecast future values of the series by extrapolating each of the three patterns.

Autocorrelation Function:

Summarizes the linear relationship between observations that are k time

units apart: rk =
∑T

t=k+1(yt−k−y)(yy =y)∑T
t=k+1

(yt−k−y)2 .

Plotting the autocorrelation function as a function of k determines if the
autocorrelation decreases as the lag gets larger, or if there is any particular
lag for which the autocorrelation is large.
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Time Series Models AR(1) Model

AR(1) Model

For a (stationary) AR(1), the correlation between points k time units apart

ρk =
Cov(yt , yt−k)√
Var(yt)Var(yt−k)

=
Cov(yt , yt−k)

σ2
y

= βk
1

β1 this is restricted to be between −1 and 1. By making this restriction,
the AR(1) series {yt} is stationary.

If β1 = 1, model is (non-stationary) random walk
If β1 = 0, model reduces to a white noise process

Under the hypothesis of no autocorrelation, a good approximation to the
standard error of the lag k autocorrelation statistics is se(rk) = 1√

T
.

To estimate the variance of the error terms: s2 = 1
T−3

∑T
t=2(et − e)2

The smoothed series (i.e. the values fitted under the model) for the AR(1)
model is: ŷt = b0 + b1yt−1.

The chain rule of forecasting: For an AR(1) model, the k-step ahead
forecast is recursively determined by ŷT+k = b0 = b1ŷT+k−1.
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Time Series Models Model Comparison

Model Comparison

Mean error ME = 1
T

∑T
t=1 ε̂t

Mean percentage error MPE = 100
T

∑T
t=1

ε̂t
yt

Mean square error MSE = 1
T

∑T
t=1 ε̂t

2

Mean absolute error MSE = 1
T

∑T
t=1 |ε̂t |

Mean absolute percentage error MAPE = 100
T

∑T
t=1 |

ε̂t
yt
|
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Time Series Models Random Walk

Random Walk

A random walk is the partial sum of a white noise process. Let ε1, ..., εT be T
observations from a white noise process with mean µ and variance σ2

ε . A
random walk can be expressed recursively as

yt = yt−1 + εt = y0 + µct + ut

where ut =
∑t

j=1 εj .

The random walk is not a stationary process because the variability, and
possibly the mean, depends on the time point t at which the series is observed.

Variance Var [yt ] = tσ2
ε . Hence, as long as there is some variability in the

white noise process, the random walk is nonstationary in the variance.

Mean E [yt ] = y0 + tµt . If µε 6= 0, then the random walk is nonstationary
in the mean.
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Time Series Models Unit Root

Unit Root

A unit root test is used to evaluate the fit of a random walk model. The
Dickey-Fuller test is the t-statistic associated with the yt−1 variable using
ordinary least squares on the following equation

yt − yt−1 = β0 + (φ− 1)yt−1 + β1t +
P∑
j=1

φj(yt−j − yt−j−1 + εt

The (possibly serially correlated) disturbance term has been augmented by
autoregressive terms in the differences {yt−j − yt−j−1}. These terms serve
to capture serial correlation in the disturbance term, where results for a
number of choices of lags P should be checked to reach qualitatively
similar conclusions.

The t-statistic, which does not follow the usual t-distribution (because
{yt−1} is a random-walk process under the null hypothesis) but rather
follows a special Dickey-Fuller distribution, tests H0 : φ = 1 versus the
one-sided alternative that Ha : φ < 1.
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Time Series Models Smoothing

Smoothing

Moving, or running, average estimates are defined by

ŝt =
yt + yt−1 + ...+ yt−k+1

k

, where k is the running average length.

Exponential smoothing estimates are weighted averages of past values of a
series, where the weights are given by a series that becomes exponentially
small. Let w be a weight number that is between zero and one, and
consider the weighted average:

yt + wyt−1 + w 2yt−2 + w 3yt−3 + ...

1/(1− w)

Smoothing is only appropropriate for time series data without a linear trend

A double smoothing procedure is used for time series with a linear trend.
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Time Series Models Seasonality

Seasonality

Seasonal adjustment is the removal of seasonal patterns. Seasonal effects can
be represented using binary or categorical variables, or trigonometric functions.

