Management Sentiment Analysis#

Life is a math equation. In order to gain the most, you have to know how to convert negatives into positives - Anonymous

Sentiment analysis helps quantify the tone of financial disclosures, revealing whether a company’s management expresses optimism, caution, or concern. This analysis can be conducted using dictionary-based methods, which rely on predefined sentiment word lists, or more sophisticated machine learning models, such as large language models (LLMs). We explore the application of sentiment analysis in financial documents, focusing on the Loughran-MacDonald dictionary and the SEC’s EDGAR system for retrieving company filings. Specifically, we analyze sentiment trends in 10-K Management Discussion and Analysis (MD&A) sections and their relationship with stock returns.

# By: Terence Lim, 2020-2025 (terence-lim.github.io)
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from tqdm import tqdm
from finds.database import SQL, RedisDB
from finds.structured import BusDay, CRSP, Signals
from finds.unstructured import Edgar
from finds.readers import Alfred
from finds.recipes import weighted_average, fractile_split
from finds.utils import Store
from secret import credentials, paths, CRSP_DATE
# %matplotlib qt
VERBOSE = 0
LAST_YEAR = CRSP_DATE // 10000
sql = SQL(**credentials['sql'], verbose=VERBOSE)
user = SQL(**credentials['user'], verbose=VERBOSE)
bd = BusDay(sql)
rdb = RedisDB(**credentials['redis'])
crsp = CRSP(sql=sql, bd=bd, rdb=rdb, verbose=VERBOSE)
signals = Signals(user)
store = Store(paths['scratch'], ext='pkl')

Sentiment analysis#

Dictionary-based (or lexicon-based) sentiment analysis relies on predefined word lists, where words are assigned sentiment scores along with intensity levels. While this approach is straightforward and computationally efficient, it struggles with complex linguistic phenomena such as negations, irony, and sarcasm, which can lead to reduced accuracy. On the other hand, large language models excel at understanding context, syntax, and semantics, making them more effective for sentiment analysis of intricate financial texts. However, despite their limitations, dictionary-based methods remain popular due to their ease of implementation and transparent results.

Loughran-MacDonald dictionary#

Loughran and McDonald (2011) found that general-purpose sentiment lexicons were not well-suited for financial statement analysis. To address this, they developed a dictionary based on company 10-K filings, categorizing words into seven sentiment-related groups relevant to finance: “negative,” “positive,” “litigious,” “uncertainty,” “constraining,” and “superfluous.” This domain-specific approach provides a more accurate reflection of sentiment in financial disclosures.

The dictionary includes:

  • A list of positive sentiment words

  • A list of negative sentiment words

  • A set of stop words to ignore

# to download from google drive, need this prefix and the source file id
_prefix = "https://drive.google.com/uc?export=download&id=" 
source =  _prefix + '1ptUgGVeeUGhCbaKL14Ri3Xi5xOKkPkUD'
# source = "Loughran-McDonald_MasterDictionary_1993-2023.csv"
df = pd.read_csv(source, sep=',')

# sets of positive and negative sentiment words
words = {'positive': set(df.loc[df['Positive'] != 0, 'Word'].str.lower()),
         'negative': set(df.loc[df['Negative'] != 0, 'Word'].str.lower())}

Positive sentiment words

DataFrame(words['positive'], columns=['Positive Words'])
Positive Words
0 outperform
1 rebounded
2 efficiency
3 honored
4 leadership
... ...
349 improves
350 collaborations
351 innovators
352 advantageous
353 honoring

354 rows × 1 columns

Negative sentiment words

DataFrame(words['negative'], columns=['Negative Words'])
Negative Words
0 threatening
1 immature
2 falsifications
3 uncontrolled
4 panic
... ...
2350 objections
2351 coercion
2352 extenuating
2353 lying
2354 contradiction