A fixed seasonal effects model represents the seasonal component St as a
function of time t. The two most important examples are the seasonal
binary and trigonometric functions.

A seasonal autoregressive model of order P represents the correlation
between yt and yt−k using autoregressive models, with P lagged response
explanatory variables:

yt = β0 + β1yt−k + ...+ βPyt−Pk + εt

The Holt-Winter additive seasonal model is a seasonal exponential
smoothing method – with three smoothing parameters for the level, trend
and seasonality respectively – that appears to work well in practice.

yt = β0 + β1t + St + εt

where St = St−g and
∑g

t=1 St = 0
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Time Series Models Volatility Models

Volatility Models

ARCH/GARCH models allow for changing variances in a time series by
conditioning on the past.

The autoregressive changing heteroscedasticity model of order p, or ARCH
(p), specifies that the conditional variance is determined recursively by

σ2
t = w + γ1ε

2
t−1 + ...+ γpε

2
t−p

where w > 0 is the “long-run” volatility parameter and γ1, ..., γp are
coefficients such that γj ≥ 0 and

∑p
j=1 γj = 1. The unconditional variance

remains constant over time despite having a changing conditional variance,

The generalized ARCH model of order p, or GARCH(p,q), adds a moving
average component, where the conditional variance is determined
recursively by:

σ2
t − δ1σ

2
t−1 − ...− δqσ2

t−q = w + γ1ε
2
t−1 + ...+ γpε

2
t−p

where additionally δj ≥ 0 and
∑p

j=1 γj +
∑q

j=1 δj < 1. The GARCH(p,q) is
also a weakly stationary model, with mean zero and (unconditional)
variance Var(εt) = ω/(1−

∑p
j=1 γj −

∑q
j=1 δj)

The marginal distribution (εt) has fatter tails than the Gaussian
distribution, even though the conditional distribution (εt/σt) is Gaussian.
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Decision Trees Base Decision Tree

Base Decision Tree

Split feature space into exhaustive and mutually exclusive segments

that minimize variability of target with each segment (node purity)

by splitting parent node by a variable that causes segments to be most
different from each other

A series of splitting rules that divides the dataset into nodes

Splitting rules are determined using recursive binary splitting

Number of terminal nodes is the flexibility measure

No underlying assumptions about target and predictors

Impurity Function

Entropy: −
∑

i∈c pi log2 pi
- If all data from same class: entropy = 0;
- if data are evenly split: entropy = 1

Information Gain = Entropy(parent) −
∑

k
Nk
Np

Entropy(Childk)

- Np is number of observations in parent, Nk is number in kth child node
- Natural bias that favors categorical features with many levels

Gini: 1−
∑

i∈c p
2
i

- Goal is to make Gini as small as possible

Classification Error: 1−maxi∈cpi
Splitting and cost-complexity pruning
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Decision Trees Pruning

Pruning

Reduced error pruning:

Consider making each node a leaf and assigning it the most common
classification of training examples in its subtree

Remove node only if resulting pruned tree performans no worse over the
validation set

Choose best level of complexity to prune back that minimizes the cross
validation error

“smallest error plus one standard deviation” rule
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Decision Trees Advantages and Disadvantages

Advantages and Disadvantages

Decision Trees

Intuitive and quick to run
Good for recognizing natural breakpoint in continuous variable
Good for nonlinear interactions between variables
Unstable and prone to overfitting

Advantages:

Easy to interpret and explain
Easy to construct
Mimic human decision-making
Insignificant predictors are removed automatically
Interactions are captured automatically
Factors are handled automatically; binarization is not needed
Handles missing values

Disadvantages

Requires an abundance of observations to perform well
High risk of overfitting
Not robust: sensitive to training set
Tends towards selecting categorical features with many levels
Greedy algorithm
Low prediction accuracy, is a “weak learner”
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Decision Trees Interpretation

Interpretation

Feature Importance: method that analyzes structure of model and ranks
contribution of each feature

Total RSS of Gini Index decreased when split on a predictor

Partial Dependence plots: visualize structure of the model’s dependence on a
feature or pair of features

Average predicted value of target value by varying the value of one (or
more) input features

Can only visualize one feature at a time (and a maximum of two or three
manually)

Cannot explore high-level interaction

Is just average model behavior and only a “qualitative” view
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Tree-Based Models Ensemble Methods

Ensemble Methods

Ensemble Methods

Limited ability of GLM’s to extract complex relationships

Sensitivity to noise and tendency to overfit (decision trees)

Bagging (bootstrap aggregation): train multiple models independently in
parallel on random subsets of the data. When trees used as base model
(and random subset of predictors) → random forest

In comparison to boosting, bagged models are less flexible in ability to
reduce bias, and more tied to the capacity of their underlying models. Less
prone to overfitting than gradient boosting machines
One can show that on average, each bagged tree makes use of around
two-thirds of the observations. The remaining one-third of the observations
not used to fit a given bagged tree are referred to as the out-of-bag (OOB)
observations. We can predict the response for the ith observation using each
of the trees in which that observation was OOB. The resulting OOB error is
a valid estimate of the test error for the bagged model, since the response
for each observation is predicted using only the trees that were not fit using
that observation. With sufficiently large B, virtually equivalent to LOOCV
majority vote for prediction

Boosting: train sequence of models on residuals obtained from predicting
previously. Each model is obtained by adding a scaled down version of new
model until sum of all component models predicts entire data set well.
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Tree-Based Models Random Forests

Random Forests

Random Forests

Random forests provide an improvement over bagged trees by way of a
random forest small tweak that decorrelates the trees. As in bagging, we
build a number of decision trees on bootstrapped training samples. But
when building these decision trees, each time a split in a tree is
considered, a random sample of m predictors is chosen as split candidates
from the full set of p predictors.

Natural extension of decision trees, using many weak learners

“Bagging” to use subset of features to build each decision tree – reduce
model variance

Retain many properties of decision trees while removing large variance

Higher potential for predictive accuracy by simulating many different
starting points

But much less interpretable than an individual decision tree

The main difference between bagging and random forests is the choice of
predictor subset size m.

Force each split to consider only a subset of the predictors. Therefore, on
average (p −m)/p of the splits will not even consider the strong predictor,
and so other predictors will have more of a chance. We can think of this
process as decorrelating the trees.
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Tree-Based Models Random Forests

Training and Prediction

Training:

Bootstrap random sample of observations with replacement

At each split, search from random sample of features

Train a decision tree with above

Repeat to train many decision trees

Predicting

Predict target using each tree previously trained

Average the predictions (may be accuracy or optimally weighted)

Parameters

Number of trees (as large as possible)

Proportion of observations in each random sample to build each tree
(typically 60%)

Proportion of features used at each split (mtry is only parameter
supported by caret)

Decision tree parameters: depth, min bucket, min size, method,
improvement, complexity (as high as possible because variance is reduced
through bagging)
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Tree-Based Models Boosting

Boosting

Like bagging, boosting is a general approach that can be applied to many
statistical learning methods for regression or classification

Sequential learning: build multiple models one at a time, and at each step
adjust the training data to place more emphasis on the data points that
previous models predicted poorly: models are not independently trained
(unlike bagging)

FN =
N∑
i

alphai fi () = FN−1 + alphaN fN()

often uses regularization, such as shrinkage, in the processing of adding
functions to the current models, to prevent overfitting

Loss function:
- Least squares, logistic, poisson, gamma, tweedie for regression
- Logistic for binary, softmax for multiclass classification
- Pairwise loss for ranking tasks

boosting to continuously refit residuals – reduce model bias

Boosting does not involve bootstrap sampling, but grows trees sequentially
on residuals. Each tree is fit on a modified version of the original data set
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Tree-Based Models Boosting

Boosting

More prone to overfitting than random forests, and sensitive to
hyperparameter inputs

Learns slowly: shrinkage parameters lambda typical 0.01 or 0.002

Small trees: interaction depth d, often decision stump

Number of trees B: overfitting slow to occur if at all

Aggregate predictions from multiple trees that are fitted consecutively
using updated datasets

Individual trees have high bias, low variance

Because the growth of a particular tree takes into account the other trees
that have already been grown, smaller trees are typically sufficient. Using
smaller trees can aid in interpretability as well; for instance, using stumps
leads to an additive model.