2355 rows × 1 columns

List of stop words to ignore

# stopwords
generic = ['ME', 'MY', 'MYSELF', 'WE', 'OUR', 'OURS', 'OURSELVES',
           'YOU', 'YOUR', 'YOURS', 'YOURSELF', 'YOURSELVES',
           'HE', 'HIM', 'HIS', 'HIMSELF', 'SHE', 'HER', 'HERS',
           'HERSELF', 'IT', 'ITS', 'ITSELF', 'THEY', 'THEM',
           'THEIR', 'THEIRS', 'THEMSELVES', 'WHAT', 'WHICH',
           'WHO', 'WHOM', 'THIS', 'THAT', 'THESE', 'THOSE',
           'AM', 'IS', 'ARE', 'WAS', 'WERE', 'BE', 'BEEN',
           'BEING', 'HAVE', 'HAS', 'HAD', 'HAVING', 'DO',
           'DOES', 'DID', 'DOING', 'AN', 'THE', 'AND', 'BUT',
           'IF', 'OR', 'BECAUSE', 'AS', 'UNTIL', 'WHILE', 'OF',
           'AT', 'BY', 'FOR', 'WITH', 'ABOUT', 'BETWEEN',
           'INTO', 'THROUGH', 'DURING', 'BEFORE', 'AFTER',
           'ABOVE', 'BELOW', 'TO', 'FROM', 'UP', 'DOWN', 'IN',
           'OUT', 'ON', 'OFF', 'OVER', 'UNDER', 'AGAIN',
           'FURTHER', 'THEN', 'ONCE', 'HERE', 'THERE', 'WHEN',
           'WHERE', 'WHY', 'HOW', 'ALL', 'ANY', 'BOTH', 'EACH',
           'FEW', 'MORE', 'MOST', 'OTHER', 'SOME', 'SUCH',
           'NO', 'NOR', 'NOT', 'ONLY', 'OWN', 'SAME', 'SO',
           'THAN', 'TOO', 'VERY', 'CAN', 'JUST', 'SHOULD',
           'NOW', 'AMONG']
# CountVectorizer to tokenize and code counts of inputs words
vectorizer = CountVectorizer(strip_accents='unicode',
                             lowercase=True,
                             stop_words=generic,
                             token_pattern=r"\b[^\d\W][^\d\W][^\d\W]+\b")
# vectorizer to encode sentiment dictionary words 
sentiment_vectorizer = CountVectorizer(strip_accents='unicode',
                                       lowercase=True,
                                       token_pattern=r"\b[^\d\W][^\d\W][^\d\W]+\b")
sentiment_vectorizer.fit([" ".join(words['positive'].union(words['negative']))])

# create a lookup Series and a score vector for computing net sentiment
features = Series(sentiment_vectorizer.get_feature_names_out())
sentiment_points = (features.isin(words['positive']).astype(int).values 
                    - features.isin(words['negative']).astype(int).values)

10-K Management discussion and analysis#

A 10-K is a comprehensive annual report that publicly traded companies must file with the SEC. It provides an in-depth view of the company’s financial health and operational performance. Key sections include the business description, management discussion and analysis (MD&A), risk factors, and financial statements.

SEC Edgar website#

The SEC EDGAR (Electronic Data Gathering, Analysis, and Retrieval) system is an online database managed by the U.S. Securities and Exchange Commission (SEC). It provides public access to financial filings, including annual and quarterly reports (Forms 10-K and 10-Q), significant event disclosures (Form 8-K), beneficial ownership reports (Schedule 13D), insider sales reports (Form 144), proxy statements, and registration statements (S-1).

Additionally, the SEC has recently released an EDGAR Application Programming Interface (API): EDGAR API

Loughran and MacDonald have also made SEC EDGAR data files and other textual resources available in their research repository: SEC EDGAR Data

FinDS edgar module#

The edgar module in the FinDS package provides functions for

  • Searching and retrieving company filings from the SEC Edgar website

  • Storing and indexing data locally

  • Identifying and extracting specific sections of text, such as MD&A

Retrieve MD&A section text from 10-K’s:

# open 10-K archive of MD&A text
ed = Edgar(paths['10X'], zipped=True, verbose=VERBOSE)
item, form = 'mda10K', '10-K'
rows = DataFrame(ed.open(form=form, item=item))
Series((rows['date'] // 10000).astype(int)).value_counts().sort_index().to_frame()
count
date
1993 2
1994 1362
1995 1674
1996 2960
1997 4461
1998 4501
1999 4364
2000 4287
2001 4168
2002 4400
2003 5478
2004 5203
2005 5090
2006 4999
2007 4954
2008 5033
2009 5273
2010 5050
2011 4863
2012 4730
2013 4617
2014 4643
2015 4720
2016 4612
2017 4488
2018 4431
2019 4417
2020 4388
2021 4615
2022 4766
2023 4641
2024 4501