Number of trees is the flexibility measure

Use variable importance and partial dependence pilots to visualize the
effect of predictors

Gradient Boosting Machines (GBM): approximate solution by fitting each
new model in the direction of the negative gradient of the loss function (in
squared loss for regression, derivative is given by residuals, so this is not
new), adding new model multiplied by a learning or shrinkage parameter –
takes smaller steps and longer to converge but can reduce overfitting.
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Tree-Based Models Pros and Cons

Pros and Cons

Decision Tree: Pros

Easy to interpret, if not too many splits.

Handles nonlinear and interaction relationships.

Categorical predictors automatically handled without binarization.

Variables are automatically selected: variables that do not appear are
filtered out; most important appear at top of tree.

Cons

More prone to overfitting, even with pruning.

Strongly dependent on training data: predictions unstable with high
variance.

Ensembles: Pros

More robust and predictive than base tree by combining the results of
multiple trees.

Cons

Opaque/difficult to interpret: many tree are used, requiring variable
importance measures or partial dependency plots.

Difficult to implement: large computational burden to fit multiple base
trees.
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Tree-Based Models Pros and Cons

Pros and Cons

GLM: Pros

Accommodates wide variety of distributions for target variable

Model shows how target mean depends on features.

Coefficients provide interpretable measure of directional effect.

Simple to implement.

Cons

Does not capture non-linear or interactive relationships (unless engineered
in advance)

For some link functions, coefficients may be difficult to interpret.

Regularized GLM: Pros

Categorical variables are binarized automatically and each factor level is
treated as a separate feature to be removed

For lasso, variable selection is automatically performed

Cons

Coefficient estimates are more difficult to interpret because variables are
standardized.

Limited/restricted model forms allowed by glmnet
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Predictive Analytics Problem Definition Terminology

Terminology

1 Predictive analytics focuses on the future: What might happen next?
Identify customers who have highest probability of purchasing additional
products

2 Prescriptive analytics suggests decision options: What would happen if I
do this, what is the best course of action?

Identify customers for a marketing campaign.

3 Descriptive analytics focuses on insights from the past: What happened?
Understand current customers

Common characteristics:

Clearly identify and define the business issues that needs to be addressed

Can address the issue with a few well-defined questions

Have lots of good and useful data that can be used

Reasonably certain the predictions will drive actions or increase
understanding

Reasonably determine it is better than any existing approach

Can continue to monitor and update the models as new data comes in
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Predictive Analytics Problem Definition Framework

Problem Definition Framework

1 Define: articulate the problem definition.
Clarity of business issues, hypotheses to be tested,

2 Impact on the business issue, define objectively without placing blame.
Key to achieving clarity is to ask questions

3 Evaluate: examine feasibility of proposed solutions.
Have everything you need – data, resources, management buy-in.
If have solution, would it work – implementation constraints, regulatory,
legal and consumer acceptance potential for gaming, effort and cost
requirements reasonable
Do you have data required, is data of sufficient quality, will you have
continuing access, are there any other risks to consider (systems,
permissions)
Trade off ease of implementation and use for predictive accuracy – if you
cannot implement and use the model, then it is useless (e.g. neural networks
are universal approximators but take a long time and need lots of data).

4 Prioritize: what is business impact, what are risks of project

5 Prepare: get additional data, internal communications, what information
stakeholders need, any external subject matter expertise (SME)

Sample project statement:
“Determine factors that relate to consumer decision to buy term life insurance and for those who
do, the amount purchased. Selected factors should be able to be used by Marketing to better
target their sales efforts.”
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Predictive Analytics Problem Definition Data Preparation

Data Preparation

Data Cleaning

Dealing with missing values

Dealing with incorrect data types on import (e.g. dates)

Transforming variables to allow models to pick up signal more effectively
e.g. PCA, reduce number of categories/levels, additional variables/flags to
highlight rows or fields

Create multiple datasets for use in model fitting and testing

Intended use:

target vs predictor variables
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Predictive Analytics Problem Definition Feature Generation and Selection

Feature Generation and Selection

Derivations from the original variables/raw data, i.e. final inputs into the
model, e.g.
- Sentiment
- Presence of certain words or phrases
- Polynomial, log, exp, sin

Feature generation and selection to
- Transform data to build simpler model (requires human input):
- Occam’s razor
- Help create more interpretable model
- Improve accuracy without cost of increasing complexity of the model

Binarization – turn categorical variable into several binary variables

Combining variables

PCA or cluster center
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Predictive Analytics Problem Definition Data Issues

Data Issues

Data Quality

Are the data reasonable (key statistics, reconcile with independent
source)?

Are quantities measured consistently?

Is the format of the data consistent across data sets

Are the data sufficiently documented (data dictionary?)

Are the data representative of the modeled population?

Understand the source of the data

Professional issues

ASOP 23 Data Quality

PII Personally Identifiable Information

Regulations: HIPAA, FTC Act, GLB Act

Unfair Discrimination – disparate impact on protected class
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Predictive Analytics Problem Definition Missing Data

Missing Data

Remove columns or rows with missing values – throws away valuable data
points

Replace with mean, median or mode (assumes missing at random)

Assign category/value (if systematically missing for some reason)

Predict using other variables (imputation)
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Predictive Analytics Problem Definition Data Design

Data Design

Historical data should be reflective of what will happen in the future

Time Frame: black swan events, changing cultures/social behaviors, new
developments

Sample: random, stratified (oversampling, undersampling)
- Size
- Model testing
- Imbalanced Data

Granularity

Unbalanced Data

Undersampling: undersample the dominant class. But using less data, and
could lead to curse of dimensionality issues

Oversampling: oversample with replacement, but may run into memory
issues

Combination: hybrid techniques such as SMOTE and ROSE

Performing sampling after the data have been split into trading and
holdout to prevent leaking
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Data Exploration and Visualization Visualization

Visualization

ggplot2 “grammar of graphics”

tidy data “long format”

cluttered, confusing, inaccurate, misleading, deceptive, dishonest, ugly?
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Data Exploration and Visualization Data Exploration

Data Exploration

Natural vs erroneous outliers
- Remove: if not important
- Ignore: if small or insignificant proportion
- Modify: censoring
- Use robust model forms: L1 norm

Univariate Outliers
- IQ range
- Histogram
- Boxplot
- logscale

Bivariate Outliers - Scatter plots: Numeric vs Numeric
- box plots: Categorical vs Numeric
- frequency table: Categorical vs Categorical

Relationships - Pairs
- Nonlinear relationships: Log transform

Transformations
- Binarize categorical variables
- Grouping and combining into factors; New features: ifelse, ratios
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Data Exploration and Visualization Univariate Exploration

Univariate Exploration

Understand basic Relationships

Check relationships against common knowledge and intuition

Identify outliers and potential effects

Variable Distributions
- Numeric summaries (mean, variance, counts, summary)
- Visualize values (histogram, bar plot)
- Boxplot: visual summary of statistics and outliers
- Frequencies: bar chart, table

Inform variable transformation and modeling choices

Log transform to remedy right skewness of positive numeric variables

Combine levels of factor variables
- Low counts increase variance of some levels.
- High dimensions reduce predictive power
- Ensure each level has sufficient observations...
- ...while preserving mean differences across different levels for prediction
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Data Exploration and Visualization Bivariate Data Exploration

Bivariate Exploration

Split Box Plot: numeric-categorical

Split Histograms

Stacked Bar Charts: categorical-categorical

Scatter Plots: numeric-numeric

Identify potentially useful predictors

Identify factor levels that could be combined

Interactions: effect of one variable on target variables depends on the
value or level of another variable