For all investment universe stocks between 1993 through the present, compute the average sentiment, and change in sentiment, of 10-K’s

# retrieve usual universe at end of each year
univs = {year: crsp.get_universe(bd.endyr(year-1)).assign(year=year)
         for year in range(1992, LAST_YEAR + 1)}
permnos = rows['permno'].unique().astype(int)
DataFrame({'permnos': len(permnos),
           'documents': len(rows),
           'first': min(rows['date']),
           'last': max(rows['date'])},
          index=['10K-mdas'])
permnos documents first last
10K-mdas 14696 137691 19931129 20241231

We assume up to a 3-month lag when the 10-Ks are made available. For example, filings submitted between January and March of 2024 are assigned to fiscal year 2023.

# Compute average sentiment and change in sentiment for all companies and years
results = []
for permno in tqdm(permnos):  # Loop over all permnos
    
    # retrieve all valid mda's for this permno by year
    mdas, dates = {}, {}   # to collect mdas and doc dates for this permno
    docs = rows[rows['permno'].eq(permno)].to_dict('records')
    for doc in docs:
        year = bd.endmo(doc['date'], -3) // 10000   # assign fiscal year
        if (year in univs and (year not in mdas or doc['date'] < dates[year])):
            tokens = ed[doc['pathname']]
            if len(tokens):
                mdas[year] = tokens
                dates[year] = doc['date']

    # compute sentiment as net sentiment word counts divided by doc length
    if len(mdas):
        X = sentiment_vectorizer.transform(list(mdas.values()))\
                                .dot(sentiment_points)
        X = np.divide(X, vectorizer.fit_transform(list(mdas.values())).sum())
        sentiment = {k:x for k,x in zip(mdas.keys(), X)}
    
    # derive sentiment change and similarity scores by year
    for year in sorted(mdas.keys()):
        result = {'year': year, 'permno': permno, 'date': dates[year]}
        result['mdasent'] = sentiment[year]
        result['currlen'] = len(mdas[year])
        if year-1 in mdas:
            result['prevlen'] = len(mdas[year-1])
            result['mdachg'] = sentiment[year] - sentiment[year-1]

            corpus = [mdas[year], mdas[year-1]]
        results.append(result)
  0%|          | 0/14696 [00:00<?, ?it/s]/home/terence/env3.11/lib/python3.11/site-packages/sklearn/feature_extraction/text.py:408: UserWarning: Your stop_words may be inconsistent with your preprocessing. Tokenizing the stop words generated tokens ['about', 'above', 'after', 'again', 'all', 'among', 'and', 'any', 'are', 'because', 'been', 'before', 'being', 'below', 'between', 'both', 'but', 'can', 'did', 'does', 'doing', 'down', 'during', 'each', 'few', 'for', 'from', 'further', 'had', 'has', 'have', 'having', 'her', 'here', 'hers', 'herself', 'him', 'himself', 'his', 'how', 'into', 'its', 'itself', 'just', 'more', 'most', 'myself', 'nor', 'not', 'now', 'off', 'once', 'only', 'other', 'our', 'ours', 'ourselves', 'out', 'over', 'own', 'same', 'she', 'should', 'some', 'such', 'than', 'that', 'the', 'their', 'theirs', 'them', 'themselves', 'then', 'there', 'these', 'they', 'this', 'those', 'through', 'too', 'under', 'until', 'very', 'was', 'were', 'what', 'when', 'where', 'which', 'while', 'who', 'whom', 'why', 'with', 'you', 'your', 'yours', 'yourself', 'yourselves'] not in stop_words.
  warnings.warn(
100%|██████████| 14696/14696 [13:49<00:00, 17.71it/s]
# save in signals database
data = DataFrame.from_records(results)
data['rebaldate'] = bd.offset(data['date'])
print(signals.write(data, 'mdasent', overwrite=True),
      signals.write(data, 'mdachg', overwrite=True))
131045 107665
# right join data with univ, to identify universe companies with missing mda
data = pd.concat([data[data['year']==year]\
                  .drop(columns=['year'])\
                  .set_index('permno')\
                  .join(univ[['year']], how='right')\
                  .reset_index()
                  for year, univ in univs.items() if year < LAST_YEAR],
                 ignore_index=True)
# store temporary
store['sentiment'] = data
data = store['sentiment']