Predictors Numeric target Categorical target
numeric-categorical scatterplot, colored by box plot, split by target,

categorical predictor faceted by categorical predictor

categorical-categorical box plot for target, bar chart for one predictor, filled by
split and faceted by predictors target, faceted by the other predictor

numeric-numeric decision tree decision tree

Terence Lim PA/SRM 2022 Study Notes



DR
AF
T

62/70

R RStudio

R and RStudio

RStudio shortcuts:

Alt - < −
Ctrl Shift C (un)comment multiple lines

Ctrl Shift M % > %

Ctrl + Alt + I insert chunk

Ctrl Shift Enter run chunk

Ctrl Enter run line
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R R

R

operations: getwd(), setwd(), do.call(), lapply(), sapply(), rbind(),
cbind(), function(), %in%, !, :, rm(list = ls())

values: length(), summary(), class(), str(), NA, NULL, is.na(), levels(),
table(), complete.cases()

math: sample(size, replace, prob), all(), solve(), rowMeans(), optim()

stats: sd(), cor.test(), runif(), rnorm(), quantile(), var(), diag(),
which.min(), which.max()

transforms: log(), jitter(), factor(), ifelse(), cut(label), paste(sep,
collapse), as.factor(), as.character(), scale()

subsets: setdiff(), split(), seq(from, to, by, length.out), sort(),
subset(subset, select), rep()

data.frame: colnames(), nrow(), read.csv(stringsAsFactors), expand.grid(),
model.frame(), write.csv()

plotting: plot(), points(), abline(), qplot(), segments(), grid.arrange()
gridExtra: grid.arrange()
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R Making ggplots

Making ggplots

ggplot(data, mapping),

geom point(alpha, size),

geom count(stat=’sum’)

geom col()

geom bar(position=[’dodge’, ’stack’, ‘identity’], stat),

geom histogram(bins, binwidth, position=’dodge’),

geom freqpoly(),

geom density(),

geom smooth(method, se),

geom line(), geom hline(), geom vline(), geom abline()

geom segment(), geom curve()

aes(x, y, color, weight, fill),

labs(title, subtitle, caption, x, y, color),

annotate(x, xend, y, yend, size)

coord cartesian(xlim, ylim),

theme()

xlim(), ylim(), scale x log10(limits), scale y log10(),

facet wrap(), facet grid()
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R Models

Models

linear model: lm(), coef(), residuals(), as.formula(offset), model.matrix(),
anova(), confint()

generalized linear model: glm(family, weights,offset), aic(),
predict(newdata, type=’response’), offset()

penalized: as.matrix, model.matrix, glmnet(family, alpha, lambda),
predict(newx), stepAIC(direction), cv.glmnet(nfolds), drop1()

model assessment: pROC::auc(), pdp:partial()

trees: rpart(method, control, parms), rpart.plot(), rpart.control(),
printcp(), plotcp(), prune(cp)

random forests: randomForest(ntree, mtry, sampsize, nodesize,
importance)

xgboost: xgb.DMatrix(), xgb.cv(), xgb.train(), xgb.importance()

PCA: prcomp(center, scale), biplot(), screeplot()

Clusterings: kmeans(centers, iter.max, nstart, algorithm=”Lloyd”), dist(),
hclust(), cuttree(),
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R Caret

Caret Cross-validation

createDataPartition(p, list),

dummyVars(), as.character()

trainControl(method, number, repeats),

expand.grid()

train(data, method, trControl, metric, tuneGrid, na.action, parms),

confusionMatrix(data, reference)

varImp()
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R Data Preparation

Data Preparation

Bivariate Analysis:

data.all.task4$pure = ifelse(data.all.task4$mix, "mix", "pure")

p <- ggplot(data=data.all.task4, aes(x=in.month, fill=pure))

p + geom_bar() + facet_grid(cols=vars(in.year), rows=vars(animal)) +

theme(axis.text.x=element_blank(), axis.ticks.x=element_blank())

Binarize:

library(caret)