Exploratory analysis

Universe coverage by year:

# Stacked Bar Plot of universe coverage by year
y1 = data[data['mdasent'].notna()].groupby('year')['permno'].count()
y0 = data[data['mdasent'].isna()].groupby('year')['permno']\
                                 .count()\
                                 .reindex(y1.index)
fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 6))
y1.plot(kind='bar', label='matched 10-K MD&As', color='C0', ax=ax, rot=90)
y0.plot(kind='bar', label='10-K MD&As not found', color='C1', ax=ax, rot=90, bottom=y1)
ax.set_ylabel('# stocks')
ax.set_xlabel('Fiscal year')
ax.set_title("Universe and matched 10-K MDA's")
ax.legend()
plt.tight_layout()
_images/e5328f4611a8ee81bc3610b69992c67de3ce9b6f76ed89221bfc02fdeae2d9c8.png

When are 10-K’s filed?

# Stacked Bar Plot of filings date, by month and day-of-week
y = DataFrame.from_records([{'date': int(d),
                             'day': bd.datetime(int(d)).strftime('%A'),
                             'month': bd.datetime(int(d)).strftime('%B')}
                            for d in data.loc[data['mdasent'].notna(), 'date']])
z = pd.concat([y['month'].value_counts()/len(y),
               y['day'].value_counts()/len(y)])
fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 6))
z.plot(kind='bar', color='C0', ax=ax, rot=90)
ax.set_ylabel('Fraction')
ax.set_title("10-K Filings by Month and Day-of-Week")
plt.tight_layout()
_images/ae59157776d2c5c8ddd6aa9acab5dc5adc7fb4d30b31d4cf60e3835e5fff522b.png

Median sentiment and change in sentiment vs total corporate profits (of all US companies), by year:

alf = Alfred(api_key=credentials['fred']['api_key'], verbose=VERBOSE)
series_id = 'CP'  # Corporate Profits
econ = alf(series_id).to_frame()
econ = econ.assign(year=econ.index // 10000).groupby('year').sum()
           
for sent, ylab in {'mdasent': 'sentiment', 'mdachg': 'sentiment change'}.items():
    print(sent, ylab)
    g = data[data['currlen'].gt(500)].dropna().groupby('year')
    iq1, iq2, iq3 = [g[sent].quantile(p) for p in [.25, .5, .75]]
    y = iq2.index.astype(int)
    fig, ax = plt.subplots(1, 1, clear=True, figsize=(10, 6))
    ax.step(y, iq2, ls='-', color='C1', where='pre')
    ax.fill_between(y, iq1, iq3, alpha=0.2, color='C1', step='pre')
    ax.set_title(f"{sent.upper()} by Fiscal Year of 10-K Filing")
    ax.set_xlabel("Fiscal Year")
    ax.set_ylabel(ylab)
    ax.legend([f"{sent.upper()} median", f"inter-quartile range"],
              fontsize='small', loc='upper left')

    bx = ax.twinx()
    econ[(econ.index >= min(y)) & (econ.index <= max(y))].plot(ls='--', ax=bx)
    bx.legend([alf.header(series_id)[:27]], fontsize='small', loc='lower right')
    bx.set_ylabel(alf.header(series_id)[:27])
    bx.set_yscale('log')
    plt.tight_layout()
mdasent sentiment
mdachg sentiment change
_images/88b0f99b293e66dd8e5f3db29fcc64a7aac9837514efd7fbe0da763c0af3a33c.png _images/d84a18d3089246947554b86f14b8f79de0998971856102e0d18262ac9329ed57.png

Management sentiment and stock returns#

We analyze the relationship between sentiment in 10-K filings and subsequent stock returns by constructing cap-weighted decile-spread returns. These are calculated for two periods:

  1. The same calendar year (January–December) to examine contemporaneous relationships between sentiment and stock performance.

  2. The following year (April–March) to explore an investable strategy based on sentiment changes after the release of 10-K reports for the prior fiscal year.

for ifig, key in enumerate(['mdasent', 'mdachg']):
    ret1 = {}   # to collect year-ahead spread returns
    ret0 = {}   # to collect current-year spread returns
    for year in tqdm(range(1999, max(data['year'])+1)):  # loop over years
        
        # compute current year average spread returns
        begyr = bd.begyr(year)
        endyr = bd.endyr(year)
        univ = data[data['year'] == year]\
                   .dropna(subset=[key])\
                   .set_index('permno')\
                   .join(crsp.get_cap(bd.offset(begyr, -1)), how='inner')\
                   .join(crsp.get_ret(begyr, endyr), how='left')
        if len(univ):
            sub = fractile_split(univ[key], [10, 90])
            pos = weighted_average(univ.loc[sub==1, ['cap', 'ret']], 'cap')['ret']
            neg = weighted_average(univ.loc[sub==3, ['cap', 'ret']], 'cap')['ret']
            ret0[endyr] = {'ret': pos-neg, 'npos': sum(sub==1), 'nneg': sum(sub==3)}

        # compute year ahead average spread returns
        beg = bd.begmo(endyr, 4)
        end = bd.endmo(endyr, 15)
        univ = data[data['year'] == year]\
                   .dropna(subset=[key])\
                   .set_index('permno')\
                   .join(crsp.get_cap(bd.offset(beg, -1)), how='inner')\
                   .join(crsp.get_ret(beg, end), how='left')
        if len(univ):
            sub = fractile_split(univ[key], [10, 90])
            pos = weighted_average(univ.loc[sub==1, ['cap', 'ret']], 'cap')['ret']
            neg = weighted_average(univ.loc[sub==3, ['cap', 'ret']], 'cap')['ret']
            ret1[end] = {'ret': pos-neg, 'npos': sum(sub==1), 'nneg': sum(sub==3)}

    # collect same-year and year-ahead average spread returns
    r0 = DataFrame.from_dict(ret0, orient='index').sort_index()
    r0.index = r0.index // 10000
    r1 = DataFrame.from_dict(ret1, orient='index').sort_index()
    r1.index = (r1.index // 10000) - 2

    # plot same-year average spread returns
    fig, ax = plt.subplots(nrows=2, clear=True, figsize=(10, 8), sharey=True)
    r0['ret'].plot(kind='bar', ax=ax[0], width=.85, color="C0")
    ax[0].axhline(r0['ret'].median(), linestyle=':', color='C0')
    ax[0].axhline(r0['ret'].mean(), linestyle='-.', color='C0')
    ax[0].set_title(f"Same Year (Jan-Dec) Returns")
    ax[0].set_ylabel('annual returns')
    ax[0].legend(['mean', 'median', 'Annual Spread Returns'])
    
    # plot year-ahead average spread returns
    r1['ret'].plot(kind='bar', ax=ax[1], width=.85, color="C1")
    ax[1].axhline(r1['ret'].median(), linestyle=':', color='C1')
    ax[1].axhline(r1['ret'].mean(), linestyle='-.', color='C1')
    ax[1].set_title(f"Next Year (Apr-Mar) Returns")
    ax[1].set_ylabel('annual returns')
    ax[1].legend(['mean', 'median', 'Annual Spread Returns'])
    ax[1].set_xlabel('fiscal year')
    
    plt.suptitle(f"{key.upper()} Annual Cap-weighted Decile Spread Portfolios")    
    plt.tight_layout()
  0%|          | 0/25 [00:00<?, ?it/s]
100%|██████████| 25/25 [06:21<00:00, 15.26s/it]
100%|██████████| 25/25 [00:48<00:00,  1.92s/it]
_images/12af3785b8abe2646b837e87e0f943003a62cb610c7f7a12256370c816786a14.png _images/3a04d7ea23b4c56b31e9c7323920090163d8953f9d6741037136ef8d75925683.png

References:

Tim Loughran and Bill McDonald, 2011, When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks, Journal of Finance, 66:1, 35-65.

Cohen, Malloy and Nguyen (2020), Lazy Prices, Journal of Finance, Volume 75, Issue3, June 2020, Pages 1371-1415