# List the variables we want to binarize

vars.bin <- c("sex", "smoker", "prodcat", "region", "distchan", "uwkey", "uwtype", "resind_ind")

# dummyVars is not compatible with factors

for (var in vars.bin) {

data.mortality[, var] <- as.character(data.mortality[, var])

}

# Binarize variables

# The paste function makes it easy to create the formula, it could have been typed out.

# fullRank = F implies that all values get coded. For example, for sex, both M and F will be in the binarized dataset.

binarizer <- caret::dummyVars(paste("~", paste(vars.bin, collapse = "+")), data = data.mortality, fullRank = F)

data.mortality <- cbind(

data.mortality,

data.frame(predict(binarizer, newdata = data.mortality))

)
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R Fit a Decision Tree

Decision Tree with Cross-Validation

ibrary(rpart)

library(caret)

library(rpart.plot)

set.seed(10)

fitControl <- trainControl(method = "cv", number = 6)

Grid <- expand.grid(cp = seq(0, 0.1, 0.001))

credit.f <- as.formula(Credit ~ CreditAmount + Age + CreditHistory + Employment)

credit.m <- train(credit.f,

data = credit,

method = "rpart",

trControl = fitControl,

metric = "Accuracy",

tuneGrid = Grid,

na.action = na.omit,

parms = list(split = "information")

)

credit.m$finalModel # Best model can be accessed with the caret_model_object$finalModel call.

plot(credit.m)

rpart.plot(credit.m$finalModel, extra = 4)

pred_caret <- predict(credit.m, type = "raw")

confusionMatrix(pred_caret, factor(credit$Credit)) # Arrive at confusion matrix with caret.
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R Random Forest

Random Forest

library(randomForest)

credit$Credit <- as.factor(credit$Credit)

credit.rf <- randomForest(

formula = Credit ~ CreditHistory + Purpose + Employment + Duration + Employment + Age,

data = credit,

ntree = 500,

mtry = 4, # The number of features to use in each split

importance = TRUE

)

credit.rf

With cross-validation and imbalanced data:

rfGrid <- expand.grid(mtry = c(1, 3, 5, 7)) # The number of features to select at each split.

ctrl <- trainControl(

method = "repeatedcv",

number = 5,

repeats = 3, # We want to do 5-fold cross validation (repeated 3 times for robustness)

sampling = "down"

) # This is undersampling - other methods include "up" (oversampling), "SMOTE" and "ROSE" (hybrid methods).

model.rf.tuned <- train(target ~ .,

data = data.training,

method = "rf", # This is so we use the randomForest algorithm.

trControl = ctrl,

tuneGrid = rfGrid,

# We can specify the other parameters for the randomForest model here if we wish to.

# If we don’t they will take on their default values.

ntree = 50, # The default is 500. save us a lot of computation time but may not produce the best results.

importance = TRUE

)

model.rf.tuned

ggplot(model.rf.tuned)
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R Gradient Boosting

Boosting with Imbalanced Data

xgbGrid <- expand.grid(

max_depth = c(1:7),

nrounds = 500,

eta = c(.01, .05, .01),

colsample_bytree = c(.5, .8),

gamma = 0,

min_child_weight = 1,

subsample = .6

)

ctrl <- trainControl(

method = "cv", number = 4,

classProbs = TRUE,

sampling = c("down", "up")

) # Sample unbalanced sample up and down

xgb.tuned <- train(Purchase ~ .,

data = data.Caravan.train,

method = "xgbTree",

metric = "Accuracy",

trControl = ctrl,

tuneGrid = xgbGrid,

na.action = na.pass

)

xgb.tuned

ggplot(xgb.tuned)

varImp(xgb.tuned) # Get variable importance.
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Extra Slides
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An extra slide

Famous Datasets

Gapminder

AnscombesQuartet

SOA Mortality Data Set

Quotes:

The combination of some data and an aching desire for answer does not
sure that a reasonable answer can be extracted from a given body of data
– John Tukey

If I had one hour to save the world, I would spend 55 minutes defining the
problem and 5 minutes designing the solution – Albert Einstein

Back
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